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Abstract

We obtain a new entropic inequality for quantum and tomographic Shannon information for systems of
two qubits. We derive the inequality relating quantum information and spin-tomographic information
for particles with spin j = 3/2. We recommend the method for obtaining new entropic and information
inequalities for composite systems of qudits, as well as for one qudit.
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1. Introduction

The states of classical systems with fluctuating observables due to the interaction with the environment

are described by the probability distributions. The probability distributions associated with one random

variable q in the case of finite number of outcomes equal to N are identified with probability vectors

p = (p1, p2, . . . , pN ), where 1 ≥ pk ≥ 0, k = 1, 2, . . . , N , and
∑N

k=1 pk = 1. The states of quantum systems,

e.g., qudit or spin j states, where j = 0, 1/2, 1, . . ., are described by the density N×N matrix [1–4]

ρmm′ = 〈m|ρ̂|m′〉, where the spin projections m,m′ take the values −j,−j+1, . . . , j − 1, j. The diagonal

elements of the density matrix pm = ρmm can be considered as components of the probability vector

p = (p−j , p−j+1, . . . , pj−1, pj), where 1 ≥ pm ≥ 0 and
∑j

m=−j pm = 1. For several M = 2, 3, . . . random

classical variables, the probability distributions are joint probability distributions P(n1, n2, . . . , nM ) ≥ 0,

such that
N1∑

n1=1

N2∑
n2=1

. . .

NM∑
nM=1

P(n1, n2, . . . , nM ) = 1. (1)

For several M quantum particles, e.g., for a composite system of qudits or composite system of M

particles with spins j1, j2, . . . , jM , the state density operator ρ̂ has the density matrix ρm,m′ = 〈m|ρ̂|m′〉,
where m = (m1,m2, . . . ,mM ), m′ = (m′

1,m
′
2, . . . ,m

′
M ) are the vectors with components corresponding

to spin jk projections mk = −jk,−jk + 1, . . . , jk, k = 1, 2, . . . ,M . The diagonal elements of the density
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matrix ρmm = 〈m|ρ̂|m〉 give the joint probability distribution P(m1,m2, . . . ,mM ) ≥ 0 satisfying the

normalization condition

j1∑
m1=−j1

j2∑
m2=−j2

. . .

jM∑
mM=−jM

P(m1,m2, . . . ,mM ) = 1. (2)

The statistical properties of quantum observables were shown to be described in terms of the standard

probability theory in [5].

Each probability distribution is characterized by the Shannon entropy [6]

Hp = −
N∑
k=1

pk ln pk ≥ 0 (3)

for one probability vector, and for the joint probability distribution P(n1, n2, . . . , nM ) it s

HP = −
N1∑

n1=1

N2∑
n2=1

. . .

NM∑
nM=1

P(n1, n2, . . . , nM ) lnP(n1, n2, . . . , nM ) ≥ 0. (4)

For quantum states, the entropy is defined in terms of the density operator ρ̂ as the von Neumann entropy

S = −Trρ̂ ln ρ̂. (5)

If the density matrix of quantum state ρmm′ is the Hermitian, i.e., (ρmm′)† = ρmm′ , the trace class, i.e.,

Tr ρ = 1, has only nonnegative eigenvalues, i.e., ρ̂ ≥ 0, and diagonalized, the entropy (5) can be expressed

in the form of Shannon entropy determined by the eigenvalues of the density operators identified with

the joint probability distribution P(n1, n2, . . . , nM ). The entropies determined by classical probability

vectors and joint probability distributions obey some inequalities. The entropies determined by the

density operators also obey other inequalities [7–17]. The inequalities, called the subadditivity condition,

the stronger subadditivity condition, and the strong subadditivity condition, are considered to be valid

for composite classical and quantum systems.

Recently, the new representation of quantum mechanics, called the tomographic probability represen-

tation of quantum mechanics, was introduced [18] (see also reviews [19–21]). In this representation, the

density operators are mapped onto standard probability distributions, called the quantum state tomo-

grams. The connection between tomographic schemes and the star–product quantization procedure was

investigated in [22–25]. The general geometrical relations of quantum tomographic probability distribu-

tions to other possible quasidistributions were found in [26]. Reviews of the tomographic representation

of quantum and classical mechanics are presented in [20,21,27].

There exist important relations of entropies associated with the tomographic probability distributions

and von Neumann entropies [15, 28]. These relations were used to introduce the notion of quantum

tomographic discord [29, 30]. On the other hand, there exist mathematical inequalities for entropies

associated with the nonnegative Hermitian matrices [7–17,31].

Our aim in this article is to find the connection between the mathematical inequalities and new to-

mographic inequalities for entropies of physical system states. Also we extend the inequalities considered

usually for bipartite systems to the case of systems without subsystems. To do this, we apply the qubit
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(qudit) portrait method [17,32–34] in the spirit of the application of the method to get subadditivity and

strong subadditivity condition to qudit states.

This paper is organized as follows.

In Sec. 2, we demonstrate the method we elaborated on the example of two-qubit states. In Sec. 3, we

study the qudit states for the case of j = 3/2, and in Sec. 4 we apply the method to get new inequalities

for generic qudit states. In Sec. 5, we study some nonlinear maps of the density matrices and get the

subadditivity condition for j = 3/2. In Sec. 6, we present conclusions and prospectives.

2. Two-Qubit Entropic Inequalities

In this section, we consider in detail examples of the system state in the four-dimensional Hilbert

space. The density matrix of a system state in the four-dimensional Hilbert-space reads

ρ =

⎛
⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎟⎟⎠ , ρjk = 〈j|ρ̂|k〉, j, k = 1, 2, 3, 4. (6)

The matrix has the properties ρjk = ρ∗kj and Trρ = 1. The eigenvalues of the density operator ρ̂ and its

4×4 matrix ρ are nonnegative numbers (ρ1, ρ2, ρ3, ρ4) = p. These properties do not define what physical

system the state with the density matrix (6) has. To clarify this issue, one must define the properties of

a basis |k〉 (k = 1, 2, 3, 4) in the Hilbert space. For example, if this matrix corresponds to the two-qubit

states, it can be rewritten in the form

ρ =

⎛
⎜⎜⎜⎜⎜⎝

ρ 1
2

1
2

1
2

1
2

ρ 1
2

1
2

1
2
− 1

2
ρ 1

2
1
2
− 1

2
1
2

ρ 1
2

1
2
− 1

2
− 1

2

ρ 1
2
− 1

2
1
2

1
2

ρ 1
2
− 1

2
1
2
− 1

2
ρ 1

2
− 1

2
− 1

2
1
2

ρ 1
2
− 1

2
− 1

2
− 1

2

ρ− 1
2

1
2

1
2

1
2

ρ− 1
2

1
2

1
2
− 1

2
ρ− 1

2
1
2
− 1

2
1
2

ρ− 1
2

1
2
− 1

2
− 1

2

ρ− 1
2
− 1

2
1
2

1
2

ρ− 1
2
− 1

2
1
2
− 1

2
ρ− 1

2
− 1

2
− 1

2
1
2

ρ− 1
2
− 1

2
− 1

2
− 1

2

⎞
⎟⎟⎟⎟⎟⎠ . (7)

We used the notation for the basis vector |k〉 in the form |m1m2〉. The vector is the eigenvector of the

two operators Ĵz1 = Ĵz ⊗ 1̂2 and Ĵz2 = 1̂2⊗ Ĵz, where the operator Ĵz has the 2×2 matrix Jz = σz/2, and

the matrix σz is the Pauli matrix, i.e., σz =

(
1 0

0 −1

)
. Thus, the 4×4 matrices of operators Ĵz ⊗ 1̂2

and 1̂2 ⊗ Ĵz read

Jz1 = Jz ⊗ 12 =
1

2

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ , Jz2 = 12 ⊗ Jz =

1

2

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ . (8)

These matrices commute. This means that both observables Ĵz1 and Ĵz2 can be measured simultane-

ously. They have a common set of eigenvectors |m1m2〉. Thus, one has Ĵz1|m1m2〉 = m1|m1m2〉 and
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Ĵz2|m1m2〉 = m2|m1m2〉, where m1 and m2 take the values ±1/2. In fact, the possibility to consider the

matrix ρ (6) as the density matrix of the two-qubit state is based on the possibility to make the following

invertible map of natural numbers onto pairs of fractions

1 ⇐⇒ 1/2 1/2, 2 ⇐⇒ 1/2 − 1/2, 3 ⇐⇒ −1/2 1/2, 4 ⇐⇒ −1/2 − 1/2. (9)

The map (9) means that the first natural numbers 1, 2, 3, and 4 can be coded by all the pairs of possible

spin projections m and m′ on an arbitrary quantization direction, e.g., the z axis in the system of two

qubits. Since the matrices (6) and (7) are the same matrices, all their corresponding matrix elements are

equal, e.g.,

ρ11 = ρ 1
2

1
2

1
2

1
2
, ρ12 = ρ 1

2
1
2

1
2
− 1

2
, . . . , ρ44 = ρ− 1

2
− 1

2
− 1

2
− 1

2
. (10)

Representation of the density matrix (6) in the form (7) provides the possibility to apply the procedure

of taking the partial trace of the density matrix, obvious for the two-qubit state. In fact, for two-qubit

state, the density matrix can be denoted as the matrix ρ ≡ ρ(1, 2) of the operator ρ̂(1, 2) of a bipartite

system with matrix elements ρm1 m2 m′
1 m

′
2
given by (7). The partial trace procedure means the following

positive map of the matrix (7) [and also matrix (6)]

ρ(1, 2) → ρ(1) = Tr2ρ(1, 2), ρ(1, 2) → ρ(2) = Tr1ρ(1, 2). (11)

The explicit form of taking the partial trace is the map

1/2∑
m2=−1/2

ρ(1, 2)m1 m2 m′
1 m2

= ρ(1)m1 m′
1

(12)

and another map
1/2∑

m1=−1/2

ρ(1, 2)m1 m2 m1 m′
2
= ρ(2)m2 m′

2
. (13)

In view of (12) and (13), we obtain

ρ(1) =

(
ρ(1) 1

2
1
2

ρ(1) 1
2
− 1

2

ρ(1)− 1
2

1
2

ρ(1)− 1
2
− 1

2

)
, ρ(2) =

(
ρ(2) 1

2
1
2

ρ(2) 1
2
− 1

2

ρ(2)− 1
2

1
2

ρ(2)− 1
2
− 1

2

)
. (14)

The matrix elements obtained read

ρ(1) 1
2

1
2
= ρ 1

2
1
2

1
2

1
2
+ ρ 1

2
− 1

2
1
2
− 1

2
,

ρ(1) 1
2
− 1

2
= ρ(1)∗− 1

2
1
2

= ρ 1
2

1
2
− 1

2
1
2
+ ρ 1

2
− 1

2
− 1

2
− 1

2
,

ρ(1)− 1
2
− 1

2
= ρ− 1

2
1
2
− 1

2
1
2
+ ρ− 1

2
− 1

2
− 1

2
− 1

2
,

(15)
ρ(2) 1

2
1
2
= ρ 1

2
1
2

1
2

1
2
+ ρ− 1

2
1
2
− 1

2
1
2
,

ρ(2) 1
2
− 1

2
= ρ(2)∗− 1

2
1
2

= ρ 1
2

1
2

1
2
− 1

2
+ ρ− 1

2
1
2
− 1

2
− 1

2
,

ρ(2)− 1
2
− 1

2
= ρ 1

2
− 1

2
1
2
− 1

2
+ ρ− 1

2
− 1

2
− 1

2
− 1

2
.
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One can interpret the maps in the form of positive maps of 4×4 matrices

ρ(1, 2) →
(

ρ(1) 0

0 0

)
, ρ(1, 2) →

(
ρ(2) 0

0 0

)
. (16)

On the other hand, the maps obtained by the partial trace procedure can be applied directly to the

matrix (6). In this case, the maps read

ρ →
(

ρ1 0

0 0

)
, ρ →

(
ρ2 0

0 0

)
, (17)

where

ρ1 =

(
ρ11 + ρ22 ρ13 + ρ24

ρ31 + ρ42 ρ33 + ρ44

)
, ρ2 =

(
ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
. (18)

It is worth noting that all 24 permutations of the four numbers 1, 2, 3, 4 → 1p, 2p, 3p, 4p, which provide

permutations of the basis vectors |j〉 → |jp〉 yield the positive maps of the initial matrix ρ → ρp. The

matrix elements of the matrix (ρp)jk become ρjpkp . Then the maps (17) and (18) become the positive

maps of the initial matrix ρ onto the matrices ρ
(p)
1 and ρ

(p)
2 , where these matrices have the matrix elements

with index permutations j → jp and k → kp. Due to an invertible coding of the numbers 1, 2, 3, and 4

by pairs of spin projections m and m′, the obvious positive maps of the two-qubit matrix given by (14)

provide, after applying the number-permutation tool, new maps of the two-qubit density matrix, which

are not obtained by a simple partial tracing.

The standard two-qubit entropic inequalities, which are the nonnegativity of von Neumann entropies

of any qubit system and the subadditivity condition in the system of two qubits, read

−Tr ρ(1) ln ρ(1) ≥ 0, −Tr ρ(2) ln ρ(2) ≥ 0, −Tr ρ(1, 2) ln ρ(1, 2) ≥ 0 (19)

and

−Tr ρ(1) ln ρ(1)− Tr ρ(2) ln ρ(2) ≥ −Tr ρ(1, 2) ln ρ(1, 2). (20)

Here, the density matrices of the first qubit ρ(1) and the second qubit ρ(2) given by (14) with matrix

elements (15) are obtained by partial tracing of the density matrix ρ(1, 2) given by (7) using the map of

indices (10). On the other hand, the density matrix ρ given by (7) is identical to the matrix (16). Taking

this fact into account, we write inequalities (19) and (20) in the form

−Tr

(
ρ11 + ρ22 ρ13 + ρ24

ρ42 + ρ31 ρ33 + ρ44

)
ln

(
ρ11 + ρ22 ρ13 + ρ24

ρ42 + ρ31 ρ33 + ρ44

)
≥ 0. (21)

An analogous nonnegativity condition for the von Neumann entropy associated with the matrix ρ2 given

by (18) is also valid. An analog of the subadditivity condition (20) can be written for the matrix ρ given
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by (6); it appears as

−Tr

⎛
⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎟⎟⎠ ln

⎛
⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎟⎟⎠ ≤ −Tr

[(
ρ11 + ρ22 ρ13 + ρ24

ρ42 + ρ31 ρ33 + ρ44

)

× ln

(
ρ11 + ρ22 ρ13 + ρ24

ρ42 + ρ31 ρ33 + ρ44

)]
− Tr

(
ρ11 + ρ33 ρ12 + ρ24

ρ21 + ρ43 ρ22 + ρ44

)
ln

(
ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
.

(22)

There are 24 inequalities, which can be obtained from (22) for the matrix elements of the matrix ρ (6)

by all permutations of the numbers 1, 2, 3, and 4. Thus, we obtained entropic inequalities for arbitrary

Hermitian nonnegative 4×4 matrix ρ with Tr ρ = 1. We derived these inequalities using the identity of

the mathematical structure of this matrix with the density matrix of the two-qubit system.

3. Entropic Inequalities for the Density Matrix of a Qudit with

j = 3/2

We consider the density matrix of the qudit state corresponding to spin j = 3/2. The Hermitian

nonnegative 4×4 matrix ρ
3/2
mm′ has the form

ρ3/2 =

⎛
⎜⎜⎜⎜⎜⎝

ρ 3
2

3
2

ρ 3
2

1
2

ρ 3
2
− 1

2
ρ 3

2
− 3

2

ρ 1
2

3
2

ρ 1
2

1
2

ρ 1
2
− 1

2
ρ 1

2
3
2

ρ− 1
2

3
2

ρ− 1
2

1
2

ρ− 1
2
− 1

2
ρ− 1

2
− 3

2

ρ− 3
2

3
2

ρ− 3
2

1
2

ρ− 3
2
− 1

2
ρ− 3

2
− 3

2

⎞
⎟⎟⎟⎟⎟⎠ . (23)

One has the property Tr ρ3/2 = 1. The indices m and m′ in the matrix ρ
3/2
mm′ = 〈m|ρ̂3/2|m′〉 are the spin

projections taking values 3/2, 1/2,−1/2, and −3/2.

Now we introduce the invertible map of four numbers

3/2 ↔ 1, 1/2 ↔ 2, −1/2 ↔ 3, −3/2 ↔ 4.

Applying this map to matrix (23), we obtain the matrix ρ3/2 in the form identical to the matrix (6).

This means that all equalities and inequalities known for matrix (6) are valid for matrix (23). Thus, we

arrive at new inequalities for the density matrix ρ3/2 of the qudit state given (23) by making the map of

indices, e.g., in (21) and (22).

We write the new inequalities explicitly. We have the inequality −Tr ρ3/2 ln ρ3/2 ≥ 0; in the explicit

form, it reads

−Tr

(
ρ 3

2
3
2
+ ρ 1

2
1
2

ρ 3
2
− 1

2
+ ρ 1

2
− 3

2

ρ− 1
2

3
2
+ ρ− 3

2
1
2

ρ− 1
2
− 1

2
+ ρ− 3

2
− 3

2

)
ln

(
ρ 3

2
3
2
+ ρ 1

2
1
2

ρ 3
2
− 1

2
+ ρ 1

2
− 3

2

ρ− 1
2

3
2
+ ρ− 3

2
1
2

ρ− 1
2
− 1

2
+ ρ− 3

2
− 3

2

)
≥ 0, (24)
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being analogous to the nonnegativity of the von Neumann entropy of the qubit-subsystem state, but the

qudit with j = 3/2 does not have such a subsystem.

An analogous entropic nonnegativity condition can be written using the introduced map of indices

in the matrix ρ2 given by (18). The new subadditivity condition for qubit states with j = 3/2 has the

explicit form

−Tr

⎛
⎜⎜⎜⎜⎜⎝

ρ 3
2

3
2

ρ 3
2

1
2

ρ 3
2
− 1

2
ρ 3

2
− 3

2

ρ 1
2

3
2

ρ 1
2

1
/
2 ρ 1

2
− 1

2
ρ 1

2
3
2

ρ− 1
2

3
2

ρ− 1
2

1
2

ρ− 1
2
− 1

2
ρ− 1

2
− 3

2

ρ− 3
2

3
2

ρ− 3
2

1
2

ρ− 3
2
− 1

2
ρ− 3

2
− 3

2

⎞
⎟⎟⎟⎟⎟⎠ ln

⎛
⎜⎜⎜⎜⎜⎝

ρ 3
2

3
2

ρ 3
2

1
2

ρ 3
2
− 1

2
ρ 3

2
− 3

2

ρ 1
2

3
2

ρ 1
2

1
2

ρ 1
2
− 1

2
ρ 1

2
3
2

ρ− 1
2

3
2

ρ− 1
2

1
2

ρ− 1
2
− 1

2
ρ− 1

2
− 3

2

ρ− 3
2

3
2

ρ− 3
2

1
2

ρ− 3
2
− 1

2
ρ− 3

2
− 3

2

⎞
⎟⎟⎟⎟⎟⎠ ≤

−Tr

(
ρ 3

2
3
2
+ ρ 1

2
1
2

ρ 3
2
− 1

2
+ ρ 1

2
− 3

2

ρ− 1
2

3
2
+ ρ− 3

2
1
2

ρ− 1
2
− 1

2
+ ρ− 3

2
− 3

2

)
ln

(
ρ 3

2
3
2
+ ρ 1

2
1
2

ρ 3
2
− 1

2
+ ρ 1

2
− 3

2

ρ− 1
2

3
2
+ ρ− 3

2
1
2

ρ− 1
2
− 1

2
+ ρ− 3

2
− 3

2

)

−Tr

(
ρ 3

2
3
2
+ ρ− 1

2
− 1

2
ρ 3

2
1
2
+ ρ− 1

2
− 3

2

ρ 1
2

3
2
+ ρ− 3

2
− 1

2
ρ 1

2
1
2
+ ρ− 3

2
− 3

2

)
ln

(
ρ 3

2
3
2
+ ρ− 1

2
− 1

2
ρ 3

2
1
2
+ ρ− 1

2
− 3

2

ρ 1
2

3
2
+ ρ− 3

2
− 1

2
ρ 1

2
1
2
+ ρ− 3

2
− 3

2

)
. (25)

The subadditivity condition (25) takes place for the system (qudit with j = 3/2) which has no subsystems.

Other inequalities of such a form are obtained by arbitrary permutations in (25) of four numbers

3/2, 1/2,−1/2, and −3/2.

Now we consider the system of two particles with j = 1/2.

The spin states are |e1〉 = |11〉, |e2〉 = |10〉, and |e3〉 = |1−1〉 for spin j = 1, and the state is |e4〉 = |00〉
for spin j = 0. This means that the density 4×4 matrix for this system has matrix elements ρjk, where

j and k are equal to 1, 2, 3, and 4, and these numbers are mapped onto pairs of numbers

1 ⇔ 1 1, 2 ⇔ 1 0, 3 ⇔ 1 − 1, 4 ⇔ 0 0.

Using this map, one can get the entropic subadditivity condition of the form (22) with the introduced

substitutions of the indices. In fact, the introduced new inequality for spin-1 and spin-0 systems of two

particles with spins j = 1/2 can be expressed in terms of the inequality written in the basis |mm′〉, if one
uses the connection of two different bases through the Clebsch–Gordan coefficients, providing the unitary

transform 4×4 matrix

C =

⎛
⎜⎝

1 0 0

0 F 0

0 0 1

⎞
⎟⎠ , F =

1√
2

(
1 1

−1 1

)
, (26)

with F being the quantum Fourier transform.

The basis |en〉 and basis |mm′〉 are related as

|e1〉 =
∣∣∣1
2

1

2

〉
, |e2〉 = 1√

2

(∣∣∣1
2

1

2

〉
+
∣∣∣1
2

− 1

2

〉)
, |e3〉 = 1√

2

(∣∣∣1
2

1

2

〉
−
∣∣∣1
2

− 1

2

〉)
, |e4〉 =

∣∣∣− 1

2
− 1

2

〉
.

Thus, the matrix of the density operator 〈en|ρ̂|em〉 = ρ
(1)
nm and the density matrix ρm1m2m′

1m2
≡ ρ

(2)
m1m2m′

1m
′
2

are connected through the basis transform expressed in terms of the unitary matrix C. Both matrices

ρ(1) and ρ(2) satisfy the entropic inequality corresponding to the subadditivity condition. This property

is a partial case of the obvious general property of two density matrices connected by an arbitrary unitary

transform, i.e., ρ(1) = uρ(2)u+. Both matrices satisfy the entropic inequalities under discussion.
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4. Improved Subadditivity Condition

The tomographic probability distribution for spin states introduced in [35–37] and developed in [38–43]

provide the possibility to describe the states with the density matrix ρ of qudits by means of the tomogram

w(m,n) = 〈m|uρu+|m〉, (27)

where u is the unitary matrix, and m = −j,−j + 1, . . . , j, j = 0, 1/2, 1, . . . are spin projections. The

matrix u can also be considered as a matrix of the irreducible representation of the SU(2) group. For

several qudits, the tomogram of the composite system states reads

w(m, n) = 〈m|uρ(1, 2, . . . , N)u+|m〉, m = (m1,m2, . . . ,mN ).

The components of the vector m, mk = −jk,−jk + 1, . . . , jk, correspond to a qudit with spin jk. The

tomogram w(m, u) is the joint probability distribution of random spin projections m1,m2, . . . ,mN de-

pending on a fixed unitary matrix u. The matrix can be considered as the direct product u = u1⊗u2⊗uN
of matrices of irreducible representations of the SU(2) group.

There is the tomographic Shannon entropy [14,16] corresponding to the tomogram w(m, u); it reads

H(u) = −
∑
m

w(m, u) lnw(m, u). (28)

The minimum of the entropy on the unitary group is equal to the von Neumann entropy [21,26]

−Tr ρ(1, 2, . . . , N) ln ρ(1, 2, . . . , N) = min
u

H(u) = H(u0). (29)

For a bipartite system ρ(1, 2), one has the entropic inequality, which is the subadditivity condition for

tomogram w(m1,m2, u); it reads

H1(u) +H2(u) ≥ H(u), (30)

where

Hk(u) = −
∑
mk

wk(mk, u) lnwk(mk, u), k = 1, 2 (31)

and

w1(m1, u) =
∑
m2

w(m1,m2, u), w2(m2, u) =
∑
m1

w(m1,m2, u). (32)

The Shannon information is denoted as I(u) = H1(u)+H2(u)−H(u). One has the quantum information

inequality

Iq = S1 + S2 − S(1, 2) ≥ 0, (33)

where Sk = −Tr ρ(k) ln ρ(k), k = 1, 2, ρ1 = Tr2ρ(1, 2), ρ2 = Tr1ρ(1, 2), and

S1 = min
u1

H1(u1) = H1(u10), S2 = min
u2

H2(u2) = H2(u20). (34)

The Shannon entropies Hk(uk) satisfy the equality

H1(u1) ≡ H1(u1 × u2), H2(u2) ≡ H2(u1 × u2). (35)
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The unitary matrices u1 and u2 are unitary local transforms in the Hilbert spaces of the first and second

subsystems, respectively. In [15], it was shown that

S1 + S2 ≥ H(u10 × u20) ≥ S(1, 2), (36)

where S1 = H1(u10) and S2 = H2(u20). The general inequality for entropies was found in [7]. In the

tomographic picture of qudit states, we obtain the inequality in the form

Iq = S1 + S2 − S(1, 2) ≥ −
∑
m1

w1(m1, u1) ln[w1(m1, u1)]−
∑
m2

w2(m2, u2) ln[w2(m2, u2)]

+
∑
m1m2

w(m1,m2, u1 × u2) ln[w(m1,m2, u1 × u2)]. (37)

This means that quantum information bounds the tomographic information for any local unitary trans-

forms. This inequality provides the inequality associated with the tomographic quantum discord prop-

erty [29,30]

S1 + S2 − S12 ≥ S1 + S2 +
∑
m1m2

w(m1,m2, u1 × u2) ln[w(m1,m2, u1 × u2)]. (38)

It can be written in the form of spin-tomographic entropic inequality for the case where the unitary

matrices of local transforms u1 and u2 are matrices of irreducible representations of the SU(2) group. In

this case, w(m1,m2, u1 × u2) ≡ w(m1,m2,n1,n2) and

w1(m1, u1) ≡ w1(m1,n1), w2(m2, u2) ≡ w2(m2,n2), (39)

where n1 and n2 are unit vectors n1
2 = n2

2 = 1 determining the directions of the spin-projection axes.

The tomographic entropies Hk(uk) and H(u) become the functions of the sphere S2, i.e.,

H1(u1) ≡ H1(n1), H2(u2) ≡ H2(n2), H(u1 × u2) ≡ H(n1,n2). (40)

Inequality (37) reads

S1 + S2 − S(1, 2) ≥ 〈I〉, (41)

where

〈I〉 = 1

4π

∫
H1(n1) dn1 +

1

4π

∫
H2(n2) dn2 − 1

16π2

∫
H(n1,n2) dn1 dn2 (42)

is the averaged spin-tomographic information.

The difference between quantum information Iq and the maximum of the unitary tomographic infor-

mation It
It = max

u1×u2

[H1(u1) +H2(u2)−H(u1 × u2)], (43)

i.e.,

Iq − It = ΔI ≥ 0 (44)

is a characteristics of quantum correlations in the bipartite qudit system. One has the information

inequality

Iq − 〈I〉 ≥ ΔI ≥ 0. (45)
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5. Nonlinear Positive Maps and New Inequalities for Qudits

We study now another inequality that follows from [7].

Let us construct nonlinear positive maps of the density 4×4 matrix ρ of the form

ρ → ρ(1) → 1

ρ11 + ρ22

(
ρ11 ρ12

ρ21 ρ22

)
, ρ → ρ(2) → 1

ρ33 + ρ44

(
ρ33 ρ34

ρ43 ρ44

)
, (46)

along with the linear positive maps ρ → ρ1 and ρ → ρ2, where ρ1 and ρ2 are determined by (18). It turns

out that there exists a new inequality valid for an arbitrary density 4×4 matrix. The inequality can be

derived from the results of [7]. For the density 4×4 matrix with elements ρjk, j, k = 1, 2, 3, 4; it reads

〈S2〉 =

−Tr

(
ρ11 ρ12

ρ21 ρ22

)
ln

⎛
⎝

ρ11
ρ11 + ρ22

ρ12
ρ11 + ρ22ρ21

ρ11 + ρ22

ρ22
ρ11 + ρ22

⎞
⎠− Tr

(
ρ33 ρ34

ρ43 ρ44

)
ln

⎛
⎝

ρ33
ρ33 + ρ44

ρ34
ρ33 + ρ44ρ43

ρ33 + ρ44

ρ44
ρ33 + ρ44

⎞
⎠

≤ −Tr

(
ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
ln

(
ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
. (47)

Inequality (47) can be applied for density matrices of two-qubit states, for the density matrix of a qudit

with j = 3/2, and for states of two qubits in the basis of states of spin j = 1 and j = 0. For this, we apply

the corresponding notation of numbers 1, 2, 3, and 4 discussed in the previous sections. Inequality (47)

means that there are two inequalities of the form [15]

S1 + S2 ≥ H(u10 × u20 ≥ S(1, 2) (48)

and the inequality

S1 + S2 ≥ S1 + 〈S2〉 ≥ S(1, 2). (49)

Inequality (47) can be extended to obtain the inequalities by means of permutations of numbers 1, 2, 3,

and 4. Analogous inequalities can be written for arbitrary composite qudit systems including only one

qudit.

6. Conclusions

To conclude, we present the main results of our study.

We obtained new inequalities for the composite systems of qudits and for systems without subsystems.

We derived the condition analogous to the subadditivity condition for a qudit with spin j = 3/2. Also

we found the new inequality – an analog of the improved subadditivity condition for systems without

subsystems. We presented the entropic inequality for states with j = 3/2 and j = 1 ⊕ j = 0, as

well as for two-qubit states, employing a unified method. The method can be used to formulate some

generic entropic inequalities for arbitrary Hermitian nonnegative trace-class matrices. We pointed out

that all the discussed inequalities take place for the matrices independently of the product structure of

the Hilbert space. This means that all information entropic inequalities are valid for both composite and

noncomposite quantum systems.
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