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Abstract

Based on the Bohr–Sommerfeld model, we investigate the quantization of magnetic flux through the
electronic orbits together with its dependence on additional sources of magnetic fields. The additional
magnetic field causes changes of the angular momentum and hence shifts of the energy of the atomic
levels. We study this effect for the cases of the Zeeman effect, where the source is an external homo-
geneous magnetic field, and the hyperfine interaction, where the source is the field of the magnetic
moment of the nucleus. We discuss a model for the handling of the different angular momentum con-
tributions for which the energy shifts due to the Zeeman effect and the magnetic dipole contribution
to the hyperfine interaction can be reproduced quite well. The meaning of “spin,” however, changes
within this approach drastically. The unusual Landé g-factor of the electron is discussed to be the
result of a reduced ground-state angular momentum of the electron in combination with the field of
the magnetic moment of the electron rather than an intrinsic property of the electron.
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1. Introduction

The magnetic flux through the electronic orbits of the hydrogen atom was investigated by different

methods within several atomic models; there are the Schrödinger model [1,2], the Dirac model [3], and the

Rutherford–Bohr model [4] showing, in particular, that the magnetic flux through these orbits is quantized

and has a pronounced spin dependence. The quantization of magnetic flux in units of Φ0 = h/e was first

recognized in the 1950s by London [5] and Onsager [6] by considering a supercurrent around a closed

path. The quantization (in units of Φ0/2) was observed only ten years later by Doll and Näbauer [7] and,

independently, by Deaver and Fairbank [8] while measuring the torque on superconducting rings (hollow

cylinders) in external magnetic fields.

One method, which was used for studying the magnetic flux through the electronic orbits within the

Schrödinger and Dirac models, uses the conversion of the area integral of the magnetic induction into a

time-integral over the cyclotron period [9]. The source of the magnetic field was taken to be the magnetic

moment of the nucleus (here proton) [1]. In [4], it was discussed that this approach fails to predict the

magnetic flux through the orbits within the helium ion 4He+. However, using a time-integrated version

of the Faraday law of induction (see also [10–14]) it can be shown that, in the point-particle picture of

the Rutherford–Bohr model, the magnetic flux through each electronic orbit, which fulfills the Bohr–

Sommerfeld–Wilson (BSW) quantization rule, is an integer multiple of the magnetic flux quantum (h/e).
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By considering the magnetic flux from the magnetic moment of the nucleus as a disturbance, an energy

shift of nearly 3/8 times the experimental value of the hyperfine splitting of the ground state of the

hydrogen atom was shown to be the result of the additional magnetic flux.

Here, the method of magnetic flux quantization is applied to the more complicated but still classical

model of the Bohr–Sommerfeld atom [15]. In the case of electrons, the time-integrated version of the

Faraday law together with magnetic flux quantization is still equivalent to the BSW quantization rule

in the case of elliptic orbits. The energy shifts due to small homogeneous external magnetic fields and

the magnetic moment of the nucleus are investigated within the Bohr–Sommerfeld model of the atom.

These shifts can be shown to be in good agreement with the well-known energy shifts according to the

Zeeman effect, Paschen–Back effect, and the magnetic dipole contribution of the hyperfine coupling. The

Zeeman effect was already associated to an additional magnetic field in the case of the Aharonov–Bohm

effect [11, 16]. Also spin-orbit coupling was discussed as a special case of the Zeeman effect [17].

This paper is organized as follows.

In Sec. 2, the formalism is applied to the elliptic orbits of the Bohr–Sommerfeld model. In Sec. 3,

small disturbances due to additional magnetic fields in a simplified version are discussed that, however,

leads to a better understanding of the basic rules. Only within this section is the electron considered to

have a magnetic moment but no “spin” angular momentum. In Sec. 4, the effects of external magnetic

fields and the magnetic moments of the nucleus are discussed without that restriction.

The understanding of these effects in the Bohr–Sommerfeld model can be valuable for understanding

the magnetic flux quantization in the Schrödinger and Dirac models. These probability-density-based

models would need information on the structure of the magnetic field and are, therefore, much more

complicated to study than the point-particle models. However, a recent study of a modified Bohr model

of molecules gives sound results describing the interatomic potentials [18–21], where the Bohr model was

related to the large-D limit of the Schrödinger equation by dimensional scaling methods.

2. Magnetic Flux through Elliptic Orbits

Closed electronic orbits fulfilling the Bohr–Sommerfeld–Wilson (BSW) quantization rule enclose a

magnetic flux, which is an integer multiple of the magnetic flux quantum (Φ0 = h/e) [4]. The magnetic

flux enclosed by the electronic orbit can be calculated by considering the adiabatic acceleration of the

electron due to increase of the magnetic flux through its orbit by means of the Faraday law of induction

(see, e.g., [12]). In contrast to the derivation within the framework of the Rutherford–Bohr model of

the atom, not only one quantum number fulfills the BSW quantization rule but two, and, in the case of

external fields, three quantum numbers have to be considered.

According to the Faraday law of induction, the time-derivative of the magnetic flux through a region

Σ is opposite to the electromotive force (EMF) along the boundary ∂Σ of that region∮
∂Σ

�E · d�s =: EMF = − d

dt

∫
Σ

�B · d �A = − d

dt
Φ, (1)

where Φ is the magnetic flux through Σ, and overhead arrows denote vector quantities. Performing the

time integration of this equation and assuming an adiabatic acceleration of the electron with initially

vanishing momentum, only the integration boundaries need to be considered, for an electron giving rise

to ∮
∂Σ

�p · d�s = e · (Φf − Φi) = e ·ΔΦ, (2)

554



Volume 34, Number 6, November, 2013 Journal of Russian Laser Research

where Φi is the initial and Φf the final magnetic flux through Σ. The left-hand side is quantized for closed

orbits according to the BSW quantization rule, and so is the right-hand side, which implies a quantization

of the magnetic flux Φf through the region Σ for vanishing initial magnetic flux Φi. Postulating that

the magnetic flux through the orbits is still quantized in the case of nonvanishing initial magnetic fluxes

Φi, this equation expresses a modified version of the BSW quantization rule. Using the quantization

condition Φf = nh/e for the final magnetic flux gives∮
∂Σ

�p · ds = nh− eΦi. (3)

The index “i” for initial flux will be suppressed from here, as only initial fluxes are considered in the

following. The final flux is considered to be quantized. Here, energy shifts due to small initial magnetic

fields will be studied by considering different initial magnetic fluxes associated to the different quantum

numbers. In analogy to the derivation of the energy for elliptic orbits originally done by Sommerfeld [15,

22], the energy in the case of small disturbances can be derived by replacing the two generalized momenta

Jϕ and Jr as follows:

Jϕ =

∮
∂S

∂ϕ
dϕ = nϕh by Jϕ =

∮
∂S

∂ϕ
dϕ = nϕh− eΦϕ (4)

and

Jr =

∮
∂S

∂r
dr = nrh by Jr =

∮
∂S

∂r
dr = nrh− eΦr, (5)

where S is the Hamilton principal function, and Φϕ and Φr are the initial magnetic fluxes associated to

the corresponding quantum numbers nϕ and nr, respectively. For the binding energy of the orbit we find,

using Φ = Φϕ +Φr, that

W = −meZ
2e4

8ε20

1

(nh− eΦ)2
≈ −meZ

2e4

8ε20n
2h2

(1 + 2eΦ/nh), (6)

where the approximation holds in the case of weak magnetic fluxes Φ compared to the magnetic flux

quantum. The gross structure is given by the Bohr energy levels, and the deviations can be considered

by proper initial magnetic fluxes. The energy shifts due to small initial magnetic fluxes are

ΔW ≈ meZ
2e5

4ε20n
3h3

Φ = 2R∞c
eZ2

n3
Φ. (7)

When considering the geometry of the orbits, the magnetic fluxes corresponding to different quantum

numbers need to be examined individually. The modifications due to small perturbations can be taken

into account by replacing

nh with nh− eΦ, nϕh with nϕh− eΦϕ and nrh with nrh− eΦr. (8)

In the corresponding equations, for the geometry of the ellipse the semi-major axis a changes from

a =
n2

Z
a0 to a =

(n− eΦ/h)2

Z
a0, (9)
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and the semi-minor axis b from

b =
nnϕ

Z
a0 to b =

(n− eΦ/h)(nϕ − eΦϕ/h)

Z
a0, (10)

with the consequence that for elliptic orbits an initial magnetic flux Φϕ alters the geometry of the ellipse

in a different way than the initial magnetic flux Φr. Note that it is assumed that, for the effects discussed

here, the Faraday law modifies only Φϕ directly, and not Φr.

3. Simplified Approach: Neglecting “Spin” Angular Momentum

Although magnetic moment and “spin” angular momentum are not independent of each other, within

this section, the “spin” angular momentum of the electron will be neglected for simplification. The mo-

difications regarding the angular momentum of the electron will be discussed in the following section.

The Zeeman effect and the hyperfine interaction can be understood in the flux quantum picture, where

the “spin” angular momenta of the electron and atomic nucleus are neglected, but not their magnetic

moments. The additional magnetic flux through atomic orbits will be calculated, and in a linear appro-

ximation the energy shifts due to the additional magnetic flux are deduced.

3.1. External Magnetic Field (Zeeman Effect)

Originally, the Zeeman effect describes the interaction of a homogeneous external magnetic field with

the magnetic moment of the atom. Here, the Zeeman effect is taken to be the energy shift corresponding

to the additional magnetic flux of an external homogeneous magnetic field through the electronic orbit.

For small magnetic fields, where no change of the geometry of the atomic orbits has to be considered,

the magnetic flux through the elliptic orbit is

ΦZ = πabB cosα = π
n3nϕ

Z2
a20B cosα, (11)

where a = n2a0/Z and b = nnϕa0/Z are the semi-major and semi-minor axes, πab is the size of the ellipse,

and α is the angle between the normal vector of the orbital plane and the direction of the magnetic field

B. For much higher magnetic fields, the change of the geometry of the atomic orbit has to be considered.

The energy shift due to the external magnetic field is according to Eq. (7)

ΔW ≈ meZ
2e5

4ε20n
3h3

(
π
n3nϕ

Z2
a20B cosα

)
= μBnψB, (12)

where μB is the Bohr magneton and nψ = nϕ cosα the magnetic quantum number according to the

Bohr–Sommerfeld model. When interpreting nψ as the magnetic quantum number m = nψ, this equation

describes the energy shift due to the normal (semi-classical) Zeeman effect.

3.2. Magnetic Dipole in the Focal Point of an Ellipse: Hyperfine Interaction

For the hyperfine interaction, the magnetic dipole contribution, where a magnetic dipole is in one of

the focal points of the elliptical orbit, needs to be calculated analogously to a magnetic moment in the

center of the circlular orbit of the Bohr model [4]. A parametrization of the elliptic orbit is

r(ϕ) =
p

1− ε cosϕ
, (13)
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where p is the focal parameter. Integration of the out-of-plane component of the magnetic field of a

magnetic dipole with out-of-plane component μ⊥ within the orbital plane

B⊥ = −μ0

4π

μ⊥
r3

(14)

outside the boundary of the elliptic orbit but within the orbital plane gives the magnetic flux

Φout =

∫ 2π

0

∫ ∞

r(ϕ)
B⊥r dr dϕ = −μ0

4π
μ⊥

∫ 2π

0

1

r(ϕ)
dϕ = −μ0

2

μ⊥
p
. (15)

As magnetic flux lines are supposed to be closed, the magnetic flux through an infinite plane should be

zero, and the flux through the elliptic orbit is Φin = −Φout. Hence, the additional magnetic flux for the

geometry of the ellipse is

Φ =
μ0

2

μ⊥
p

=
μ0

2

μ⊥a
b2

=
μ0

2

Zμ⊥n2a0
n2n2

ϕa
2
0

=
μ0

2

Zμ⊥
n2
ϕa0

, (16)

where the semi-major a and semi-minor b axes and their expressions depending on the quantum numbers

n and nϕ are used instead of the focal parameter p.

Considering the magnetic moment �μc of the nucleus in one of the focal points of the elliptic orbit, we

investigate the magnetic dipole contribution to the hyperfine interaction. The magnetic flux through the

elliptic orbit is

Φhf =
μ0

2

aμc

b2
cosβ =

μ0

2

Zμc

n2
ϕa0

cosβ, (17)

where β is the angle between the direction of the magnetic moment and the normal vector of the orbital

plane. For small magnetic flux Φhf , the linear approximation of the energy is sufficient

ΔW ≈ meZ
2e5

4ε20n
3h3

(
μ0

2

Zμc

n2
ϕa0

cosβ

)
= −α2Z3hR∞c

μc cosβ

n3n2
ϕ

. (18)

The correct hyperfine interval for the 1s orbit in the hydrogen atom can be found by considering two

states, where the magnetic moment of the atomic nucleus is pointing first in a direction under an angle

β with the normal vector of the orbital plane, and second in the opposite direction, where nϕ = 1/2 and

cosβ = 2/3 is assumed (for experimental values, see, e.g., [23, 24]). A derivation of the angle between

the direction of the magnetic moment and the normal vector of the elliptic plane will be discussed

in the following section, as this can be attributed to the interplay of the different angular momenta

contributions. The value nϕ = 1/2 reproduces the g-factor 2 for the electron (see next section) and

means that the ground state is defined by the quantum numbers nr = nϕ = 1/2. By assuming both

quantum numbers nϕ and nr to start from 1/2 with steps of one, the gross structure, where only the

sum of both quantum numbers enters, will be equivalent to the gross structure of the Rutherford–Bohr

model. Also the Zeeman level splitting is not affected by this assumption as the differences in nϕ are still

considered to be integers. The ground state is characterized by a reduced orbital angular momentum

(nϕ = 1/2, from here also called “spin” angular momentum), where the magnetic flux through the orbit

can be considered to originate half from the orbital angular momentum of the electron and half from the

magnetic field of the magnetic moment of the electron.
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4. Interplay of Different Angular Momenta

Instead of interpreting the energy shifts of atomic levels due to the Zeeman effect, Paschen–Back

effect, and the hyperfine level splitting as the additional energy of a magnetic moment within a magnetic

field, these effects are here considered to be the result of the quantization of the magnetic flux through

the atomic orbit in the case of a nonvanishing magnetic background field. Within the Bohr–Sommerfeld

model, two contributions (orbital motion and “spin”) to the magnetic flux through the electronic orbit

of the atom will be considered. One of these contributions results purely from the orbital motion of the

electron, and the other is due to a combination of the magnetic moment of the electron and an orbital

motion. The atom is considered to be a symmetric top with nonprecessing total angular momentum.

The angular momentum axis and the principal axis are, in general, not parallel.

The following points need to be considered for the description of the above-mentioned effects within

the flux quantum picture.

1. Different behavior of orbital and spin contribution: Within the framework of the Bohr–

Sommerfeld model, the electronic orbits are ellipses, and their sizes are defined by the quantum

numbers nr and nϕ; the orientation in the space is given by a third quantum number nψ = nϕ cosα,

where α is the angle between the normal vector of the orbital plane and the direction of an external

magnetic field. (It is assumed, that there is always at least a very small one.) Here two contributions

will be distinguished. One contribution results purely from the motion of the electron around the

nucleus (orbital contribution) and the associated quantities are labeled with the index l. This

contribution can be described similar to the motion of the electron within the original Bohr–

Sommerfeld model. The other contribution results partially from the magnetic moment (“spin”) of

the electron, where the associated quantities are labeled with the index s. This contribution is not

present in the original Bohr–Sommerfeld model. This can be interpreted as a combination of the

additional magnetic flux through the orbit due to the magnetic field of the magnetic moment of

the electron, on the one hand, and, on the other hand, to an orbital motion (angular momentum)

to stabilize the orbit. It is assumed, that the quantum numbers for the spin contribution are

ns
r = ns

ϕ = 1/2 [see the previous section and rule (6)]. The combined effect will be described by

the total quantum numbers given by n = nl + ns, nr = nl
r + ns

r, nϕ = nl
ϕ + ns

ϕ, and so on, where

the index j will also be used for the combination of the orbital and spin contributions. The two

contributions behave independently of each other.

2. Size of the atomic orbit: For magnetic flux calculations, the size of the atomic orbits is needed.

The orbits are of elliptic shape within the Bohr–Sommerfeld model with size A depending on the

two quantum numbers n and nϕ

A = πab = π
n3nϕ

Z2
a20, (19)

where a is the semi-major and b the semi-minor axis. Here a small modification is necessary: Similar

to the length of the angular momentum vectors in quantum mechanics, the length of the vector

area (the size of the area) is assumed to be

| �A| = π
n3

Z2

√
nϕ(nϕ + 1)a20, (20)
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where the quantum number nϕ is replaced by
√
nϕ(nϕ + 1) in the semi-classical model. A discussion

of the reasons for the replacement is not intended, but in the probability-density-based models, this

might be explained by the difference between the mean average and maximum values of the radius

of the orbital distribution.

3. Projection of vector areas: It is necessary to determine the size of the projection of a vector

area into the direction of another vector area �A1 · �A2/| �A2|. Here this is done for the example of

the two vector areas �Al and �Aj . The vector product will be calculated by squaring the expression
�Al = �Aj − �As, which is equivalent to the postulation of a linear summation of vector areas

�Al ·
�Aj

| �Aj |
=

| �Aj |2 − | �As|2 + | �Al|2
2| �Aj |

. (21)

Inserting the sizes of the vector areas as described in rule (2) gives

�Al ·
�Aj

| �Aj |
=

πn3a20
2Z2

nj
ϕ(n

j
ϕ + 1)− ns

ϕ(n
s
ϕ + 1) + nl

ϕ(n
l
ϕ + 1)√

nj
ϕ(n

j
ϕ + 1)

. (22)

Analogously, one finds for the projection of �As into the direction of �Aj

�As ·
�Aj

| �Aj |
=

πn3a20
2Z2

nj
ϕ(n

j
ϕ + 1) + ns

ϕ(n
s
ϕ + 1)− nl

ϕ(n
l
ϕ + 1)√

nj
ϕ(n

j
ϕ + 1)

. (23)

4. Projection of angular momenta: In general, the angular momentum vector and the vector area

are not parallel. Here it is proposed that the projection of the angular momentum on the direction

of its corresponding vector area is(
�Aj ·�j
| �Aj |

)
= nj

ϕ� =

(
nl
ϕ ± 1

2

)
�, (24)

where nj
ϕ = j and nl

ϕ = l are identified.

5. External magnetic fields: The magnetic flux Φ of a homogeneous external magnetic field �B

through an orbital area with vector area �A is

�A · �B = π
n3nϕ

Z2
a20B cosα, (25)

with nϕ cosα = nψ, where the “classical” size of the vector area [see rule (2)] and the definition

of the Sommerfeld quantum number nψ are used. Here, this is explained by the deviation of the

vector area from the direction of angular momentum. An averaging effect occurs, resulting in a

smaller value for the effective area seen from the magnetic field.

6. Spin rule (g-factor): The orbital motion caused by the spin of the electron has to be considered

by postulating a spin rule. For the ground state already discussed, the quantum numbers for the
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spin contribution are ns
ϕ = ns

r = 1/2. The anomalous gyromagnetic factor for the electron can be

explained by assuming that the ratio between the radial and orbital contributions remains always

the same for the two spin quantum numbers and their additional magnetic fluxes

ns
ϕ = ns

r and Φs
ϕ = Φs

r. (26)

This condition ensures, that in the case of increasing magnetic flux Φϕ, which is assumed to be

modified by the Faraday law for the effects discussed here and not Φr, the increase in the spin

contribution Φs = Φs
ϕ + Φs

r is twice as large as other contributions not fulfilling the spin rule, like

the orbital contribution. This assumption leads to a g-factor of 2.

Using these rules, we study several effects in more detail.

4.1. Zeeman Effect

We consider the energy shift of atomic levels due to small magnetic fields as the energy shift due to the

additional magnetic flux of the external magnetic field through the atomic orbit. Because of spin–orbit

coupling for weak external magnetic fields, the spin and orbital parts are not independent of each other,

and only the projections of the spin vector area �As and the orbital vector area �Al in the direction of the

total vector area need to be considered. Keeping in mind the rule (6) of the equivalence of the two spin

quantum numbers ns
ϕ and ns

r and their fluxes, a factor of 2 has to be applied to the spin contribution,

resulting in the additional magnetic flux

ΦZ ∝ (2 �As + �Al) · �B. (27)

Due to the coupling of the spin and orbital contributions, the projections of these vectors in the direction

of the combined vector area �Aj enter the equation of magnetic flux

ΦZ = AprojBproj =
(2 �As + �Al) · �Aj

| �Aj |
�Aj · �B
| �Aj |

. (28)

The projection of the vector areas in the direction of the other vector areas is given in the previous section

[see rule (3)]. Here, only the case of weak magnetic fields is considered, where the deformation of the

geometry is negligible. Hence, the effective area is

(2 �As + �Al) · �Aj

| �Aj |
=

πn3a20
2Z2

3nj
ϕ(n

j
ϕ + 1) + ns

ϕ(n
s
ϕ + 1)− nl

ϕ(n
l
ϕ + 1)√

nj
ϕ(n

j
ϕ + 1)

. (29)

However, the vector area, being parallel to the principal axis of the top, at which the atom is considered,

and not parallel to the direction of the angular momentum, is rotating around the direction of the

magnetic field. As the full angular momentum is assumed to be constant in the space, the angular

momentum of the nucleus and the angular momentum of the orbiting electron are circulating around the

direction of the full angular momentum. The projection of the magnetic field vector �B in the direction

of the area vector �Aj gives [see rules (2) and (5)]

�Aj · �B
| �Aj |

nj
ϕ cosαjB√
nj
ϕ(n

j
ϕ + 1)

=
mjB√
j(j + 1)

, (30)
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where nj
ψ and nj

ϕ are identified by mj and j, respectively. Combining these equations, we see that the

additional magnetic flux due to the external magnetic field is

ΦZ =
πn3a20
Z2

(
1 +

j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

)
︸ ︷︷ ︸

gj

mjB, (31)

where nj
ϕ with j and nl

ϕ are identified with l and ns
ϕ, with s. The expression in the brackets is identical

to the Landé factor gj . For the energy shifts, one finds

ΔW =
meZ

2e4

4ε20n
3h3

eΔΦ =
meZ

2e4

4ε20n
3h3

eπ
n3

Z2
a20gjmjB = μBgjmjB, (32)

which is the usual expression for the energy shifts of the Zeeman effect due to external magnetic fields.

4.2. Paschen–Back Effect

If the magnetic field is strong enough, the orbital angular momentum and the “spin” angular mo-

mentum are not coupled to the total angular momentum due to the spin–orbit coupling as in the case

of weak external magnetic fields, but act independently. For the calculation of the magnetic flux, the

time-averaged vector areas for the orbital contribution �Al and for the spin contribution �As need to be

considered. Due to the equivalence of the spin quantum numbers ns
ϕ and ns

r and their magnetic fluxes

[see model property (6)], a factor of 2 has to be considered for the spin contribution. The initial magnetic

flux in the case of the Paschen–Back effect becomes

ΦPB = (2 �As + �Al) · �B. (33)

The magnitude of the time-averaged vector areas is proportional to the corresponding quantum numbers,

resulting for the magnetic flux in [see rule (5)]

ΦPB =

(
2ns

ϕn
3πa

2
0

Z2
cosαs + nl

ϕn
3πa

2
0

Z2
cosαl

)
B, (34)

where αs and αl are the angles between the magnetic field and the vector areas of the spin and angular

momentum contributions, respectively. Using the quantization of the orientation in the space nψ =

nϕ cosα, we see that the initial magnetic flux in the case of the Paschen–Back effects becomes

ΦPB =
(
2ns

ψ + nl
ψ

)
n3πa

2
0

Z2
B, (35)

and the corresponding shift in energy with respect to the undisturbed orbit is

ΔWPB = μB

(
2ns

ψ + nl
ψ

)
B = μB(2ms +ml)B, (36)

where the quantum numbers ns
ψ and nl

ψ are identified by the magnetic quantum numbers ms and ml,

respectively.
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4.3. Hyperfine Interaction

We describe the hyperfine interaction as the change in energy resulting from the additional magnetic

flux of the magnetic dipole of the nucleus through the electron orbit. The magnetic flux through an

elliptic orbit with the focal parameter p from a magnetic dipole μ⊥ orthogonal to the orbital plane in

one of the focal points of the ellipse reads

Φ =
μ0

2

μ⊥
p
. (37)

Simplified, the effective magnetic moment is given by the projection of the magnetic moment of the

nucleus �μI into the direction of the normal vector of the orbital plane �Aj/| �Aj |. In a simplified version,

the magnetic flux is

Φsimple
hfs =

μ0

2

�Aj · �μI

| �Aj |
1

p
=

μ0

2

�Aj

| �Aj |
· �μI

a

b2
=

μ0

2

Z

a0

�Aj · �μI

(nj
ϕ)2| �Aj |

(simplified), (38)

where the expressions of the semi-major and semi-minor axes are employed. However, the involved

angular momenta, the spin angular momentum of the electron �s, the orbital angular momentum �l, and

the angular momentum of the nucleus �I define at the end the vector areas of the different contributions

and the direction of the magnetic moment of the nucleus. Expecting the time-averaged normal vector of

the electron orbit to be �j = �s + �l, we replace both vectors �Aj and �μI by the projection of each of these

vectors into the direction of �j

Φhfs =
μ0

2

Z

(nj
ϕ)2a0

(
�Aj

| �Aj |
·
�j

|�j|

)
�j · �μI

|�j| . (39)

The projection of the angular momentum in the direction of the corresponding vector area was postulated

in rule (4) and gives
�Aj ·�j

(nj
ϕ)2| �Aj |

=
(nl

ϕ ± 1/2)�

(nl
ϕ ± 1/2)2

=
gs�

(2nl
ϕ ± 1)

, (40)

where gs = 2 and nj
ϕ = nl

ϕ + ns
ϕ = nl

ϕ ± 1/2. With �μI = gIμK
�I/� and μ0/(2a0�

2) = πα2/(2meμ
2
B), the

additional magnetic flux through the electronic orbit is

Φhfs =
μ0

2

Z

a0

gs�

(2l ± 1)

gIμK
�j · �I

j(j + 1)�3
= α2Z

π

2me

gsgIμK
�I ·�j

μ2
Bj(j + 1)(2l ± 1)

. (41)

With �I ·�j = �
2/2[F (F +1)− I(I+1)− j(j+1)], μe = (gs/2)(e�/2me), and μnuc = gIμKI, the additional

magnetic flux caused by the magnetic dipole results in

Φhfs = α2Z
h

2e

[F (F + 1)− I(I + 1)− j(j + 1)]μeμnuc

μ2
Bj(j + 1)(2l ± 1)I

. (42)

The energy shift, according to Eq. (7), of the hyperfine levels amounts to

ΔWhfs ≈ 2R∞c
eZ2

n3
ΔΦhfs =

Anlj

2
[F (F + 1)− I(I + 1)− j(j + 1)], (43)
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with

Anlj = 2α2Z3R∞hc
μeμnuc

μ2
Bn

3j(j + 1)(2l ± 1)I
. (44)

This expression differs from the usual expression for the hyperfine level shifts [23], if neglecting the

reduced mass correction, the relativistic correction factor, and the off-diagonal terms only by the term

(2l ± 1), which is (2l + 1) in [23].

5. Conclusions

We investigated the quantization of magnetic flux through atomic orbits in more detail for the Bohr–

Sommerfeld model. Neglecting the angular momentum of the constituents, one can, in principle, explain

effects like the Zeeman effect and hyperfine splitting of atomic levels. Taking the angular momenta into

account, one can explain the Zeeman effect, the Paschen–Back effect, and the hyperfine splitting of atomic

levels with high accuracy. As a consequence, the “spin” needs to be seen from a different point of view.

The unusual properties of the “spin” are a result of the magnetic moment of the electron: The quantized

magnetic flux through the electron orbit comes partly from the magnetic flux caused by the magnetic

moment of the electron and partly from the angular momentum (orbital motion) of the electron, which

stabilizes the orbit, resulting in the g-factor of 2 for the electron. We proposed the rules accounting

for the interplay of the different angular momentum contributions for explaining the energy-level shifts

of several effects, which also contain corrections for the classical assumption of the electron to be a

point particle. It could be interesting to investigate a density-based model, like the Schrödinger equation

and the Dirac-equation-based models, with respect to energy shifts caused by additional magnetic flux

through electronic orbits. However, in these theories, the full vector field for the magnetic field has to be

considered.
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