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Abstract

Using a simple analytical method, we study the electromagnetic-wave propagation in an optical Bragg
waveguide which is slightly deformed at one side. We show the results of computations in the form of
dispersion curves and provide a comparison with standard circular Bragg waveguides and step-index
circular waveguides. We show that the correspondence between the cutoff V values for the standard
step-index fiber and the new Bragg waveguide, which is slightly flattened on one side, is quite close
for the lowest mode under the weak guidance condition.

Keywords: Bragg waveguide, deformed Bragg waveguide, weak guidance condition, characteristic dis-
persion relation.

1. Introduction

Conventional optical waveguides confine optical waves to the core due to the total reflection between
the core and cladding interface but these optical waves also penetrate into the cladding in the form of
evanescent waves which are of an exponentially decaying nature. On the other hand, Bragg waveguides
confine their waves in a central region due to the Bragg reflection originating from the periodicity in the
claddings where the refractive index, number of layers, profiles, materials, etc., of cladding regions play
an essential role as a guiding mechanism in Bragg waveguides [1–7]. Recently, circular Bragg waveguides
have attracted much attention because of their extraordinary properties and significant practical appli-
cations [5,6]. In contrast to the conventional step-index guiding fibers, the Bragg waveguides have an air
core surrounded by some dielectric multilayer claddings that confines light by Bragg reflection, as shown
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in Fig. 1 a. This kind of waveguide is of particular interest in guiding light through the air core in the
far infrared region, where conventional fibers are limited by absorption losses due to the fiber materials.
These Bragg waveguides have been successfully used for CO2 laser operating at 10.6 μm [8]. On the
other hand, the invention of a perfect dielectric layer by applying high and low refractive-index materials
with a large contrast enables great reduction in leakage losses, leading to potential applications in long
distance communications.

To date, several numerical approaches have been proposed to analyze the modal properties of Bragg
fibers [9–12]. Vivek Singh et al. [13] presented a very simple analytical approach to analyzing the
propagation characteristic of a circular Bragg fiber. Based on this study, we also gave the description
of unconventional Bragg waveguides [14–17]. However, these descriptions were mainly focused on the
formation of modes in such waveguides where some design parameters are considered and compared.
Many of these considered geometries are the modifications or distortions of circular and rectangular cross-
sections [18, 19]. The basic idea of these works is to see how distortions in the waveguide cross-section
change the modal characteristics, such as the number of guided modes sustained by the waveguide.

In this paper, a slightly distorted optical Bragg waveguide having a small number of alternating layers
is considered (see Fig. 1 b). This distortion is deliberately introduced in the Bragg waveguide to study
its effect on the propagation characteristics. Using a simple matrix method and replacing the boundary
condition by a matrix equation, we obtain the modal characteristic equation for the proposed Bragg
waveguide. We show the results of computations in the form of dispersion curves and compare them with
dispersion curves of a standard Bragg fiber having a circular core [13] and also with a weakly guiding
step-index fiber [20].

This paper is organized as follows.
In Sec. 2, we outline the derivation of the characteristic equations from the Helmholtz wave equation

and then calculate the characteristic dispersion relation, cutoff frequencies, etc., with the help of Bessel
functions using the weak guidance condition. In Sec. 3, we consider numerical results and discuss these
results. Finally, the paper ends with some remarks in the conclusion given in Sec. 4.

2. Theoretical Background

The cross-sectional view of the standard Bragg waveguide and proposed unconventional Bragg wave-
guide are shown in Fig. 1 a and b, respectively. The modal characteristic equation of the standard Bragg
waveguide is given in [13] and its diagram is given here only for comparison. We analyze the proposed
unconventional Bragg waveguide in the following sections.

2.1. The Characteristic Eigenvalue Equation

A simple matrix method [13] is used to compute the modal characteristics of the proposed waveguide.
The basic idea is to replace the boundary condition by a matrix equation. The cross-sectional view of
a six layered Bragg waveguide is shown in Fig. 1 b. It has low refractive index na in the central region
and higher refractive indices n1 and n2 (n1 > n2) in the cladding regions around it. Thereby, we suitably
design alternating claddings of high and low refractive indices:

n(r) =

(
na, 0 < r < b; n1, b < r < a; n2, a < r < a + b; n1, a + b < r < a + 2b;
n2, a + 2b < r < a + 3b; n1, a + 3b < r < a + 4b; na, r > a + 4b.

(1)
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Fig. 1. The cross-sectional view of the standard Bragg wave-
guide (a) and the cross-sectional view of a slightly flattened
core Bragg waveguide (b).

The index profile is then given in Fig. 1.
The polar equation of the curve in polar

coordinates is written as

r = ρ exp(1 + sin θ), (2)

where ξ is a size parameter. At the core–
cladding boundary, we put its value equal to
a, where a is a fixed constant.

The equation of the normal curve to the
curve represented by Eq. (2) in polar coordi-
nates reads

r⊥ = η
cos θ

1 + sin θ
. (3)

For our proposed waveguide structure, a new coordinate system (ρ, η, z) is suitable. Using the new
coordinates and Maxwell equations, we can obtain the expressions for the fields E and H in terms of
the new coordinates. The details of this procedure are given in our previous paper [17]. As a first
approximation, we write the longitudinal components of the fields for the modes as follows:

E(ρ) = [AiJm(Ui dρ) + BiYm(Ui dρ)] , (4)

H(ρ) = [CiJm(Ui dρ) + DiYm(Ui dρ)] , (5)

where U2
i = k2n2

i − β2, i = 1, 2 correspond to refractive indices n1 and n2. We present the solution for
the central region and the outermost region as

E(ρ) = [EIm(W dρ) + FKm(W dρ)] , (6)

H(ρ) = [GIm(W dρ) + HKm(W dρ)] , (7)

where W =
√

β2 − k2n2
a, with na being the common refractive index of these regions. In the above

equations, Jν and Yν are Bessel functions of the first and second kinds, while Iν and Kν are the modified
Bessel functions, respectively, and Ai, Bi, Ci, Di, E, F , G, and H are unknown constants. Here, β is
the axial component of the propagation vector, ω is the wave frequency, and μ is the permeability of the
non-magnetic medium. Also, d is a number

√
e/2 and e = 2.718 which emerges in the analysis because

of the peculiarity of the geometrical shape, and A, B, C, D, E, F , G, and H are unknown constants to
be determined.

We have the boundary conditions

E(ρ)|r = E(ρ)|ri , (8)
∂E(ρ)

∂ρ

∣∣∣∣
r

=
∂E(ρ)

∂ρ

∣∣∣∣
ri

. (9)

Thus, we obtain a set of equations having twenty-two unknown constants. The nontrivial solution will
exist only when the determinant formed by the coefficients of the unknown constants is equal to zero.
Calling this 12×12 determinant Δ, we have

Δ = 0. (10)
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The elements in the rows and columns of this determinant can be identified readily.
We also define (see Fig. 1) that

Δn = n1 − n2, Δn′ = n1 − na, V = k0(a − b)(n2
1 − n2

a)
1/2 = k0(a − b)

[
2n(Δn + Δn′)

]1/2
,

(11)

where k0 is the vacuum wave number.
We define the usual normalized propagation parameter for the weakly guidance case as follows:

B =
β2 − k2

0n
2
a

k2
0(n

2
1 − n2

a)
≈ β − k0na

k0(Δn + Δn′)
. (12)

We introduce the dimensionless parameter V to incorporate the parameters na, n1, a, b, and k0 which
possibly have an effect on the propagation. One can choose other alternative ways to define the quantities
V and B, but as an illustrative case, the present definitions are adequate.

3. Numerical Results and Discussion

Characteristic equation (10) provides all information regarding the modal dispersion characteristics of
the proposed Bragg waveguide. Here, we introduced two dimensionless parameters: normalized frequency
V and normalized propagation constant B defined in Eqs. (11) and (12), respectively.

Table 1. Cutoff Frequencies (V Values) for Some Modes in the Bragg Waveguide Slightly Flattened on
One Side for Three Different Thicknesses of the Cladding Strips.

Mode
No.

Cut off frequencies of various modes in flat Bragg fiber, 0 < V < 16,
with thickness of cladding strip

b = 0.01 μm b = 0.10 μm b = 1.00 μm

LP1m Six Four Two Six Four Two Six Four Two
layered layered layered layered layered layered layered layered layered

LP11 3.26 3.36 3.45 1.40 2.32 3.199 - - 2.90

LP12 6.00 6.08 6.17 4.12 4.99 5.90 - - 5.57

LP13 8.70 8.80 8.89 6.84 7.71 8.61 - - 8.33

LP14 11.42 11.52 11.60 9.51 10.46 11.33 - 2.66 11.01

LP15 14.14 14.23 14.30 12.28 13.14 14.00 - 4.98 13.77

LP16 - - - 15.01 15.86 - - 7.65 -

LP17 - - - - - - 1.72 10.42 -

LP18 - - - - - - 4.35 13.18 -

LP19 - - - - - - 7.07 15.90 -

LP110 - - - - - - 9.77 - -

LP111 - - - - - - 12.49 - -

LP112 - - - - - - 15.20 - -
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We analyze Eq. (10) numerically taking a particular case where na = 1.0002, n1 = 1.50, n2 = 1.45,
b = 0.01, 0.1, and 1.0 μm, λ0 = 1.55 μm, and various values of the dimensional parameter a in a regular
increasing order. First, we take a particular value of a and compute the left-hand side (L.H.S.) of Eq. (10)
for many equi-spaced values of β lying between k0n1 and k0n2. Plotting the computed values of the L.H.S.
of Eq. (10) versus β, we obtain a curve, whose intersections with the β = 0 axis provide the β values for
the guided modes. We repeat this method for different values of a, using β values of the guided modes
[B values can be obtained from Eq. (12)]. Similarly, in view of Eq. (11), the parameter V can also be
calculated for each value of a. Now we are able to plot B versus V . These curves are known as dispersion
curves and are shown in Figs. 2–4 for different numbers of cladding layers of different thicknesses.

a)

c)

b)

Fig. 2. Dispersion curves of normalized frequency V
versus normalized propagation constant B for slightly
flattened-core Bragg waveguide with the cladding-region
thickness b = 0.01 μm for six-layered (a), four-layered
(b), and two-layered (c) waveguides.

The cutoff values V and their dependence on the thickness b of the cladding strips for various cladding
layers observed for the proposed Bragg waveguide are listed in Table 1.

Figure 2 shows the lowest-order cutoff V values V = 3.26, 3.36, and 3.45 for six-, four-, and two-layer
waveguides, respectively. We see that these values are greater than the cutoff V values of the standard
circular Bragg fiber [13] for the LP11 mode. Here we found that an increase in the number of layers
from two to six leads to a decrease in the cutoff V value. One can observe this decrease in the cutoff
V value, because the field is tightly bound for the six-layered Bragg waveguide in comparison to the
two-layered Bragg waveguide. In Bragg waveguides, the wave propagates through the Bragg reflection.
Since six layers have a larger reflecting surface as compared to two layers of the proposed waveguide,
and two-layered waveguides have only two reflecting surfaces, the field is tightly bound for six layers in
comparison with two layers.

Figures 3 and 4 show that, as the thickness of the layers increase from b = 0.01 to 1.0 μm, the cutoff V

values decrease for all modes corresponding to different cladding layers for both Bragg waveguides. Such
a reduction is larger for the circular Bragg waveguide in comparison with the proposed Bragg waveguide.

Again, this reduction in cutoff V values may occur due to a tight bound of the field or, in other
words, when the width of the cladding layers decreases, we obtain higher cutoff V values even when the
number of cladding regions is only two. We know that the greater the cutoff values, the fewer the number
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a)

c)

b)

Fig. 3. Dispersion curves of normalized frequency V ver-
sus normalized propagation constant B for a slightly flat-
tened core Bragg waveguide with cladding-region thick-
ness b = 0.10 μm for six-layered (a), four-layered (b),
and two-layered (c) waveguides.

a)

c)

b)

Fig. 4. Dispersion curves of normalized frequency V ver-
sus normalized propagation constant B for a slightly flat-
tened core Bragg waveguide with cladding-region thick-
ness b = 1.0 μm for six-layered (a), four-layered (b), and
two-layered (c) waveguides.

of sustained modes. Hence, Bragg waveguides show good performance regarding the limiting modes of
small number.

4. Conclusions

We analyzed numerically the dispersion curves of slightly deformed optical Bragg waveguides with
two, four, and six layers. We observed that the cutoff V values increase with decrease in the number
of cladding layers. Also these cutoff V values decrease with increase in the cladding-layer thickness.
Therefore, these cutoffs V values can tailor up to a certain level by changing these two parameters.
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