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Abstract

We give a theoretical description of two time-dependent laser beams in the Λ scheme using a unitary
transformation method and a trapped three-level ion. We extend earlier investigations aimed at finding
the three types of density matrices. We present figures showing that the entanglement degree acceler-
ates due to the time-dependent interaction and the second-order terms of the Lamb–Dicke parameter
η(t). Our results explain that the time-dependent ionic–phononic quantum system is observed at a
higher degree of entanglement for three optimum times; these are, respectively, 16.5, 110, and 220 fs.
These optimum entangled states can be modified for the structure of black holes in a probabilistic
Universe.

Keywords: mixed-state entanglement, unitary transformation method, two time-dependent laser beams,
weak excitation regime.

1. Introduction

The dynamics of trapped ions have been shown to produce a measurement of the states of macroscopic
quantum systems [1,2]. Quantum information processing depends on various quantum physical phenom-
ena, among which entanglement has been considered as one of the most significant properties. The effects
between time-independent and time-dependent interactions have been discussed in connection with en-
tanglement of trapped three-level ions [3]. Measurements on an entangled composite system cannot be
explained in terms of classical correlations. Nonclassical correlations have been found in the Einstein,
Podolsky, and Rosen (EPR) paradox [4], which are related to the Bell theorem [5]. It is important to
point out that further insights into the dynamics of multilevel systems may be helpful in developing
quantum information theory (QIT) [6]. The experimental achievements of QIT required such concepts
as “quantum reality” and “counter part” which are mentioned in the EPR article.

The field of quantum communication leads to a variety of methods of bipartite entanglement [7] and to
numerical calculations of the mixed-state entanglement of the time-dependent field and the trapped-ion
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system [8]. This field has been devoted to the quantification of the nonlocal effects of the bipartite mixed
state [9]. Different aspects of entanglement have been discussed for one- or two-qubit systems [10–14].
Also, the quantum correlations including entanglement and discord with its geometric measure and
classical correlations are studied for a bipartite partition of an open or closed quantum systems [15–18].

On the other hand, entangled pure states can be modeled physically by time-independent lasers and
trapped three-level ions [19, 20]. The measure of the distinct characteristic of the global entanglement
can provide a sufficient and necessary condition of full separability for pure states and conveniently
extends to mixed states by minimizing the convex hull [21]. In addition, entangled states in second-
order corrections can help to answer some important questions about quantum nonlinearity [22]. Using
a simplified expression of concurrence in the Wootters measure of entanglement, Berrada et al. [23]
examined the case of pure and mixed states of a two-qubit system based on the spin coherent states.
With linear entropy as a measure of quantum entanglement, others have described the entanglement
generated via a beam splitter using deformed Barut–Girardello coherent states [24]. Previous studies
have also generated non-Gaussian entanglement from nonclassical photon statistics [25]. Also, polygamy
of entanglement in multipartite quantum systems was studied by J. S. Kim [26]. An unknown mixed
state was then studied which completely depends on the entanglement degree of the entangled mixed
state as a resource [27]. An atom–field bipartite system in mixed state was employed to explain the
partial entropy change and the entanglement in a cavity filled with the Kerr medium [28].

All the previous studies have been applied to the case of quantum entanglement. Therefore, in order
to better understand long surviving states and black holes, we believe that the effects of the entanglement
measurements in the quantum system are worthy of further investigation. If the gravitational effects are
properly included, the entangled system behaves like a black hole [29]. It is found culminating in a
classification of four-qubit entanglement from the physics of black holes [30]. Quantum superposition is
supremely important, as Borsten expresses in a fundamentally probabilistic Universe [30].

We derive the entanglement degree from the eigenvalues of the atomic, the eigenvalues of the phononic,
and the eigenvalues of the total system density matrices for mixed states. Here, there are three types of
eigenvalues. The effects of the second-order terms of the Lamb–Dicke parameter (LDP) and the interac-
tions of two time-dependent lasers increase the entanglement in the ionic–phononic quantum system. In
our model, two coupling parameters LDP η(t) and Rabi frequency Ω(t) are time-dependent for our sys-
tem. We plotted entanglement in time and entanglement in space for the time-dependent ionic-phononic
quantum system.

This paper is organized as follows.
In Sec. 2, the framework of the physical model of the time-dependent ionic-phononic quantum system

is introduced. We describe the mixed-state entanglement and discuss the figures in Sec. 3. Finally, we
present the concluding remarks in Sec. 4.

2. The Framework of the Physical Model of the Time-Dependent

Ionic–Phononic Quantum System

Recently, quantum optics experiments operated beyond the LDP where η < 1 [31]. We consider a
trapped three-level ion interacting with two time-dependent lasers. The time-dependent harmonic trap
frequency ν(t) is the same for all levels of the trapped ion. We introduce the annihilation a and creation
a† operators of the vibrational phonons such that a =

[
mν(t)/2�

]1/2[
xion + ip/mν(t)

]
and m is the mass
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of the trapped ion. The total Hamiltonian for the time-dependent ionic-phononic quantum system is
H(t) = Hion(t) +H1(t) +H2(t). The trapped ion Hamiltonian Hion(t) and the interacting Hamiltonians
H1(t) and H2(t) are given as (� = 1)

Hion(t) =
p2

2m
+

1
2
mν2(t)x2

ion + ωeg|e〉〈e|, (1)

H1(t) =
Ω1(t)

2
ei(k1xion−ω1t)|e〉〈g| + h.c., (2)

H2(t) =
Ω2(t)

2
ei(−k2xion−ω2t)|e〉〈r| + h.c., (3)

where xion and p are the position and momentum of the center-of-mass of the trapped ion, respectively,
and |g〉 corresponds to the ground level, |r〉 to the Raman level, and |e〉 to the excited level. Two time-
dependent laser beams are characterized by their frequencies ω1 and ω2. We take ω = ω1 = ω2. The
time-dependent Rabi frequencies are Ω(t) = Ω1(t) = Ω2(t) (see Fig. 1).

Fig. 1. A trapped three-level ion interacting with two
time-dependent laser beams. The taken parameters are
Ω(t) = Ω1(t) = Ω2(t), ω = ω1 = ω2, δ = δ1 = δ2
ω1 = ωeg − δ1, and ω2 = ωeg − δ2.

In quantum mechanics, the ionic center-of-
mass motion can be represented by the standard
harmonic-oscillator quantization of Hion(t) with re-
spect to xion =

√
(1/2)mν(t) (a† + a) and p =

i
√

(1/2)mν(t) (a†−a). Both time-dependent lasers
of wavelength λ under consideration are slightly red
detuned by the same amount δ = ν(t)η2(t), so that
ω = ωeg − δ, ω1 = ωeg − δ1, and ω2 = ωeg − δ2,
with ωeg being the resonance frequency of the e–g
transition, η(t) = k/

√
2mν(t) the time-dependent

LDP, and k = 2π/λ. Additionally, the weak exci-
tation regime is assumed to satisfy ν(t) = Ω(t)/2.
The rotating frame transformation is applied by

U0 = exp (−iωt|e〉〈e|). (4)

In view of the rapidly growing time-dependent Rabi frequency Ω(t) = sinh(ωegt) [31], our analytical
results below become almost precise, since we use the second-order terms of η(t). The optical Λ scheme
considered above is shown to be equivalent to a cascade Ξ scheme for the vibrational phonon transitions
under the weak excitation regime. Under a unitary transformation, the transformation matrix U is given
by [32]

U =
1
2

⎛

⎜
⎝

0
√

2
√

2
−√

2D[η(t)] D[η(t)] −D[η(t)]√
2D[−η(t)] D[−η(t)] −D[−η(t)]

⎞

⎟
⎠ . (5)

In this matrix, we represent the basis vectors as 〈e| = (1, 0, 0), 〈r| = (0, 1, 0), and 〈g| = (0, 0, 1), and
use the Glauber displacement operators D(η) = exp [iη(t)(a+ a†)]. Applying the unitary transformation
method of [32], we obtain the transformed Hamiltonian H̃(t) = U †H(t)U in the form H̃(t) = H̃0(t)+Ṽ (t),
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where

H̃0(t) =
Ω(t)

2
a†a+

Ω(t)
2
η2(t) +

Ω(t)
2

(|r〉〈r| − |g〉〈g|), (6)

Ṽ (t) = −iε(t)(a†|e〉〈r| − a†|g〉〈e| + h.c.
)
, (7)

with ε(t) = Ω(t)η(t)/2
√

2. Here, the LDP and Rabi frequency are time-dependent, ε(t) is derived
following [32], and μ = νη/

√
2 [32]. The three physical quantities are time-independent. This Hamiltonian

describes cascade-type transitions of the vibrational phonons. It should be noted that the Raman level
and the excited level become the intermediate and upper levels of the cascade, which is shown in Fig. 1.
Using Eqs. (4)–(7), we determine the time evolution of the initial state |ψ(0)〉 as

|ψ(t)〉 = U †
0Ue

− ∫
iH̃0(t) dtK(t)U †|ψ(0)〉, (8)

where K(t) is the well-known time-dependent propagator for the cascade Hamiltonian [32], � = 1,

and exp
[
−

∫
iH̃0(t)dt

]
is the interaction-picture transformation. The given state of the vibrational

phonons and the ion evolve in the Ξ configuration according to the time-dependent propagator K(t) in
the interaction picture, which is given by [32]

K(t) =

⎛

⎜
⎝

cos[Λ(t)t] −ε(t)S(t)a† −ε(t)S(t)a
ε(t)aS(t) 1 + ε2(t)aL(t)a† ε2(t)aL(t)a
ε(t)a†S(t) ε2(t)a†L(t)a† 1 + ε2(t)a†L(t)a

⎞

⎟
⎠ , (9)

where Λ(t) = ε(t)
√

2a†a+ 1, L(t) = cos[Λ(t)t]−1/Λ2(t), and S(t) = sin[Λ(t)t]/Λ(t). The time-dependent
ionic–phononic quantum state is transformed to an initial separable state of the cascade,

|ψK(t)〉 = |ψ̃(0)〉 = U †|ψ(0)〉 =
∑

ip

(Mip(t)|i, p〉), (10)

where i stands for the ionic state (e, r, g) and p stands for the phononic vibrational number (0, 1, 2, 3).
Applying the time-dependent propagator K(t) to the initial separable state of the cascade, we obtained
the ionic–phononic quantum state |ψK(t)〉 =

∑

ip
(Mip(t)|i, p〉).

In the second-order terms of η(t), the significant coefficients of |ψK(t)〉 become

Me0(t) = exp
[−iσ(t)η(t)

]{√
1/2(x+

√
1 − x2) cos

[√
1/2σ(t)

]
+ (x−

√
1 − x2)/2 sin

[√
1/2σ(t)

]
α

+2−1i
[
(x+

√
1 − x2) sin

[√
1/2σ(t)

]
η(t) − [

(−x+
√

1 − x2) cos[
√

1/2σ(t)]α
√

2η(t)
]}
,

Me1(t) = exp
{ − iσ(t)[1/η(t) + η(t)]

}[
2−1 · 3−1/2(−x+

√
1 − x2) sin

[√
3/2σ(t)

]

+
√

1/2
{
(x+

√
1 − x2) cos

[√
3/2σ(t)

]}
α+

√
1/2i(x−

√
1 − x2)

× cos
[√

3/2σ(t)
]
η(t) + 2−1 · 3−1/2

(
ix+ i

√
1 − x2

)
sin[

√
3/2σ(t)]αη(t)

]
,

Me2(t) = exp
{−iσ(t)[2/η(t) + η(t)]

}[
10−1/2

[
(−x+

√
1 − x2) sin

[√
5/2σ(t)

]
α
]

−{
10−1/2

(
i(x+

√
1 − x2) sin

[√
5/2σ(t)

]}
+ i(−x+

√
1 − x2) cos[

√
5/2σ(t)]α

)
η(t)

]
,

Me3(t) = exp
{−iσ(t)[3/η(t) + η(t)]

}(√
3/14ix+ i

√
1 − x2

)
sin

[√
7/2σ(t)

]
αη(t),
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Mr0(t) = exp
{−iσ(t)[1/η(t) + η(t)]

}{
6−1(x−

√
1 − x2)

(
2 + cos

[√
3/2σ(t)

])

+6−1/2
{
(x+

√
1 − x2) sin

[√
3/2σ(t)

]
α+ i(x−

√
1 − x2) sin

[√
3/2σ(t)

]}
η

+
(
(2i/3)(x+

√
1 − x2) + 6−1

( − ix− i
√

1 − x2
)
cos

[√
3/2σ(t)

])
αη(t)

}
,

Mr1(t) = exp
{−iσ(t)[2/η(t) + η(t)]

}[
10−1 · (x−

√
1 − x2)

( − 3 − 2 cos
[√

5/2σ(t)
])
α

+i · 10−1(x+
√

1 − x2)
(
3 + 2 cos

[√
5/2σ(t)

])
η(t) − i

√
2/5(−x+

√
1 − x2) sin[

√
5/2σ(t)]αη(t)

]
,

Mr2(t) = exp
{−iσ(t)[3/η(t) + η(t)]

} · 7 · 2−1/2i(x+
√

1 − x2)
(
4 + 3 cos

[√
7/2σ(t)

])
αη(t),

Mg0(t) = exp
{ − iσ(t)[−1/η(t) + η(t)]

} · 2−1
( − (x−

√
1 − x2) − i(x+

√
1 − x2)αη(t)

)
,

Mg1(t) = exp
[ − iσ(t)η(t)

][
2−1/2(x+

√
1 − x2) sin

[√
1/2σ(t)

]
+ 2−1

{
(−x+

√
1 − x2)

× cos
[√

1/2σ(t)
]
α− i(x+

√
1 − x2) cos

[√
1/2σ(t)

]
η(t)

}
− 2−1/2i(−x+

√
1 − x2)

× sin[
√

1/2σ(t)]αη(t)
]
,

Mg2(t) = exp
{ − iσ(t)[1/η(t) + η(t)]

}[
3−1 · 2−1/2(x−

√
1 − x2)

(
1 − cos

(√
3/2t

))

+3−1/2
{
(x+

√
1 − x2) sin

(√
3/2t

)
α+ i(x−

√
1 − x2) sin

(√
3/2t

)
η(t)

}

−3−1i(x+
√

1 − x2)(2−1 + 2−1/2) cos(
√

3/2t)αη(t)
]
,

Mg3(t) = exp
{−iσ(t)[2/η(t) + η(t)]

}
50−1

√
3
[
(x−

√
1 − x2)

( − 1 + cos
[√

5/2σ(t)
])
α

+i(x+
√

1 − x2)
( − 1 + cos

[√
5/2σ(t)

])
η(t) − 10−1/2i(−x+

√
1 − x2) sin[

√
5/2σ(t)]αη(t)

]
.

In the above equations, Mr3(t) = 0, σ(t) = ν(t)η(t)t, and x are the probability amplitudes of the trapped
ion. According to the time evolution in Eq. (8), the final ionic–phononic quantum state of the system
can be written as

|ψ(t)〉 =
3∑

n=0

(
Aen(t)|e, n〉 +Brn(t)|r, n〉 + Cgn(t)|g, n〉). (11)

In our calculations, we used |e0〉, |e1〉, |e2〉, |e3〉, |r0〉, |r1〉, |r2〉, |r3〉, and |g0〉, |g1〉, |g2〉, |g3〉 to obtain the
evolution of the density matrix of the time-dependent ionic–phononic system.

For the quantum system, significant functions of Eq. (11) are written as

Ae0(t) =
√

1/2e−iωte−2iN(t)[Mr0(t) +Mg0(t)], Ae1(t) =
√

1/2e−iωte−2iN(t)[Mr1(t) +Mg1(t)],

Ae2(t) =
√

1/2e−iωteiN(t)[Mr2(t) +Mg2(t)], Ae3(t) =
√

1/2e−iωte2iN(t)[Mr3(t) +Mg3(t)],

Br0(t) = e−iN(t)
[
− Me0(t)√

2
+
Mr0(t) −Mg0(t)

2

]
+ iη(t)e−2iN(t)

[
− Me1(t)√

2
+
Mr1(t) −Mg1(t)

2

]
,

Br1(t) = iη(t)e−iN(t)
[
− Me0(t)√

2
+
Mr0(t) −Mg0(t)

2

]
+ e−iN(t)

[−Me1(t)√
2

+
Mr1(t) −Mg1(t)

2

]

+
√

2iη(t)eiN(t)
[
− Me2(t)√

2
+
Mr2(t) −Mg2(t)

2

]
,

196



Volume 34, Number 2, March, 2013 Journal of Russian Laser Research

Br2(t) =
√

2iη(t)e−2iN(t)
[
− Me1(t)√

2
+
Mr1(t) −Mg1(t)

2

]
+ eiN(t)

[
− Me2(t)√

2
+
Mr2(t) −Mg2(t)

2

]

+
√

3iη(t)e−2iN(t)
[
− Me3(t)√

2
− Mg3(t)

2

]
,

Br3(t) =
√

3iη(t)e−2iN(t)
[
− Me2(t)√

2
+
Mr2(t) −Mg2(t)

2

]
+ eiN(t)

[Me3(t)√
2

+
Mg3(t)

2

]
,

Cg0(t) = e−2iN(t)
[Me0(t)√

2
+
Mr0(t) −Mg0(t)

2

]
+ −iη(t)eiN(t)

[Me1(t)√
2

+
Mr1(t) −Mg1(t)

2

]
,

Cg1(t) = −iη(t)e−2iN(t)
[Me0(t)√

2
+
Mr0(t) −Mg0(t)

2

]
+ eiN(t)

[
− Me1(t)√

2
+
Mr1(t) −Mg1(t)

2

]

−
√

2iη(t)e−2iN(t)[Me2(t)/
√

2 +
Mr2(t) −Mg2(t)

2

]
,

Cg2(t) = −
√

2iη(t)eiN(t)
[Me1(t)√

2
+
Mr1(t) −Mg1(t)

2

]
+ eiN(t)

[
− Me2(t)√

2
+
Mr2(t) −Mg2(t)

2

]

+
√

3iη(t)e−2iN(t)
[Me3(t)√

2
− Mg3(t)

2

]
,

Cg3(t) = −
√

3iη(t)eiN(t)
[Me2(t)√

2
+
Mr2(t) −Mg2(t)

2

]
+ eiN(t)

[Me3(t)√
2

− Mg3(t)
2

]
.

With the above equations, ω = ωeg − η2(t)ν(t) and N(t) =
∫
ν(t) dt =

∫
Ω(t)/2 dt = cosh(ωegt)/2ωeg.

3. Mixed-State Entanglement

The quantum correlations between the internal degrees of freedom of the ion with the external degrees
of freedom may lead to quantum-entangled-state formations, which cannot be generated by local oper-
ations in corresponding Hilbert spaces of constituent subsystems of the composite system. Mixed-state
entanglement achieved in the previous section evolves in the Hilbert space H = Hi ⊗ Hp of dimension
3×4. Two entangled pure states can result in quantum entanglement much less than the average mixed
state entanglement. The initial state of the trapped three-level ion is written as

ρion(0) = x2|g〉〈g| + (−
√

1 − x2)2|r〉〈r| =

⎛

⎜
⎝

0 0 0
0 x2 0
0 0 (1 − x2)

⎞

⎟
⎠ , (12)

where the normalization condition is 1 = x2 + (1 − x2).
In view of the second-order terms of η(t), this initial state determines a state of vibrational phonons

that is approximately normalized. Also, let the initial state of the phonon be written as

ρphonon(0) = (|0〉 + α|1〉) ⊗ (〈0| + α∗〈1|). (13)

With the unitary transformation method, the total density matrix of the ionic–phononic quantum system
is given by

ρi−p(t) = U †(t)[ρion(0) ⊗ ρphonon(0)]U(t). (14)
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In this way, we will deal exclusively with the mixed-state entanglement. Therefore, from Eq. (14), the
von Neumann entropy of the time-dependent ionic–phononic quantum system is described as [33–36]

S(ρi−p) =
12∑

i=1

λi−p
i log(λi−p

i ). (15)

By tracing over the phononic variable, we obtain a 3×3 reduced density matrix ρi of the ion, such that

ρion = Trphonon(ρi−p) =

⎛

⎜
⎝

Tr |u〉〈u| Tr |u〉〈v| Tr |u〉〈w|
Tr |v〉〈u| Tr |v〉〈v| Tr |v〉〈w|
Tr |w〉〈u| Tr |w〉〈v| Tr |w〉〈w|

⎞

⎟
⎠ , (16)

where |u〉〈u| is a 4 × 4 matrix.
By tracing over the ionic variable, we take a 4×4 reduced density matrix ρp of the phonon, such that

ρphonon = Trion(ρi−p) =

⎛

⎜
⎜
⎜
⎜
⎝

Tr |a〉〈a| Tr |a〉〈b| Tr |a〉〈c| Tr |a〉〈d|
Tr |b〉〈a| Tr |b〉〈b| Tr |b〉〈c| Tr |b〉〈d|
Tr |c〉〈a| Tr |c〉〈b| Tr |c〉〈c| Tr |c〉〈d|
Tr |d〉〈a| Tr |d〉〈b| Tr |d〉〈c| Tr |d〉〈d|

⎞

⎟
⎟
⎟
⎟
⎠
. (17)

where |a〉〈a| is a 3×3 matrix. Using the above equations, we write the final expression for the quantum
entanglement degree for the time-dependent ionic–phononic quantum system as

Eent(ρi, ρp) = −S(ρion) + S(ρphonon) − S(ρi−p). (18)

With three types of eigenvalues, we can rewrite the quantum entanglement as a quantum measure

Eent(ρi, ρp) = −
3∑

i=1

λion
i log(λion

i ) +
4∑

i=1

λphonon
i log(λphonon

i ) −
12∑

i=1

λi−p
i log(λi−p

i ), (19)

where λion
i are the eigenvalues of the ionic reduced density matrix, λphonon

i are the eigenvalues of the
phononic reduced density matrix, and λi−p

i are the eigenvalues of the total density matrix of the ionic–
phononic system. Equation (19) provides a measure of how well the entanglement between two subsystems
is preserved in a quantum process.

We have constructed a theoretical description of the trapped three-level ion interacting with two
time-dependent laser beams under the Λ scheme shown in Fig. 1. Our results are presented in the second-
order terms of η(t). The time-dependent Rabi frequency is Ω(t) = sinh(ωegt); the other parameters are
ωeg = 5 · 1014 Hz, the time-dependent harmonic trap frequency ν(t) = sinh(ωegt)/2, and α = 0.01. The
optimum probability amplitude of the trapped ion in Fig. 2 is x = 1/

√
2. Thus, the figures demonstrate

also the significance of time-dependent ionic–phononic quantum state of Eq. (10).
The mixed-state entanglement reaches Eent = 0.84 for x = 1/

√
2 and within the quantum entan-

glement formula in Eq. (19). We found the optimum three times in Fig. 2. These optimum times are
t = 1.65 · 10−14 s (16.5 fs), t = 1.1 · 10−13 s (110 fs), and t = 2.2 · 10−13 s (220 fs). It is seen that the
time-dependent ionic–phononic quantum system stays in the mixed entangled state in the 16.5 fs region
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Fig. 2. The time evolution of the quantum entangle-
ment of the ionic–phononic quantum system. The time-
dependent harmonic trap frequency ν(t) = sinh(ωegt)/2,
Rabi frequency Ω(t) = sinh(ωegt), and the optimum
probability amplitude x = 1/

√
2 are used with ωeg =

5 · 1014 Hz. The system is initially prepared in the
states ρion(0) = x2|g〉〈g|+(1−x2)|r〉〈r| and ρphonon(0) =
(|0〉 + α|1〉) ⊗ (〈0| + α∗〈1| with α = 0.01.

Fig. 3. The evolution of the probability amplitude x of the quantum entanglement of the ionic–phononic quantum
system. The time-dependent harmonic trap frequency ν(t) = sinh(ωegt)/2 and Rabi frequency Ω(t) = sinh(ωegt)
are used with ωeg = 5 ·1014 Hz. For this system, these optimum times are t = 1.65 ·10−14 s (a), t = 1.1 ·10−13 s (b),
and t = 2.2 · 10−13 s (c). The system is initially prepared in the states ρion(0) = x2|g〉〈g| + (1 − x2)|r〉〈r| and
ρphonon(0) = (|0〉 + α|1〉) ⊗ (〈0| + α∗〈1| with α = 0.01.

longer than it does in the 110 and 220 fs regions (see Fig. 2). Indeed, there are 14 dips of the quantum
entanglement in this figure. In particular, the mixed-state entanglement of the system decreases from
0.84 to 0.70 across time in Fig. 2. We recorded entanglement while it was between Eent = 0 − 0.84. For
the quantum system, the mixed-state entanglement evolves while oscillating. This behavior is illustrated
in Fig. 2.

The x evolution of the system is shown in Fig. 3. In the three curves in this figure, we elucidate the
optimum probability amplitude of entanglement of the ionic–phononic quantum system for the optimum
three times 16.5, 110, and 220 fs. We find that entanglement is maximum at Eent = 0.84, while the
optimum probability amplitude is x = 1/

√
2 (see Fig. 3 a). Similarly, it is minimum at Eent = 0 while the

optimum probability amplitude is x = 1/
√

2 (see Fig. 3 c). We see that the time-dependent interaction
and η(t) may enhance the degree of system entanglement.

Figure 4 demonstrates the time dependence of η(t) and Ω(t) assuming � = 1 in the ionic–phononic
quantum system; η(t) = k/

√
2mν(t) and Ω(t) = sinh(ωegt) are the time-dependent coupling parameters

of the system. Figure 5 shows the time dependence of the Schmidt coefficients (SCs), which are the
eigenvalues of the reduced density matrix in Eq. (16). The eigenvalues are the first term λion

i in Eq. (19),
and the quantum-mechanical normalization is equal to λion

1 + λion
2 + λion

3 = 1 (see Fig. 5).
These figures and results are in parallel with our analytical observation. As a consequence, this ob-

servation conforms with [8, 35]. Correspondingly, our report agrees with experimental direct observation
of the mixed state entanglement in [37].
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Fig. 4. The time dependences of scaled LDP η(t) (left) and Ω(t) (right) in the ionic–phononic quantum system
assuming � = 1. The system is initially prepared in the states ρion(0) = x2|g〉〈g| + (1 − x2)|r〉〈r| and ρphonon(0) =
(|0〉 + α|1〉) ⊗ (〈0| + α∗〈1| with α = 0.01.

Fig. 5. The time dependence of SCs in the ionic–
phononic quantum system (assuming � = 1) shown
for three eigenvalues of the first term in Eq. (19) for
the ionic system Λ1 by the solid curve, Λ2 by the
dashed curve, and Λ3 by the dotted curve. The time-
dependent harmonic trap frequency ν(t) = sinh(ωegt)/2,
the Rabi frequency Ω(t) = sinh(ωegt), and the opti-
mum probability amplitude x = 1/

√
2 are used with

ωeg = 5 · 1014 Hz. The system is initially prepared
in the states ρion(0) = x2|g〉〈g| + (1 − x2)|r〉〈r| and
ρphonon(0) = (|0〉 + α|1〉) ⊗ (〈0| + α∗〈1|) with α = 0.01.

As we reported in our study, in a similar way that uses the reduced density matrix, the entanglement
entropy is calculated in terms of the infinitesimal generator of conformal transformations that keep the
sphere fixed [38]. The relation to the tomographic entropy associated to the spin-state tomograms was
introduced in [39,40].

Various proposals to construct two-component cat states in trapped two-level ion systems have been
discussed extensively in recent years [41, 42]. The pure-state entanglement was obtained physically in
quantum states of the time-independent three-level trapped ions [43]. Dermez et. al. [44] have investigated
the quantum correlations of a fully-trapped ion interacting with two time-independent laser beams, in
view of the LDP. In [44], each of the three probability amplitudes of the trapped ion was taken as 1/

√
3.

4. Concluding Remarks

In conclusion, we considered the trapped-ion model with two time-dependent laser beams in the Λ
scheme. In this study, we solved the time-dependent Hamiltonian of the ionic–phononic quantum system.
We obtained an exact solution of the total density matrix ρi−p(t) = U †(t)[ρion(0) ⊗ ρphonon(0)]U(t).
Analytic calculations under our theoretical conditions are characterized by the time dependence of the
total-system Hamiltonian. Henceforth, there are two key points in this paper, namely, the time-dependent
phononic state and the second-order terms of η(t), both being revolved around the behavior of the mixed-
state entanglement.

We demonstrated that the quantum entanglement is stored in the ionic–phononic system under con-
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sideration. The nature of quantum entanglement is strongly related to time-dependent modulation. The
highest degree of mixed state entanglement is Eent = 0.84 with t = 1.65 · 10−14 s (1.65 fs) in Fig. 2.
The maxima of the fourteen entanglement peaks are recorded in the time interval of 16.5 to 220 fs (see
Fig. 2). Under the three optimum times 16.5, 110, and 220 fs, the evolution of the optimum probability
amplitude x = 1/

√
2 = 0.707 of the quantum system is shown in Fig. 3. As the entanglement evolves

within these times, we see that its features correlate with the occupancy properties of the ionic–phononic
system. Therefore, it is worth noting that the amount of mixed state entanglement is long-lived and very
sensitive to η(t).

The study of the physical properties of the ion–phonon interaction is an important topic in quantum
optics. Our trapped three-level ionic–phononic system displays a very broad range of applications in
quantum optics and quantum information. As a consequence of these applications, it can be found that
the mixed-state entanglement highly depends on η(t). Our results can be experimentally realized with
the designed time-dependent coupling parameters η(t) and Ω(t). The results reported in this paper are
compatible with previous studies.

Punch-line result: That the value of the maximally entangled state is 0.84 (a), and that the ionic–
phononic quantum system is time-dependent (b) are the two main extractions that are most significant
among the many results of this article. For the modification of black holes, the time-dependent ionic–
phononic quantum system is a very unique example. Also, the amount of mixed-state entanglement is
long-lived in Fig. 3. Therefore, the long survival value of entanglement in the system is very handy
and useful, in understanding the structure of black holes. Entangled atomic-size systems ignore the mass
attraction and do not take into account the gravity. If the quantum entanglement in the gravitational field
involves following mathematical formulas, the quantum entangled state acts as a black hole. The time-
dependent ionic–phononic quantum system is more useful than our time-independent system employed
also in other studies, because, in this quantum system, the amount of entanglement and its long survival
are improved in comparison with other studies.

In the future, we hope that the optimum times and the long-survival entangled states can be useful
for understanding black holes. Then, the quantum entanglement system can behave like the black hole.
Accordingly, trapped ions and the vibrational phonons can be modified in applied physics. Generalizing
previous results, pure- and mixed-state entanglement degrees provide a long-lived entangled state because
of quantum correlations. Eventually, we expect our study to be helpful for analyzing the system mixed-
state entanglement in practical applications.
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