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Abstract

We consider the problem of a two-level atom with degenerate two-photon transitions interacting with
a single-mode radiation field in the presence of a parametric frequency-converter term. A Hamiltonian
representing such a system contains three time-dependent coupling parameters. We obtain an exact
solution of the wave function in the Schrödinger picture, using the canonical transform and under a
certain choice of the coupling parameters. We use the results obtained to discuss the atomic inversion
as well as the linear entropy in addition to both the variance and entropy squeezing. We show that
the system at a certain time is sensitive to variations in both the detuning parameter Δ and the ratio
of the coupling parameter g.

Keywords: linear entropy, atomic squeezing, entanglement, Jaynes–Cummings model.

1. Introduction

Doubtless, the Jaynes–Cummings model (JCM), which comprises a single two-level atom interacting
with a single cavity mode of the electromagnetic field [1] together with its various modifications and
generalizations plays an important role in the field of quantum optics [2–6]. The model can be regarded
as the richest source for the description of nonclassical phenomena. For example, the vacuum-field Rabi
splitting has been predicted theoretically and corroborated experimentally. In the meantime, we can
see that the two-photon interaction of a single two-level atom with the quantized electromagnetic field
has been the subject of considerable study. This is due to its importance in revealing the nonclassi-
cal properties of multiphoton transitions of atoms and the experimental development of a two-photon
micromaser.
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Considerable attention has been paid to the nondegenerate two-photon JCM for realizing a two-mode
two-photon laser [7–11]. This attention arose after Gauthier et al. constructed the first single-mode
two-photon laser based on dressed atomic states [12]. In this context, we may mention that in the two-
photon processes the intensity-dependent effects must be taken into account; so the authors of [13, 14]
generalized the intensity-dependent JCM to a two-mode cavity field with a two-photon process and
studied its dynamic properties.

On the other hand, the physical spectrum defined by Eberly and Wodkiewicz has been studied widely
because much of the information obtained in experiments comes in the form of spectral data [15]. The
cavity–field spectra of the two-photon JCM [16], the nondegenerate two-photon JCM [17], and the two-
atom–two-photon JCM [18–21] were also studied. However, the effects of the parametric frequency-
converter property of the coupling parameter were not taken into consideration.

Recently, the problem of the nonlinear interaction between two electromagnetic-field modes and a two-
level atom was considered [22]. Under the assumption that the two-level atom interacts with each mode
separately as well as with the two modes nonlinearly, the effects of the degenerate and nondegenerate
processes were considered. In the present work, we introduce a Hamiltonian model, which describes the
interaction between a two-level atom and a quantum system, consists of the frequency-converter model in
the presence of the second-harmonic generation (degenerate two-photon process) [23]. The Hamiltonian
that describes such a kind of interactions is given by

Ĥ(t)
�

=
2∑

i=1

ωiâ
†
i âi +

ω0

2
σ̂z +

2∑
i=1

[(
λi(t)â2

i + λ∗
i (t)â

†2
i

)
+

(
λ3(t)â1â

†
2 + h.c.

)]
σ̂x, (1)

where λi(t), i = 1, 2 are the time-dependent coupling response of the second-harmonic generation and
λ3(t) is the time-dependent coupling-parameter response of the frequency-converter term. These coupling
parameters are given as

λj(t) = gj exp[i(2ω̄jt + φj)], j = 1, 2, λ3(t) = g3 exp[i(ω̄1 − ω̄2)t + φi)], (2)

where ω̄i and φi (i = 1, 2) are the frequencies and phase pumps, respectively, and ωi, i = 1, 2 are the free
field frequencies, ω0 is the atomic-system frequency, and the operators â†i (âi) (i = 1, 2) are the creation
and annihilation operators that satisfy the commutation relation [âi, â

†
j ] = δij , with δij = 1 when i = j

and zero, otherwise. The operators σ̂x = (σ̂+ + σ̂−) and σ̂z are the usual Pauli matrices that follow the
relations

[σ̂z, σ̂±] = ±2σ̂±, [σ̂+, σ̂−] = σ̂z. (3)

Note that the existence of the frequency-converter term in Hamiltonian (1) indicates an exchange
between the energy of the fields. This is in contrast to the previous work [22] where the existence of the
parametric-amplifier term leads to amplifying the energy between the field modes.

As one can see, Hamiltonian (1) describes a time-dependent nonlinear quantum system that includes
three coupling parameters. This means that it is not an easy task to deal with such a Hamiltonian.
Therefore, to avoid this complication, one must introduce a certain canonical transform to remove at
least the time factor from the system. This is seen in Sec. 2 where we also introduce the exact solution
for the wave function. In Sec. 3, we discuss the atomic inversion, and in Sec. 4 we consider the linear
entropy of the system. In Sec. 5, we present the variance and entropy squeezing, while in Sec. 6 we give
our conclusions.

337



Journal of Russian Laser Research Volume 33, Number 4, July, 2012

2. The Wave Function

Our main purpose in this section is to introduce the exact solution of the wave function from which
we are able to discuss some statistical properties of the present system. To reach this goal, we have
first to remove the time-dependent factors from Hamiltonian (1). For this reason, we introduce the
operators Âi(t) = âi(t) exp[i(ω̄it + φi/2)]. In this case and after applying the canonical transform to
Hamiltonian (1), it becomes time-independent and takes the form

Ĥ

�
=

2∑
i=1

ΔiÂ
†
i Âi +

ω0

2
σ̂z +

2∑
i=1

[gi(Â2
i + Â†2

i ) + g3(Â1Â
†
2 + h.c.)]σ̂x, (4)

where Δi = (ωi − ω̄i), i = 1, 2.

Even though we have managed to remove the time-dependent factor from the Hamiltonian, neverthe-
less, the system is still complicated to deal with it. Therefore, we introduce the transform

Â1 = B̂1 cosh ϑ − B̂†
2 sinhϑ, Â2 = B̂2 cosh ϑ − B̂†

1 sinhϑ, (5)

from which Hamiltonian (4) takes the form

Ĥ

�
= Δ1(B̂

†
1B̂1 − B̂†

2B̂2) +
ω0

2
σ̂z +

2∑
i=1

μi(B̂2
i σ̂+ + B̂†2

i σ̂−), (6)

where we applied the rotating-wave approximation and considered ω1 + ω2 = ω̄1 + ω̄2. Note that in the
above equation we defined

μ1 = g1 cosh2 ϑ + g2 sinh2 ϑ − g3 sinh 2ϑ, μ2 = g2 cosh2 ϑ + g1 sinh2 ϑ − g3 sinh 2ϑ, (7)

where

ϑ =
1
2

tanh−1

(
2g3

g1 + g2

)
. (8)

Now Hamiltonian (6) is the usual two-mode JCM in the presence of two photons. Within the frame-
work of this model, it is still difficult to find its wave function or to obtain its time-dependent dynamic
operators. However, if we consider the case where g3 =

√
g1g2, we find μ2 = 0 and, consequently, the

Hamiltonian reduces to the form

Ĥ

�
= Δ1B̂

†
1B̂1 +

ω0

2
σ̂z + μ1(B̂2

1 σ̂+ + B̂†2
1 σ̂−). (9)

Here we may point out that the restrictive condition g3 =
√

g1g2 may be regarded as an integrability
condition under which we are able to consider the system dynamics analytically.

As we see, the system is converted to the interaction between the two-level atom and two-photon
single field. Therefore, we are in a position to derive the wave function for the present system. To do
this, we employ the equations of motion in the Heisenberg picture to get some invariants from which we
are able to reach our aim. The equations of motion are

dB̂1

dt
= −iΔ1B̂1 − 2iμ1B̂

†
1σ̂−,

dB̂†
1

dt
= iΔ1B̂

†
1 + 2iμ1B̂1σ̂+,

dσ̂−
dt

= −iω0σ̂− + 2iμ1B̂
2
1 σ̂z,

dσ̂+

dt
= iω0σ̂+ − 2iμ1B̂

†2
1 σ̂z, (10)

dσ̂z

dt
= −2iμ1(B̂2

1 σ̂+ − B̂†2
1 σ̂−).
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After straightforward calculations, we have Ĥ/� = Δ1N̂ + Ĉ, where

Ĉ =
Δ
2

σ̂z + μ1(B̂2
1 σ̂+ + B̂†2

1 σ̂−), N̂ = m̂ + σ̂z, (11)

and m̂ = B̂†
1B̂1, while

Δ = ω0 − 2Δ1, μ1 =
1 − g

1 + g
, g =

g2

g1
. (12)

Now suppose that the field was initially in the coherent state |ψ〉f , such that

|ψ〉f =
∞∑

m=0

Qm |m〉, Qm = K
tanhm/2 ϑ√

2mm!
Hm(β/

√
sinh 2ϑ),

(13)

K−2 =
∞∑

m=0

1
2mm!

|Hm(β/
√

sinh 2ϑ)|2| tanh ϑ|m,

where β is the coherent-state complex parameter and Hm(β/
√

sinh 2ϑ) are the Hermite polynomials. In
the meantime, we assume that the atom is initially in the atomic coherent state |ψ〉a, and this state can
be constructed to take the form

|ψ〉a = cos θ|+〉 + eiφ sin θ|−〉, (14)

where |+〉 and |−〉 are the excited and ground states, while φ is a relative phase angle and θ is the
coherence angle. The wave function for the system at t = 0 is now given by |ψ(0)〉 = |ψ〉f ⊗ |ψ〉a. Using
the above result, we can write the wave function at t > 0 as

|ψ(t)〉 =
∞∑

m=0

Qm[F̂ (g,m, t)|m, +〉 + Ĝ(g,m, t)|m,−〉], (15)

where F̂ (g,m, t) and Ĝ(g,m, t) are given by

F̂ (g,m, t) = e−itΔ1(B̂†
1B̂1+1/2)

{
cos θ

[
cos ν̂1t − i

Δ
2

sin ν̂1t

ν̂1

]
+ μ1e

iφ sin θ
sin ν̂1t

ν̂1
B̂2

1

}
,

(16)

Ĝ(g,m, t) = e−itΔ1(B̂†
1B̂1−1/2)

{
eiφ sin θ

[
cos ν̂2t + i

Δ
2

sin ν̂2t

ν̂2

]
+ μ1 cos θ

sin ν̂2t

ν̂2
B̂†2

1

}
,

with

ν̂2
1 =

Δ2

4
+ μ2

1B̂
2
1B̂2†

1 , ν̂2
2 =

Δ2

4
+ μ2

1B̂
2†
1 B̂2

1 . (17)

Using the above results, we are able to discuss some statistical properties of the present model. In the
next section, we concentrate on the behavior of the atomic inversion.

3. The Atomic Inversion

In this section, we consider the atomic inversion to see the effects of the second-harmonic generation
and the parametric frequency converter on the system. It is well known that the atomic inversion is the
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difference between the probability of finding the atom in the excited state and the probability of finding
the atom in the ground state. Therefore, if we assume that the atom starts in its excited state, we can
show that the atomic inversion W (t, g) reads

W (g, t) =
∞∑

m=0

|Qm|2(|〈F̂ (g,m, t)〉|2 − |〈Ĝ(g,m, t)〉|2). (18)

In fact, the above equation allows us to observe the atomic behavior and to determine whether the atom
is in its excited state or in its ground state. Furthermore, it would help us to see when the atom is in the
maximum state, where the probabilities of finding the atom in the excited state and in the ground state
are equal. Usually the numerical investigations concentrate on the time variation. However, in this study
we fix time and examine the system behavior with respect to the coupling-parameter ratio g, taking into
account that the atom was initially in the excited state and the field was prepared in the squeezed state.
We consider the initial mean photon number m̄ = 25.

a) b)

c) d)

Fig. 1. The evolution of the atomic inversion with the initial mean photon number m̄ = 25. The atom started
from the excited state (θ = 0), where Δ = 0 and t = 4π (a), Δ = 0 and t = 8π (b), Δ = 15 and t = 4π (c), and
Δ = 15 and t = 8π (d).

In Fig. 1 a and b, we consider the resonance case where Δ = 0 for two different periods of time t = 4π

and 8π. In the first case, we can see that the function starts with a small domain of the collapse, which
is followed by a small domain of the revival. However, the second domain of the revival occurs after
a large value of g (compared with the first domain), where the collapse domain can be seen, Fig. 1 a.
In this case, we also observe that a partial flipping from the upper to the lower state occurs, and the
collapses and revivals of the atomic inversion occur regularly. This is in addition to the maximum state
occurring at the collapse intervals. Further, we note that the value of g increases as the domains of
both collapses and revivals increase. This means that there is a strong interaction between the atom
and the fields. This behavior is repeated during the fixed period of time under consideration. When
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time increases, t = 8π, the function exhibits the same behavior, but with an increase in the number of
the collapse and revival domains. Also, more interference between the patterns during the fluctuations
within the revival domains can be observed; see Fig. 1 b. In this case, the function shows an decrease in
the amplitude of the oscillations within the revival domains for a small value of g; however, it increases
as the coupling-parameter ratio g increases.

The situation is different if we take into account the detuning parameter (off-resonance case) and set
Δ = 15. In this case and for t = 4π, the behavior of the function changes and its value shifts up as
usually seen in the JCM case. This means that the energy is stored in the atomic system and does not
reach the ground state for higher values of the coupling-parameter ratio g as shown in Fig. 1 c. Also we
note that the function starts in the revival domain with fluctuations occurring between −0.35 and 0.4.
We observe that the collapses and revivals occur at short intervals. This gets more pronounced when
we consider the case t = 8π, where the function demonstrates a behavior similar to that of t = 4π; see
Fig. 1 d. However, we can see an increase in the number of both collapses and revivals. This is in addition
to a decrease in the range of the function fluctuations. Finally, we emphasis that with increase in the
value of the coupling-parameter ratio g, there exists an inhibition of the energy between the atom and
the optical field, provided the detuning parameter Δ �= 0. In what follows, we consider the degree of
entanglement by employing the linear entropy. This is seen in the next section.

4. Linear Entropy

Recently, most applications in quantum-information technology is based on the entanglement. As
examples, we mention quantum computation [24], quantum cryptography [25, 26], quantum teleporta-
tion [27, 28], and many other applications [29–32]. On the other hand, the disentanglement of the two
quantum systems provides interesting applications, e.g., in preparation of atomic states through inter-
acting quantum systems to determine the cavity field; see, for example, [33–35]. In the meantime, the
purity P (g, t) (say) can be used as a good tool to give information on the entanglement of the system
components. Also we can see that the purity parameter assumes a relevant role in quantum information
where the effective fidelities of protocols depend critically on the purity of the information-carrier states.
Furthermore, during the consideration of the connection between generalized uncertainty relations and
optical tomograms, it was shown that the purity of the states can be retrieved by statistical analysis of
the homodyne data, see [36]. For these mentioned reasons, we discuss the purity of the system under
consideration. The purity of the field state can be determined from the quantity

P (t) = 1 − Tr [ρ̂2
f (t)], (19)

where ρ̂f (t) = Tr ρ̂a(t) is the field reduced density matrix. The density matrix ρ̂(t) can be obtained from
Eq. (15) and takes the form

ρ̂(t) =
∞∑

m,n=0

QmQ∗
n [F |m, +〉〈+, n|F ∗ + G|m,−〉〈+, n|F ∗ + F |m, +〉〈−, n|G∗ + G|m, +〉〈−, n|G∗] .

(20)

The necessary and sufficient conditions for the ensemble to be described in terms of a pure state
is Tr [ρ̂2

f (g, t)] = 1. However, for the case where Tr [ρ2
f (t)] < 1, the field is in a statistical mixture of
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the states, while for a two-level system the maximum mixed ensemble corresponds to Tr [ρ2
f (t)] = 1/2.

Analytic conclusions about the system’s state-vector dynamics and the atom–field entanglement can be
verified through examining the linear entropy. The linear entropy of reduced atomic (or field) density
matrix can serve for evaluating the degree of entanglement of systems consisting of two subsystems
prepared in pure states. The linear entropy of reduced atomic density matrix for the considered system
has the form

P (g, t) =
(
1 − X2

1 (g, t) − X2
2 (g, t) − 2|X3(g, t)|2) , (21)

where

X1(g, t) =
∞∑

m=0

|Qm|2|F (g,m, t) |2, X2(g, t) =
∞∑

m=0

|Qm|2|G (g,m, t) |2,
(22)

X3(g, t) =
∞∑

m=0

Qm+2Q
∗
mF (g,m + 2, t) G∗ (g,m, t) .

Now we use the above equations to analyze and discuss the linear entropy.
Due to the complicated form of the equations, we must use numerical computations. For this, we

plot the function P (g, t) against the coupling-parameter ratio g for a fixed time, baring in mind that the
field is prepared in the squeezed state and the atom is initially prepared in the excited state. In Fig. 2,
we show the evolution of the linear entropy for four different cases — the first two cases correspond to
t = 2π and 4π and Δ = 0, while the second two cases correspond to t = 2π and 4π and Δ = 15. We have
fixed the value of of the initial mean photon number, m̄ = 25.

When we consider the case t = 2π in the absence of detuning (Δ = 0), the function fluctuates between
0 and 0.5, where partial entanglement can be seen. However, at a small value of the coupling-parameter
ratio g � 0.1, the function demonstrates a weak entanglement where the interaction between the field
and the atom is almost disentangled; see Fig. 2 a. In the meantime, we can also see a strong entanglement
at different values of g. However, the number of the intervals in which the strong entanglement occurs
is greater than the number of the intervals in which the weak entanglement occurs. A similar behavior
is repeated for the case t = 4π but at g � 0.2. In this case, we can also see more fluctuations compared
with the previous case within the same range of g. Furthermore, we observe that an increase in the
coupling-parameter ratio g leads to an increase in the minimum values of the linear entropy; see Fig. 2 b.

Now we turn our attention to the nonresonance case (Δ = 15, t = 4π); here the behavior of the
linear entropy is strongly affected. In this case, the minimum of the function increases, and its minimum
decreases, where the partial entanglement can be seen. This means that the field is in a mixed state, but
its maximum is not reached. However, the function shows disentanglement when the coupling-parameter
ratio g = 1, which corresponds to μ1 = 0. In this particular case, the interaction between the atom and
the field vanishes completely, as in Fig. 2 c. When time increases, t = 8π, more irregular fluctuations
with interference between the patterns can be seen. This, in addition to an increase in the maximum
value of the function, provides an increase in its minimum value where the entanglement appears more
pronounced. However, the function displays disentanglement at g = 1 for the same reason previously
mentioned; see Fig. 2 d.
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a) b)

c) d)

Fig. 2. The time evolution of the linear entropy as a function of the coupling-parameter ratio g (the other
parameters are the same as in Fig. 1).

5. The Phenomenon of Squeezing

We devote this section to a discussion of the variance squeezing as well as the entropy squeezing in
order to see the effect of the combination between the frequency-converter term and the second-harmonic-
generation term in the system of equations for the quantum system. This will be seen in Sects. 5.1 and
5.2.

5.1. Variance Squeezing (Atomic Squeezing)

Recently the arguments for using the entropic uncertainty relations for the two-level system rather
than the Heisenberg uncertainty relations to investigate quantum fluctuations were discussed in [37,38].
In quantum-mechanical system with two physical observables represented by the Hermitian operators Â

and B̂ satisfying the commutation relation [Â, B̂] = iĈ, one can write the Heisenberg uncertainty relation
in the form

〈(ΔÂ)2〉〈(ΔB̂)2〉 ≥ 1
4
|〈Ĉ〉|2, (23)

where 〈(ΔQ̂)2〉 = 〈Q̂2〉 − 〈Q̂〉2. Consequently, the uncertainty relation for a two-level atom characterized
by the Pauli operators Ŝx, Ŝy, and Ŝz, satisfying the commutation relations [Ŝx, Ŝy] = 2iŜz, can also
be written as ΔŜxΔŜy ≥ |〈Ŝz〉|. Fluctuations in the component Ŝγ of the atomic dipole are said to be
squeezed if Ŝγ satisfies the condition

V (Ŝγ) = (ΔŜγ −
√
|〈Ŝz〉|) < 0, γ = x or y. (24)
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a) b)

c) d)

Fig. 3. The variance squeezing Vx against the coupling-parameter ratio g for Δ = 0 and t = 4π (a), Δ = 0 and
t = 8π (b), Δ = 15 and t = 4π (c), and Δ = 15 and t = 8π (d).

Now we will discuss the variance squeezing.

In our computation program, we have noted that the squeezing phenomenon occurs only in the first
quadrature Vx(g) and is absent in the second quadrature Vy(g) for all values of the considered region of
the coupling-parameter ratio g. Therefore, we concentrate on the squeezing in the quadrature Vx(g) and
plot the function against the coupling-parameter ratio g for different values of the detuning parameter
Δ and time t.

In our examination, we consider the same values of the parameters as we took for the atomic inversion
and the linear entropy. For example, we examine the system at the exact resonance, where Δ = 0 for
two different values of time t = 4π and 8π. For t = 4π, the function shows a periodical behavior and
the squeezing can be seen at three different values of g within the considered region (Fig. 3 a). The
maximum squeezing in this case occurs around g ∼ 0.1 and reaches the value −0.12. However, when time
increases, t = 8π, the squeezing occurs more slowly than in the previous case; here the function shows
squeezing around g∼ 0.23 and reaches the value −0.1. Furthermore, the function in this case shows more
periods of the squeezing compared with the case where t = 4π, see Fig. 3 b. On the other hand, when the
detuning parameter is taken into account and we set Δ = 15 and t = 4π, the function shows a drastic
reduction not only in its maximum but also in its minimum, which leads to a decrease in the amount
of squeezing compared with the resonance case, see Fig. 3 c. A similar behavior can be seen when time
increases, t = 8π, where the maximum of the function decreases and it exhibits more fluctuations. In the
meantime, a small amount of squeezing starts to be seen after g = 0.2 (Fig. 3 d).
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5.2. The Entropy Squeezing

The second task of this section is to discuss the entropy squeezing. As is well known, the concept of
quantum information theory depends on the entropy. Therefore, the use of the entropy squeezing would
give us more information on the quantum system under consideration. In an even N -dimensional Hilbert
space, the inequality [39–42]

N+1∑
r=0

H(Ŝβ) ≥ [(N/2) ln(N/2) + (1 + N/2) ln(1 + N/2)] (25)

takes place, where H(Ŝβ) represents the Shannon information entropy of the variable Ŝβ. This, in fact,
can be used to describe the optimum entropic uncertainty relation for sets of (N +1) complementary ob-
servables with nondegenerate eigenvalues. The corresponding Shannon information entropies are defined
by

H(Ŝβ) = −
N∑

j=1

Pj(Ŝβ) lnPj(Ŝβ), β = x, y, z, (26)

where Pj(Ŝβ) are the probability distributions for N possible outcomes of measurements of the operator
Ŝβ . Therefore, to obtain the information entropies of the atomic operators Ŝβ for a two-level atom with
N = 2, we use the expression

H(Sβ) = −1
2

{
(1 + 〈Ŝβ〉) ln

[
1
2
(1 + 〈Ŝβ〉)

]
+ (1 − 〈Ŝβ〉) ln

[
1
2
(1 − 〈Ŝβ〉)

]}
. (27)

Doubtless, the uncertainty relation for the entropy of any quantum system, which contains the inter-
action with a two-level atom, can be used as a general criterion for the squeezing of an atom (spinor).

Now, if we define δH(Ŝβ) = exp[H(Ŝβ)], then for a two-level atom where N = 2, we have 1 ≤
δH(Ŝβ) ≤ 2; in this case, the information entropies of the operators Ŝβ and β = x, y, z satisfy the
inequality

δH(Ŝx)δH(Ŝy)δH(Ŝz) ≥ 4. (28)

In this context, we refer to [43] where a review of the probability representation of quantum mechanics
is presented along with the discussion of experimental possibilities to check the uncertainty relations for
the position and momentum [44,45], as well as the entropic uncertainty relation [46]. This may open the
door for more applications in the near future.

On the other hand, if we consider δH(Ŝβ) = 1, then the atom will be in the pure state, while the atom
will be in a completely mixed state if δH(Ŝβ) = 2. The quantities δH(Ŝx) and δH(Ŝy) are nothing else
but quantities measuring uncertainties of the atomic polarization components Ŝx and Ŝy, respectively.
Then it is clear from the entropic uncertainty relation (25) that it is impossible to have simultaneously
the complete information on the observables Ŝx and Ŝy. The atomic squeezing can be defined from the
entropic uncertainty relation (28), namely, the entropy squeezing. The fluctuations in the components
Ŝβ (β = x or y) of the atomic dipole are said to be squeezed in entropy if the information entropy H(Ŝβ)
of Ŝβ satisfies the condition

E(Ŝβ) = (δH(Ŝβ) − 2√
|δH(Ŝz)|

) < 0, β = x, y. (29)
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a) b)

c) d)

Fig. 4. The entropy squeezing Ex against the coupling-parameter ratio g for Δ = 0 and t = 4π (a), Δ = 0 and
t = 8π (b), Δ = 15 and t = 4π (c), and Δ = 15 and t = 8π (d).

To obtain the Shannon information entropies of the atomic operators for the system under study, we
can use the reduced atomic density operator ρ̂(t). Consequently, Eq. (27) can be written in the form

H(Sα) = −1
2
[ρα(g) + 1] ln

[
1
2
[ρα(g) + 1]

]
− 1

2
[1 − ρα(g)] ln

[
1
2
[1 − ρα(g)]

]
, (30)

where α = x, y, z and ρα(g) = 〈ψ(0)|ρ̂α(g)|ψ(0)〉 is the time-dependent density matrix. Straightforward
calculations give us the expressions

ρx(g,m, t) = 2 Re [〈|F (g,m, t)|G(g,m, t)〉] , ρy(g,m, t) = 2 Im [〈|F (g,m, t)|G(g,m, t)〉] ,
(31)

ρz(g,m, t) = 〈F (g,m, t)|F (g,m, t)〉 − 〈G(g,m, t)|G(g,m, t)〉.

While processing our computation program, we have observed that the squeezing phenomenon oc-
curred only in the quadrature E(Ŝx) and was absent in the quadrature E(Ŝy). Therefore, to discuss the
entropy squeezing, we plot Fig. 4 for the functions E(Ŝx) against the coupling ratio g. As before, we
consider the field to be initially in the squeezed state, and the atom, in its excited state, θ = 0.

We concentrate on two cases: (1) the exact resonance Δ = 0 and t = 4π and 8π, and (2) the off-
resonance but also for t = 4π and 8π. For the case where Δ = 0 and t = 4π, the function starts with
its maximum squeezing and reaches the value −0.4. However, with increase in the value g the value
of squeezing decreases; see Fig. 4 a. In the meantime, the function displays irregular fluctuations with
some interference between the patterns. This, besides the squeezing phenomenon, occurred several times
during the considered domain of g. With increase in time, the fluctuations of the function increase
compared with the previous case, and its minimum decreases, which leads to a reduction in the value of
squeezing; see Fig. 4 b. When the detuning takes place (Δ = 15), a considerable reduction is observed in
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the function minimum; see Fig. 4 c. This means that the amount of squeezing decreases and consequently
the system is sensitive to variations in the detuning parameter. Similar behavior to that of Fig. 4 b is
observed in the case where Δ = 15 and t = 8π. In this case, we see that the minimum value of the
quadrature E(Ŝx) decreases in comparison with the case where Δ = 0, see Fig. 4 d. This indicates a
decrease in the squeezing within the considered domain of g. Also we note that with increase in g the
squeezing decreases. This fact can be interpreted as follows: since μ1 = (1 − g)/(1 + g), an increase in
the value of g leads to decrease in the value of μ1. Consequently, the interaction between the atom and
the field weakens, which leads to the squeezing death.

6. Conclusions

In this work, we considered the problem of the interaction between the two-level atom and a quan-
tum system. This system Hamiltonian consists of the interacting subsystem terms in the form of the
parametric-frequency-converter and the second-harmonic-generation ones. Under a certain transform
and with a particular choice of the coupling parameters, we managed to transform the system to the
interaction between the single-mode field and the two-level atom. We obtained the solution for the wave
function and discussed some statistical properties of this system. For example, we examined the atomic
inversion against the coupling-parameter ratio g. We showed that with increase in the coupling-parameter
ratio the domains of the collapses and revivals get more pronounced. Furthermore, an increase in time
leads to an increase in the number of collapse and revival domains.

We considered the linear entropy where the system under consideration exhibited the strong and
weak entanglement domains. These domains are smaller for the weak entanglement in comparison with
the strong entanglement. Also we considered the variance squeezing where the squeezing phenomenon is
observed in one of the quadratures, namely, V (Ŝx). We noted that the squeezing was pronounced for a
small value of the coupling-parameter ratio g; however, it occurs several times for large times. On the
other hand, the effect of detuning leads to a decrease in the squeezing. Finally, we examined the entropy
squeezing where we reached the same conclusions as to the variance squeezing.
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35. V. Buźek, H. Moya-Cessa, and P. L. Knight, Phys. Rev. A, 45, 8190 (1992).
36. V. I. Man’ko, G. Marmo, A. Porzio, et al., Phys. Scr., 83, 045001 (2011).
37. Mao-Fa Fang, Pengzhou, and S. Swain, J. Mod. Opt., 47, 1043 (2000).
38. E. Majernikova, V. Majernik, and S. Shpyrko, Eur. J. Phys. B, 38, 25 (2004).
39. M. S. Abdalla, E Lashin, and G. Sadiek, J. Phys. B: At. Mol. Opt. Phys., 41, 015502 (2008).
40. G. Sadiek, E. Lashin, and M. S. Abdalla, Physica, B, 404, 1719 (2009).
41. M. S. Abdalla and M. M. A. Ahmed, Opt. Commun., 284, 1933 (2011).
42. M. S. Abdalla, H. Eleuch, and Jan Peřina, J. Opt. Soc. Am. B, 29, 719 (2012).
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