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Abstract

The general one-particle spin states are considered. It is shown that information contained in a spin-
1/2 state can be recorded in an equivalent form with the help of three mixed completely decoherent
qubit states. The density matrix of such a system has the form of the tensor product of three diagonal
matrices. The linear operator defined in the space of one-particle spin states generates some transform
of the tensor products of the diagonal matrices. We construct this transform in the explicit form.
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1. Introduction

In modern quantum information processing and quantum computation, the pure entangled states
are used. The density matrices of these states are of a general form, and their off-diagonal elements
are not equal to zero. These states are used for processing and keeping information [1, 2]. Both mixed
and pure states are unstable. Under various external influences, they become more mixed and the off-
diagonal elements of their density matrices decrease and can become equal to zero. This process of
decoherentization results in losses of information and can disturb the quantum computing process.

For this reason, it is reasonable to look for such a model of quantum computing that uses only mixed
states with diagonal density matrices. Such states are more stable with respect to decoherentization
processes. The possibility to use such states for design of quantum computers was discussed in [3,6]. To
connect this model with known methods of quantum computing, it is necessary to perform two operations.
First, one must determine the connection between information contained in one-particle spin states and
present this information with the help of mixed states with diagonal density matrices. Second, since
there exist linear operators acting in the space of one-particle spin states, it is necessary to show how
these operators act in the space of those mixed states that contain the same information.
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It is worth noting that in quantum mechanics the states of quantum systems can be described not
only by the density matrices or wave functions. There exists the probability representation of quantum
states [4, 5] where the states are associated with fair probability distributions called state tomograms.
The state tomograms (or tomographic-probability distributions) are related to the density matrices by
invertible transforms; due to this, information contained in the density matrix can be coded by the
tomogram, which depends on extra parameters. The number of parameters is sufficient for describing
with the help of tomograms not only the modulus squared of the probability distribution (which is also
the probability distribution) but the phase of the wave function as well.

Formally the tomographic-probability distributions are diagonal matrix elements of the density ma-
trices calculated in unitary transformed reference frames in the Hilbert space of the quantum-system
states. The diagonal matrix elements of the density matrix given in several reference frames determine
completely the off-diagonal matrix elements in the initial nonrotated basis. Thus, the problem formulated
is closely related to the tomographic-probability representation of quantum states and their properties.

In this study, we focus on the most important for the quantum information case of qudit states,
the density matrix of which depends on three parameters. It is clear that, if one has three probability
distributions (spin “up” and spin “down”) corresponding to the spin-1/2 tomogram, it is possible to
describe by means of these three distributions an arbitrary spin-state density matrix. So one can model
three probability distributions associated with spin tomograms with three diagonal density matrices
related either to three qubits or to three two-level atoms.

We discuss in our paper these problems.
We consider general one-particle spin states and show that there exists a tensor product of three

mixed one-particle spin states with diagonal density matrices that contain the same information. The
connection between the states is obtained in the explicit form.

We also construct a linear operator that acts at the tensor product of density matrices and is an exact
analog of the operator that acts in the space of the original density matrix. We show a concrete example
of this construction.

2. Tensor Representation of One-Particle Spin State

We consider a one-particle spin state described by the density matrix

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
. (1)

Our aim is to construct another state (generally speaking, the multiparticle’s state) that contains the
same information as the state ρ. For this, we define a vector ~L. The components of this vector are
elements of matrix (1). The correspondence between matrices and vectors whose components are the
matrix elements was investigated in [7, 8]

~L =


ρ11

ρ12

ρ21

ρ22

 =


l1

l2

l3

l4

 . (2)
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From vector ~L, one can go to vector ~M . It has six components, which are linear combinations of the
components of the vector ~L

~M = A~L =



m1

m2

m3

m4

m5

m6


, (3)

where A = ‖αik‖ {i = 1, . . . , 6, k = 1, . . . , 4} is the 6×4 rectangular matrix

mi =
4∑

k=1

αiklk. (4)

There exists an inverse transform

~L = B ~M, lk =
6∑
i=1

βkimi, (5)

where B = ‖βki‖, {i = 1, . . . , 6, k = 1, . . . , 4} is the 4×6 rectangular matrix.
The components mi of vector (3) must satisfy the following conditions:

mi ≥ 0, i = 1, . . . , 6, m1 +m2 = m3 +m4 = m5 +m6 = 1. (6)

This means that the pairs (m1,m2), (m3,m4), and (m5,m6) can be interpreted as the standard probability
distributions for the three classical systems with two outputs each. There are many rectangular matrices
A and B satisfying the conditions (4)–(6). Some examples will be presented below.

Now we consider the following problem.
Given an unitary transform U of a matrix ρ

UρU−1 = ρ̃. (7)

The example of the unitary transform is the simplest example of the positive map of the density operator
that yields another density operator. A general approach to positive maps is given in [9] (see, also [10]).
One needs to find the transform T of a vector ~M , which corresponds to the transform of the matrix ρ.
This transform is defined by the matrix T

~̃M = T ~M. (8)

One has to find the explicit form of this matrix. To do this, we employ the method developed in [7, 8].
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3. Construction of the Transforms

Transform (7) of the density matrix (1) generates a corresponding transform of vector (2)

~̃L = W~L, (9)

where W is a superoperator corresponding to the matrix U . It has the form of the tensor product of the
matrix U and its complex conjugate, i.e.,

W =


u11u

∗
11 u11u

∗
12 u12u

∗
11 u12u

∗
12

u11u
∗
21 u11u

∗
22 u12u

∗
21 u12u

∗
22

u21u
∗
11 u21u

∗
12 u22u

∗
11 u22u

∗
12

u21u
∗
21 u21u

∗
22 u22u

∗
21 u22u

∗
22

 =

(
u11 u12

u21 u22

)
⊗

(
u∗11 u∗12
u∗21 u∗22

)
. (10)

In view of (10), one can find transform (8) of vector (3) as follows:

~̃M = AWB ~M = T ~M. (11)

To obtain the explicit form of matrices A and B, one can use the tomographic approach for describing the
quantum states. Within the frame of this approach, a quantum state is described by a number of measured
tomographic probabilities instead of the wave functions and density matrices, which usually correspond
to diagonal elements of the density matrix. In spite of the fact that it is impossible to reconstruct the
whole density matrix knowing only its diagonal elements, one can do this with the help of a set of diagonal
elements measured in different reference frames. The tomography approach for describing the spin states
was developed in [11–17], where it was shown that, to find a minimum sufficient set of data, it is necessary
to measure diagonal elements of the density matrix in three different reference frames. As these reference
frames, one can use the initial reference frame defined by the axes X, Y , and Z, and two other ones
obtained from the initial one by two different rotations. In such a way, one can get six diagonal elements
describing a one-particle spin state. In view of of these diagonal elements, one can construct components
of the vector ~M (3).

The rotation of the coordinate system is described by the three Euler’s angles (φ, θ, ψ). The diagonal
elements ρii of the density matrix are transformed as follows:

ρ′ii = Di1(φ, θ, ψ)ρ11D
∗
i1(φ, θ, ψ) +Di1(φ, θ, ψ)ρ12D

∗
i2(φ, θ, ψ)

+Di2(φ, θ, ψ)ρ21D
∗
i1(φ, θ, ψ) +Di2(φ, θ, ψ)ρ22D

∗
i2(φ, θ, ψ), (12)

where Dij(φ, θ, ψ) are the Wigner D functions of the form

D =

(
cos θ/2 ei(φ+ψ)/2 sin θ/2 ei(−φ+ψ)/2

− sin θ/2 ei(φ−ψ)/2 cos θ/2 ei(−φ−ψ)/2

)
. (13)

After performing transform (12), the diagonal matrix elements of a one-particle spin state take the form

ρ′11(φ, θ) = cos2
θ

2
ρ11 + cos

θ

2
sin

θ

2
eiφ ρ12 + cos

θ

2
sin

θ

2
e−iφ ρ21 + sin2 θ

2
ρ22,

(14)
ρ′22(φ, θ) = sin2 θ

2
ρ11 − cos

θ

2
sin

θ

2
eiφ ρ12 − cos

θ

2
sin

θ

2
e−iφ ρ21 + cos2

θ

2
ρ22.
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Now one can make two rotations — the first one is produced by the Euler’s angles (0, θ, 0), and the
second one is produced by the angles (0, θ, π/2). In this case, the vector ~M reads

~M(φ, θ) =



ρ11

ρ22

cos2 θ/2 ρ11 + cos θ/2 sin θ/2(ρ12 + ρ21) + sin2 θ/2 ρ22

sin2 θ/2 ρ11 − cos θ/2 sin θ/2(ρ12 + ρ21) + cos2 θ/2 ρ22

cos2 θ/2 ρ11 + i cos θ/2 sin θ/2(ρ12 − ρ21) + sin2 θ/2 ρ22

sin2 θ/2 ρ11 − i cos θ/2 sin θ/2(ρ12 − ρ21) + cos2 θ/2 ρ22


. (15)

The components of vector (15) satisfy the conditions (6).
The transform of vector ~L into the vector ~M(φ, θ) is produced by the rectangular matrix A. It

contains four columns and six rows and reads as follows:

~M(φ, θ) = A~L, (16)

where

A =



1 0 0 0
0 1 0 0

cos2 θ/2 sin2 θ/2 cos θ/2 sin θ/2 cos θ/2 sin θ/2
sin2 θ/2 sin2 θ/2 − cos θ/2 sin θ/2 − cos θ/2 sin θ/2
cos2 θ/2 sin2 θ/2 i cos θ/2 sin θ/2 −i cos θ/2 sin θ/2
cos2 θ/2 sin2 θ/2 −i cos θ/2 sin θ/2 i cos θ/2 sin θ/2


. (17)

The inverse transform of the vector ~M(φ, θ) into the vector ~L is produced by the rectangular matrix B,
which contains six columns and four rows and reads

~L = B ~M(φ, θ), (18)

where

B =


1 0 0 0 0 0
0 1 0 0 0 0

−(1− i) cos θ
2 sin θ

(1− i) cos θ
2 sin θ

1
2 sin θ

− 1
2 sin θ

− i

2 sin θ
i

2 sin θ

−(1 + i) cos θ
2 sin θ

(1 + i) cos θ
2 sin θ

1
2 sin θ

− 1
2 sin θ

i

2 sin θ
− i

2 sin θ

 . (19)

It worth mentioning that, in addition to representation (15) for vector ~M , there exist other possibilities
for constructing its components, and different matrices A and B correspond to a pair of the vectors ~L
and ~M .

The main object in quantum information is qubit, i.e., the one-particle spin state. It can be realized as
a two-level system. One can present a lot of examples of such systems — atoms with two low-oscillation
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levels, electron and nuclear spins, electromagnetic fields in the resonator, photon crystals, and so on.
All such objects can be used for creating quantum computers, but it is very difficult to employ for such
purpose systems with a number of levels greater than 2. For this reason, one must not interpret the
components of vector ~M (3) as diagonal elements of the six-level system density matrix, but consider
these components as diagonal elements of three density matrices of three two-level systems, for example,
three atoms. A physical object that contains three two-level systems is described by the density matrix
ρ̄, which has the form of the tensor product of three density matrices corresponding to each two-level
system. In our case, all the matrices are diagonal and their elements are the components of vector ~M (3)

ρ̄ = ρ1 ⊗ ρ2 ⊗ ρ3 =

(
m1 0
0 m2

)
⊗

(
m3 0
0 m4

)
⊗

(
m5 0
0 m6

)
. (20)

The matrix ρ̄ is the diagonal matrix with matrix elements on its diagonal written as

r1 = m1m3m5, r2 = m1m3m6, r3 = m1m4m5,

r4 = m1m4m6, r5 = m2m3m5, (21)

r6 = m2m3m6, r7 = m2m4m5, r8 = m2m4m6,

while all off-diagonal elements are equal to zero.
The robust method for preparing an arbitrary two-dimensional diagonal state was developed in [18].
Let us construct a vector ~r with components ri, i = 1, . . . , 8 being the matrix elements of tensor

product (20), where ri satisfy the following relations:

8∑
i=1

ri = 1,

r1
r2

=
r3
r4

=
r5
r6

=
r7
r8

=
r1 + r3 + r5 + r7
r2 + r4 + r6 + r8

,

(22)
r1
r3

=
r2
r4

=
r5
r7

=
r6
r8

=
r1 + r2 + r5 + r6
r3 + r4 + r7 + r8

,

r1
r5

=
r2
r6

=
r3
r7

=
r4
r8

=
r1 + r2 + r3 + r4
r5 + r6 + r7 + r8

.

Relations (22) are necessary and sufficient conditions for the diagonal matrix, with matrix elements ri,
to be presented as tensor product (20).

The components mi of vector ~M (3) are the linear combinations of rk, namely,

m1 = r1 + r2 + r3 + r4, m2 = r5 + r6 + r7 + r8,

m3 = r1 + r2 + r5 + r6, m4 = r3 + r4 + r5 + r7, (23)

m5 = r1 + r3 + r5 + r7, m6 = r2 + r4 + r6 + r8.

Our goal is to find a linear transform Γ of vector ~r (21) into a vector ~̃r that corresponds to the unitary
transform (7) of the density matrix (1)

~̃r = Γ~r. (24)
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The unitary transform (7) of the density matrix (1) generates a transform (11) of the vector ~M . The
components mi of the vector ~M are transformed as follows:

m̃i =
6∑
j=1

tijmj , (25)

where tij are elements of the matrix T .
With the help of (25), one can find the transform of rk corresponding to the unitary transform (7).

Then in view of (21), one obtains

m̃im̃km̃p =

 6∑
j

tijmj

( 6∑
l

tklml

)(
6∑
q

tpqmq

)
. (26)

There are 56 different products of three quantities mi on the right-hand side of equality (26); this means
that the transform of quantities rk is nonlinear. Our goal is to find its explicit form. For this, we consider
a vector ~R

~R =



R1 = r1

R2 = r2

· · ·
R8 = r8

R9

· · ·
R56


=



m1m3m5

m1m3m6

m1m4m5

· · ·
m2m4m6

m1m1m1

· · ·
m6m6m6


. (27)

The components Rk (k = 1, . . . , 56) of the vector ~R are all possible products of the quantities mi. Eight
first components coincide with the components of the vector ~r. The transform (26) is a linear transform
of the components of the vector ~R; it can be written as follows:

~̃R = Ω~R, R̃k =
56∑
l=1

ωklRl, (28)

where ωkl are elements of the matrix Ω. They can be presented through the elements γij of the matrix
Γ. The explicit form of the elements can be obtained by determining the coefficients of the quantities
Rl on the right-hand side of equality (26). It should be mentioned that the first eight components of the

transformed vector ~̃R satisfy relations (22).
The linear transform (28) is the first step in creating the transformed vector ~̃r. The second step is

the operation of projection P of the vector ~̃R, which has 56 components on its first eight components

~̃r = P ~̃R. (29)
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The eight components r̃i = R̃i, i = 1, . . . , 8 satisfy relations (22). Therefore, they can be presented as
matrix elements of the tensor product

˜̄ρ = ρ̃1 ⊗ ρ̃2 ⊗ ρ̃3 =

(
m̃1 0
0 m̃2

)
⊗

(
m̃3 0
0 m̃4

)
⊗

(
m̃5 0
0 m̃6

)
. (30)

We obtained the transform of the vector ~r, but it is nonlinear, since the operation of projection P is a
nonlinear one.

4. Block Structure of Matrix T

The physical meaning of the discussed construction of the density matrix of three two-level atoms is
related to the following protocol of information processing.

One can consider a state of three two-level atoms, which is mixed, and the information under consider-
ation is coded by three positive numbers 0 ≤ a, b, c ≤ 1. The three numbers can be treated as populations
of the upper levels of the three atoms. The density matrix of the three-level atoms is prepared in a totally
decoherent state, i.e., the off-diagonal elements of the density matrix are equal to zero. If the evolution
of the two-level atom states is determined by a Hamiltonian matrix, which has off-diagonal terms, the
structure of the density matrix of the atoms changes, since in the evolution process the off-diagonal terms
of the density matrix appear. Thus, in order to preserve the diagonal structure of the density matrix,
the Hamiltonian matrix itself has to be diagonal, but, in this case, the initial density matrix is invariant.
Information coded by the numbers a, b, and c is not processed, it is only preserved. In order to pre-
serve the diagonal structure of the density matrix, but to change somehow the density-matrix diagonal
elements, the evolution of the three-level atoms has to be determined by a master equation appropriate
for describing the open quantum systems. In this case, the three positive numbers a, b, and c and their
probability partners 1− a, 1− b, and 1− c can be transformed by stochastic matrices associated to the
semigroup of positive maps of the density operators.

We discovered that it is impossible to construct a linear transform of vector ~r in the general case, but
one can do it in some special cases.

Let us consider the case where the matrix T from relation (11) has a block structure. The blocks
are stochastic 2×2 matrices and are used to transform the probability vectors into the other probability
vectors. The properties of stochastic matrices have been investigated, for example, in [19]. The block
structure is organized in such a way that quantities, which form the pairs (m1,m2), (m3,m4), and
(m5,m6) are transformed only between themselves, namely,

T =



t11 t12 0 0 0 0
t21 t22 0 0 0 0
0 0 t33 t34 0 0
0 0 t43 t44 0 0
0 0 0 0 t55 t56

0 0 0 0 t65 t66


. (31)
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In this case, the components mi of vector ~M are transformed as follows:

m′
1 = t11m1 + t12m2, m′

3 = t33m3 + t34m4, m′
5 = t55m5 + t56m6,

(32)
m′

2 = t21m1 + t22m2, m′
4 = t43m3 + t44m4, m′

6 = t65m5 + t66m6.

In view of (32), one can obtain the transform of the components rj of vector ~r as follows:

r′1 = m′
1m

′
3m

′
5 = (t11m1 + t12m2)(t33m3 + t34m4)(t55m5 + t56m6)

= (t11t33t55)r1 + (t11t33t56)r2 + (t11t34t55)r3 + (t11t34t56)r4
+(t12t33t55)r5 + (t12t33t56)r6 + (t12t34t55)r7 + (t12t34t56)r8.

r′2 = m′
1m

′
3m

′
6 = (t11m1 + t12m2)(t33m3 + t34m4)(t65m5 + t66m6)

= (t11t33t65)r1 + (t11t33t66)r2 + (t11t34t65)r3 + (t11t34t66)r4
+(t12t33t65)r5 + (t12t33t66)r6 + (t12t34t65)r7 + (t12t34t66)r8.

r′3 = m′
1m

′
4m

′
5 = (t11m1 + t12m2)(t43m3 + t44m4)(t55m5 + t56m6)

= (t11t43t55)r1 + (t11t43t56)r2 + (t11t44t55)r3 + (t11t44t56)r4
+(t12t43t55)r5 + (t12t43t56)r6 + (t12t44t55)r7 + (t12t44t56)r8.

r′4 = m′
1m

′
4m

′
6 = (t11m1 + t12m2)(t43m3 + t44m4)(t65m5 + t66m6)

= (t11t43t65)r1 + (t11t43t66)r2 + (t11t44t65)r3 + (t11t44t66)r4
+(t12t43t65)r5 + (t12t43t66)r6 + (t12t44t65)r7 + (t12t44t66)r8.

(33)
r′5 = m′

2m
′
3m

′
5 = (t21m1 + t22m2)(t33m3 + t34m4)(t55m5 + t56m6)

= (t21t33t55)r1 + (t21t33t56)r2 + (t21t34t55)r3 + (t21t34t56)r4
+(t22t33t55)r5 + (t22t33t56)r6 + (t22t34t55)r7 + (t22t34t56)r8.

r′6 = m′
2m

′
3m

′
6 = (t21m1 + t22m2)(t33m3 + t34m4)(t65m5 + t66m6)

= (t21t33t65)r1 + (t21t33t66)r2 + (t21t34t65)r3 + (t21t34t66)r4
+(t22t33t65)r5 + (t22t33t66)r6 + (t22t34t65)r7 + (t22t34t66)r8.

r′7 = m′
2m

′
4m

′
5 = (t21m1 + t22m2)(t43m3 + t44m4)(t55m5 + t56m6)

= (t21t43t55)r1 + (t21t43t56)r2 + (t21t44t55)r3 + (t21t44t56)r4
+(t22t43t55)r5 + (t22t43t56)r6 + (t22t44t55)r7 + (t22t44t56)r8.

r′8 = m′
2m

′
4m

′
6 = (t21m1 + t22m2)(t43m3 + t44m4)(t65m5 + t66m6)

= (t21t43t65)r1 + (t21t43t66)r2 + (t21t44t65)r3 + (t21t44t66)r4
+(t22t43t65)r5 + (t22t43t66)r6 + (t22t44t65)r7 + (t22t44t66)r8.

It is the form of the linear transform of vector ~r corresponding to linear transform (31) of vector ~M .
With the help of (33), it can be presented in the matrix form.

Transform (31) preserves the property (6) of the state (20). It is defined by three independent
parameters. It is exactly the number of parameters that is necessary to construct an arbitrary transform
of the one-particle state (1). Therefore, any linear transform of qubit (1) can be presented as a linear
transform of tensor product (20). Below we will study this construction in detail.

In the next section, we consider the example of transform (31).
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5. Example

We consider a one-particle spin state ρϕ described by the density matrix

ρ =

(
a ceiϕ

ce−iϕ b

)
, a+ b = 1. (34)

The density matrix (34) has both nonzero diagonal and off-diagonal matrix elements. In the case of the
density-matrix elements satisfying the condition ρ2 = ρ, the density matrix corresponds to the pure qubit
state.

Vectors ~L and ~M and matrices A and B for the state (34) have the forms

~L =


a

ceiϕ

ce−iϕ

b

 , ~M =
1
2



2a
2b

1 + c cosϕ
1− c cosϕ
1 + c sinϕ
1− c sinϕ


(35)

and

A =
1
2



2 0 0 0
0 0 0 2
1 1/2 1/2 1
1 −1/2 −1/2 1
1 −i/2 i/2 1
1 i/2 −i/2 1


, B =


1 0 0 0 0 0
0 0 1 −1 i −i
0 0 1 −1 −i i

0 1 0 0 0 0

 . (36)

Thus, we have mapped the qubit state onto the six-dimensional vector, employing rectangular matri-
ces (36).

We consider the transforms Uφ of the state (34) of the form

Uφ

(
a ceiϕ

ce−iϕ b

)
=

(
eiφ/2 0

0 e−iφ/2

)(
a ceiϕ

ce−iϕ b

)(
e−iφ/2 0

0 eiφ/2

)

=

(
a cei(ϕ+φ)

ce−i(ϕ+φ) b

)
. (37)

Here we applied the unitary transform that belongs to the unitary group U(1).
First, let us consider the state with ϕ = 0.
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In this case, we have the transform of the six-vector describing the qubit state

~̃M =
1
2



2a
2b

1 + c cosφ
1− c cosφ
1 + c sinφ
1− c sinφ


= T0,φ ×

1
2



2a
2b

1 + c

1− c

1 + c

1− c



=



1 0 0 0 0
0 1 0 0 0
0 0 1

2(1 + cosφ) 1
2(1− cosφ) 0

0 0 1
2(1− cosφ) 1

2(1 + cosφ) 0
0 0 0 0 1

2(1 + sinφ) 1
2(1− sinφ)

0 0 0 0 1
2(1− sinφ) 1

2(1 + sinφ)


× 1

2



2a
2b

1 + c

1− c

1 + c

1− c


.

(38)

In view of the matrix elements of matrix T0,φ, one can construct the matrix (24), which transforms the
vector ~r into the vector ~̃r. With the help of formulas (33), the elements γmn of the matrix Γ are expressed
in terms of the elements of the matrix Tφ.

Now we consider the case where the phase ϕ of the state (34) is not equal to zero.
In this case, it is necessary first to produce the transform U−ϕ, which converts the state ρϕ into the

state ρ0. The matrix Tϕ,0 that acts on the vector ~Mϕ has the form

Tϕ,0 =



1 0 0 0 0 0
0 1 0 0 0 0

0 0
cosϕ+ 1
2 cosϕ

cosϕ− 1
2 cosϕ

0

0 0
cosϕ− 1
2 cosϕ

cosϕ+ 1
2 cosϕ

0

0 0 0 0
sinϕ+ 1
2 cosϕ

sinϕ− 1
2 cosϕ

0 0 0 0
sinϕ− 1
2 cosϕ

sinϕ+ 1
2 cosϕ


. (39)

The transform
Tϕ,φ = T0,φTϕ,0

converts the vector ~Mϕ into the vector ~Mφ

~Mφ = Tϕ,φ ~Mϕ. (40)

Now one can evaluate the product of matrices T0,φ and Tϕ,0 and, using formulas (33), find the matrix
Γϕ,φ which transforms the vector ~rϕ into the vector ~rφ,

~rφ = Γϕ,φ~rϕ. (41)
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This construction provides a complete description of linear transforms that act in the space of tensor
products (20) and correspond to unitary transforms (37) of qubit (34).

6. Conclusions

We have shown that in quantum computation the system of three completely decoherent two-level
systems can be used instead of an arbitrary one-particle spin state. Each decoherent state has the diagonal
density matrix, and the whole system is described by the tensor product of the diagonal density matrices.
Any linear operator, defined in the space of one-particle spin states, can be presented as a linear operator
acting in the space of tensor products of the diagonal matrices.

Summarizing, we can conclude that the basic information carrier in a quantum computer is qubit,
which can be realized as a two-level system. The density matrix of this system (34) depends on three
parameters a, c, and ϕ that represent information contained in the system.

In the first step, we go from the state (34) to the three-particle decoherent state (20). This state is
described by three parameters m1, m3, and m5 as well, which contain now information of the original
qubit. Information is processed by the linear operator (31), which has a block structure. It transforms
the tensor product into another tensor product and, after performing the operation, one can go back
to the qubit presentation of information with transformed parameters a′, c′, and ϕ′. The protocol of
information processing presented in our paper can be considered as an analog of the classical information
processing, where one uses three classical probability distributions transformed by means of stochastic
matrices.

This construction can be generalized for the case of multiparticle spin states as well.
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