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Abstract

Ionization and high-harmonics generation in a single hydrogen-like atom driven by a laser pulse of
near-atomic field strength is the subject of this paper. We use exact solutions of the eigenvalue
problem on particle motion in the cylindrically symmetric field (CSF) as a basis for the wave-function
expansion. The superposition of the spherically symmetric intra-atomic field and linearly polarized
laser field has the cylindrical symmetry. Hence, the use of the free-atom eigenfunctions as a basis
for the wave-function expansion requires an infinitely increasing number of spherical harmonics (i.e.,
free-atom eigenfunctions) when the laser field strength approaches the intra-atomic field value. The
eigenfunctions of the CSF problem depend on the laser field strength; therefore, the appropriate matrix
elements show how the spectral width of atomic response and angular selection rules vary with increase
in the laser field strength. The introduction gives a phenomenological semiclassical illustration of the
problem.

Keywords: atom in e.m. field, ionization, selection rules, high-harmonics generation, cutoff frequency,
laser fields of near-atomic strength, Schrödinger equation.

1. Introduction

The effect of high optical harmonic generation (HHG) with or without ionization is one type of
nonlinear atomic response to a strong laser field. The physical mechanisms of this effect are under active
investigation since the discovery of above-threshold ionization (ATI) by Agostini with coauthors in 1979,
when according to Becker’s review “intense-laser atom physics entered the non-perturbed regime” [1].
The following general features can characterize the emission spectra of atoms driven by the laser field.
The laser field induces a time-varying dipole moment ~d (t). At a low intensity of the laser pulse, the
frequency of induced dipole-moment variations is exactly determined by the laser pulse carrier frequency:
~d (t) ∼ exp (−iωt). The increase in the laser-field intensity results in the appearance of odd harmonics
of the laser frequency. Even harmonics are forbidden due to the space inversion symmetry of the intra-
atomic field U (~r) = U (−~r). The amplitude of the nth harmonic is proportional to

(
~d ~E/~ω

)n
, where

~d ~E is the energy of electro-dipole interaction and ~ω0 is the mean energy of atomic transitions. Under
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a further increase in the laser-pulse intensity, the spectrum of response takes the form of a plateau,
i.e., a sequence of odd harmonics with approximately equal amplitudes and sharp cut-off frequency. In
the subatomic region of the laser field strength E � Eat, the cut-off frequency depends linearly on the
laser-pulse intensity.

An overwhelming number of theoretical approaches have been developed to explain such behavior of
atomic emission spectra in dependence on the laser-field intensity. We use the Bohr model of the atom
to illustrate the basic physics of the process of atomic response. The classical equation for an electron
interacting with the intra-atomic and laser fields is

m~̈r = −∂U
∂~r

+ e ~E. (1)

In the case of a free atom, the scalar product of this equation with ~̇r and the vector product with ~r yield
the energy and angular-momentum conservation laws

d

dt

(
m~̇r2

2
+ U (r)

)
= 0,

d

dt

(
m
[
~r~̇r
])

= 0. (2)

According to the Bohr quantization rules, for the ground atomic state we have

mρ2ϕ̇ = ~, (3)

where we have assumed that the electron makes a motion in the plane z = 0. By substituting (3) into
the energy conservation law, we obtain

d

dt

(
~2

2mρ2
− e2

ρ

)
= 0.

Hence, the radius of the orbit of the steady-state motion (when ż = 0 and ρ̇ = 0) is

ρ0 =
~2

me2
= aB,

where aB is the Bohr radius. The state energy equals to

ε0 =
~2

2mρ2
0

− e2

ρ0
= −me

4

2~2
= −Ry

2
.

The latter coincides with the energy of the ground state of the hydrogen atom.
Let now the atom interact with the linearly polarized wave. In this case, we have the following

equation for angular momentum:
d

dt

(
m
[
~r~̇r
])

= e
[
~r ~E
]
. (4)

It is seen that the projection of angular momentum on the electric-field direction is still the integral of
motion. Hence, if the laser-field polarization coincides with the z axis, then the electron, performing free
motion in the plane z = 0, starts to make the quiver motion perpendicular to this plane. In a weak laser
field, a quiver-motion amplitude is very small, a0 � aB, hence the Coulomb field does not affect the
electron quiver motion, because

r (t) =
√
ρ2
0 + z2 (t) ≈ ρ0.
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In this case, the z component of the electron velocity is

ż0 = −eA (t)/mc,

where A (t) is the vector potential of the laser field. The spectrum of atomic response is given by the
velocity Fourier transform. It is seen that when the quiver-motion amplitude a0 = eE0/mω

2 satisfies the
condition a0 � aB, the spectrum of response is strongly dominated by the laser carrier frequency. Notice
that the last condition can be rewritten as eaBE0 � ~2ω2/Ry ≈ ~ω. If the laser field does not coincide
with the direction of orbital angular momentum, the orbital momentum precesses around the laser-field
direction.

With increase in the laser-field amplitude E0, the difference
√
ρ2
0 + z2 − ρ0 may take an appreciable

value. Let us introduce the deviation δz = z (t)− z0 (t). The scalar product of Eq. (1) with ~̇r + e ~A/mc

yields the following energy-conservation law:

d

dt

[
1

2m

(
m~̇r +

e

c
~A
)2

+ U (x, y, z0 + δz)
]

= 0. (5)

If the deviation is small |δz| < a0, we arrive at

ż = ż0 +

√√√√e2

m

(
1
ρ0
− 1√

ρ2
0 + z2

0 (t)

)
= ż0 +

e2

~

√√√√1− 1√
1 + (z0 (t) aB)2

. (6)

At z0 < aB, the last equation converts into

ż = ż0 + z0 (t)
e2

~aB

√√√√ ∞∑
n=0

(−1)n Γ (n+ 3/2)
Γ (1/2) Γ (n+ 2)

(
z0 (t)
aB

)2n

.

It is seen that at a0 � aB the emission spectrum of the atom interacting with the monochromatic laser
field E = E0 cosωt is a sequence of odd harmonics with amplitudes proportional to (a0/aB)2n+1. Notice
that, according to the binomial theorem, we have for (z0 (t)/aB)2n

cos2n ωt =
2n∑

m=0

Cm
2n exp [i2ω (n−m) t].

As a result, the amplitude of the (2k + 1)ω harmonic is the infinite sum of n at m = n − k. Hence,
the profile of the atomic response spectrum will inevitably undergo transformations if the amplitude of
electron oscillations a0 approaches aB.

In a very strong laser field, the distance between electron and nucleus can exceed the Bohr radius at
some time moments. It is seen from Eq. (6) that at these time moments ż ≈ ż0, hence, the amplitudes of
the harmonics are drastically suppressed. So, it becomes evident that the spectrum of response saturates
when a0 > aB. Indeed, the saturation of the cut-off frequency with increase in the laser-pulse intensity
has been demonstrated in recent experiments by Ganeev et al. [7].

In the above consideration, we have assumed that the intra-atomic potential is the Coulomb field
potential. As it is clearly seen from the right-hand side of Eq. (6), the profile of atomic response depends
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drastically on the spatial profile of the intra-atomic potential. For example, the spectrum of response will
not include harmonics if we assume that U (r) = Cr2. Hence, the spectrum of the heavy atom response
may differ from that for the hydrogen atom because the nucleus shielding effect becomes important for
heavy atoms. In deriving Eq. (6), we have assumed that the electron motion in the plane z = 0 remains
invariable. Thus, Eq. (6) demonstrates clearly that the nature of the HHG effect should not be directly
associated with the electron transitions between the different atomic steady states. At the same time, the
electron internal motion remains invariable only in the case where the laser field is directed perpendicular
to the plane of internal electron motion. In the general case, we should analyze the coupled set of equations
(4) and (5). The difference between these two processes can be easily understood without exact solving of
these equations. Indeed, it is clearly seen from Eq. (5) that, if we take into account transitions between the
atomic steady states, then, in general, the emission spectra may include harmonics even in the harmonic
potential well, i.e., U (r) = Cr2. However, the amplitude of the harmonics will be very small. Thus,
the origin of the nonlinear atomic response is quite reasonably modeled by Eq. (6), which demonstrates
clearly the main mechanisms of this process and provides fundamentals of the physics.

The classical theory can work only as a qualitative model of the phenomenon, because it does not
provide a consistent description of the electron transitions between the atomic steady states. A consistent
theory should be based on the use of the wave equations.

We are interested in the specific features of the atomic emission spectra and angular distributions of
ionized electrons in the case where the laser-field strength approaches the atomic-field strength. The above
discussion shows clearly that, in this region of the laser field strength, the precise calculations could not
be based on the perturbation methods, which rely on the smallness of the ratio of the laser-field strength
to the intra-atomic-field strength. Several non-perturbed schemes have been developed for modeling
the emission spectra of atoms driven by high-intensity laser fields; for example, methods employing the
Floquet theory [6], dressed states [5], classical trajectories [4], and direct numerical integration of the
time-dependent Schrödinger equation [3]. Our method falls within the framework of these studies and
deals with exact solutions of the eigenvalue problem for electron motion in a cylindrically symmetric
external field [2].

This paper is organized as follows.
Section 2 gives a further development of the approach proposed in [2,9,10]. Section 3 is devoted to an-

alytical and numerical calculations of photoemission spectra. In Sec. 4, we represent angular distributions
of ionized electrons.

2. Basic Relations and Foundation of the Method

The Schrödinger equation for an atom interacting with an external electromagnetic field has the form

i~
∂ψ

∂t
=
[

1
2m

(
~p− q

c
~A
)2

+ U

]
ψ, (7)

where U(~r) is the intra-atomic-field potential energy and ~A(t) is the vector potential of the external
electromagnetic field. The standard algorithm for its solution consists in the wave function expanding
into a series of free-atom eigenfunctions

ψ =
∑
n,l

an,l (t)un,l (~r) +
∫
dk a (k, l, t)u (k, l, ~r) (8)
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and decomposition of the Hamiltonian of Eq. (7) into a sum of the free-atom Hamiltonian H0 and the
interaction Hamiltonian Hint

H0 =
~p2

2m
+ U, Hint = − q

2mc

(
~p ~A+ ~A~p

)
+

q2

2mc2
~A2.

In comparatively weak fields, the matrix elements of the interaction Hamiltonian are much smaller
than the matrix elements of the free-atom Hamiltonian. In this case, series (8) includes a relatively small
number of significant terms. However, the symmetry of the problem (7) differs from the spherical symme-
try of the free-atom problem. Hence, the increase in the laser-pulse intensity results in an infinite increase
in the number of significant terms in series (8), because the spherical harmonics are not eigenfunctions
of the general problem (7).

Let us consider now the Hamiltonian of Eq. (7). It is possible to establish the relationships between
the eigenvalues and eigenfunctions of this Hamiltonian and the free-atom Hamiltonian in a general math-
ematical form. Indeed, let un(~r) be the complete set of eigenfunctions for the free-atom boundary value
problem (

p2

2m
+ U(~r)

)
un(~r) = Enun(~r). (9)

Consider the boundary value problem of the following type:[
1

2m

(
~p− q

c
~5χ(~r, t)

)2

+ U(~r)
]
ψn(~r, t) = Enψn(~r, t), (10)

where χ(~r, t) is an arbitrary function of the space–time coordinates. If the boundary conditions for the
problems (9) and (10) coincide at χ→ 0, the eigenfunctions of the problem (10) are defined by

ψn(~r, t) = un(~r) exp
(
i
q

~c
χ(~r, t)

)
, (11)

where un(r) is the eigenfunction of the problem (9) associated with the eigenvalue En.
Indeed, substituting solution (11) into Eq (10), we get Eq. (9).
Symmetrical properties of the Hamiltonian of Eq. (10) depend on the spatial profile of the function

χ (~r, t) and, as follows, symmetrical properties of wave functions (11) differ from symmetrical properties
of free-atom wave functions. Eigenfunctions of boundary value problems (9) and (10) constitute the two
complete orthonormal basis∫

u∗n (~r)um (~r) dV = δnm,

∫
ψ∗n (~r, t)ψm (~r, t) dV = δnm.

Hence any eigenfunction of boundary problem (10) may be represented as an expansion into a series of
the free-atom eigenfunction and vice versa

ψn (~r, t) =
∑
m

Cnm (t)um (~r), (12)

un (~r) =
∑
m

Dnm (t)ψm (~r, t), (13)
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where expansion coefficients are defined by the following expressions:

Cnm (t) =
∫
u∗m (~r) exp

(
i
q

~c
χ (~r, t)

)
un (~r) dV,

Dnm (t) =
∫
ψ∗m (~r, t)un (~r) dV =

∫
u∗m (~r) exp

(
−i q

~c
χ (~r, t)

)
un (~r) dV.

Substituting (12) into (13), one arrives at ∑
m

CnmDmp = δnp. (14)

It is convenient to put into operation the Hermitian transformation matrix

Vnm (t) =
∫
u∗n (~r) exp

(
−i q

~c
χ (~r, t)

)
um (~r) dV . (15)

In this case, condition (14) reads as the unitarity condition for the matrixes (15), i.e.,

V + = V −1, or
∑
m

VpmV
−1
mn = δnp.

Notice that we have used the notation V −1
nm =

(
V −1

)
nm

.
Let us assume that χ (~r, t) is given by

χ (~r, t) = ~A (t)~r.

In this case, the Hamiltonian of the boundary problem (10) takes the form

H =
1

2m

(
~p− q

c
~A (t)

)2
+ U (r) . (16)

It can be easily seen that Hamiltonian (16) coincides with the Hamiltonian of Eq. (7) in the long-wave
approximation (LWA).

The eigenfunctions of the boundary value problem (10) for an atom in the field (10) now read

ψn (~r, t) = un (~r) exp
(
i
q

~c
~A (t)~r

)
. (17)

Now we make an important remark.
The quantum number n in the case of the free-atom eigenvalue problem is really a set of three quantum

numbers n = {nr, l,m}, which are the radial quantum number, angular momentum, and its projection.
It is seen that eigenvalues of problems (9) and (10) coincide exactly, but eigenfunctions are drastically
different. The reason consists in the fact that the angular momentum is a conservative variable in the
case of a free atom, but it is not a conservative variable in the case of an atom interacting with the laser
field. Indeed, the angular momentum operator ~l does not commute with the Hamiltonian (16). We have
used the same type of indices to mark the states of problems (9) and (10). However, we should note
that the index n in (17) means only that the energy of this state coincides with the energy of the nth
free-atom state in the limit of

∣∣∣ ~A∣∣∣→ 0. Indeed, the eigenfunctions of the free-atom states corresponding
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to the zero angular momentum (nS states in atomic notations) do not depend on the angular variables.
On the other hand, the wave function ψns (~r, t) is

ψns (~r, t) = 4πuns (r)
∞∑
l=0

l∑
m=−l

iljl

(
qA (t) r

~c

)
Y ∗

lm

(
~A

A

)
Ylm

(
~r

r

)
.

It is seen that the wave function of such a state is the infinite superposition of spherical functions with
various l. Such kind of particle-wave-function transformation in the presence of a laser field can be easily
predicted with the help of the classical model discussed in Sec. 1. Indeed, the state of the electron in
the atom is characterized by the direction and magnitude of angular momentum. The magnitude of
angular momentum is defined by the quantization rule (3). The radius of the orbital motion determines
the particle energy. In a weak laser field, the electron angular momentum precesses around the laser-field
direction, but its magnitude remains invariable. Along with the orbital motion, the electron makes a
quiver motion in the laser-field direction. The electron energy averaged over the period of the optical
oscillations remains invariable, and it changes only when the electron makes jumps between different
atomic steady states.

The efficiency of the axially symmetric eigenfunctions (17) as a basis for the wave-function expansion
can be illustrated in the following way.

The wave functions (17) are exact solutions of the right-hand side of Eq. (7). Hence for the matrix
elements of the Hamiltonian for this equation we get

∫
ψ∗nHψm dV = Enδnm.

On the other hand, matrix elements of this Hamiltonian with free-atom eigenfunctions are

∫
u∗nHum dV =

∑
p

V −1
np (t)EpVpm (t). (18)

So these matrix elements are infinite sums. At the same time, it is very convenient to use free-atom
eigenfunctions as a basis for the wave-function expansion, because the atom possesses its own eigenstates
before and after interaction with the laser pulse. Of crucial importance is the fact that the matrix
elements Vnm (t) defined by (15) can be calculated in the exact analytical form. These matrix elements
depend on the laser-pulse parameters (field amplitude, carrier frequency, temporal width, etc.) Hence,
the number of summands providing a significant contribution to the right-hand side of (18) at given
laser-pulse parameters can be determined before we start the numerical calculations with the equations
for the probability amplitudes.
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In view of Eq. (18), we obtain two equations for the probability amplitudes:

i
da(k, l, t)

dt
=

∑
n,λ′′

∑
m,l′,λ′

V
−1(l,λ′)
km ωm,λ′V (λ′,λ′′)

mn an,λ′′(t) + s

+
∑
m,λ′

∑
l′

∫
dµ V

−1(l,λ′)
km ωm,λ′V (λ′,l′)

mµ a
(
µ, l′, t

)
+
∑

n,λ′′,l′

∫
dµ V

−1(l,l′)
kµ

~
2m

µ2V (l′,λ′′)
µn an,λ′′(t)

+
∑
l′′,l′

∫
dµ′
∫
dµ V

−1(l,l′)
kµ

~
2m

µ2V (l′,l′′)
µn a

(
µ′, l′′, t

)
, (19)

and

i
dan,l(t)

dt
=

∑
p,λ′′

∑
m,λ′

V −1(l,λ′)
nm ωm,λ′V (λ′,λ′′)

mp ap,λ′′(t)

+
∑
m,λ′

∑
p,l′,l′′

∫
dµ V −1(l′,λ′)

pm ωm,λ′V (λ′,l′′)
mµ a

(
µ, l′′, t

)
+
∑

m,λ′,l′

∫
dµ V −1(l,l′)

nµ

~
2m

µ2V (l′,λ′)
µm am,λ′(t)

+
∑
l′′,l′

∫
dµ′
∫
dµ V −1(l,l′)

nµ

~
2m

µ2V (l′,l′′)
µn a

(
µ′, l′′, t

)
. (20)

To characterize the dependence of matrix elements Vnm on the field amplitude, it is convenient to
introduce the following parameter:

ϕ0 =
eA0aB

~c
=
eE0aB

~ω0
, (21)

where aB is the Bohr radius and E0 is the laser-field amplitude. The parameter ϕ0 can be represented
as the ratio ϕ0 = F0/Fat, where F0 is the force acting on the electron from the laser field

F0 = qE0 =
qωA0

c

and Fat is the force acting on the electron from its parental nucleus

Fat =
∂U

∂r
≈ ~ω
aB

.

There is a simple relationship between the well-known Keldysh parameter γ and parameter ϕ0, namely,
ϕ0 = 1/γ.

3. Photoemission Spectra of a Single Atom

In the model of the point atom, the spectrum of the field of response (or emission spectrum) coincides
with the spectrum of the atomic current density defined by

~j(r, t) =
e

m

∑
nm

(
~pe −

e

c
~A (re)

)
nm

a∗n(t)am(t).

210



Volume 29, Number 3, 2008 Journal of Russian Laser Research

We obtain
~jnm =

q

m

∫
u∗n (~r)

(
~p− q

c
~A
)
um (~r) dV =

q

m

∑
k,p

V −1
nk ~pkpVpm

Solutions of the system of equations (19–20) provide necessary population-probability amplitudes but
should be anticipated by study the associated matrix elements.

3.1. Matrix Elements for Transitions in Discrete and Continuum Bands

A number of general properties of the matrix elements Vnm can be directly derived from Eq. (15).
Let us summarize some of them.

• The matrix elements of transitions between states of identical V (e)
nm and opposite V (o)

nm parity are
defined by

V (e)
nm =

∫
u∗n (~r) cos

( q
~c
~A (t)~r

)
um (~r) dV, V (o)

nm = −i
∫
u∗n (~r) sin

( q
~c
~A (t)~r

)
um (~r) dV .

• Matrix elements V (e)
nm are the infinite series of even powers of field, and matrix elements V (o)

nm are
the infinite series of odd powers of field.

• If the laser field amplitude tends to zero (A → 0), the diagonal matrix elements (n = m) tend to
unity, while the nondiagonal matrix elements (n 6= m) tend to zero.

With the help of eigenfunctions of the hydrogen spectra for the matrix elements between some low-
laying states, we obtain

〈1s|V |1s〉 =
16

(4 + ϕ(t)2)2
, 〈2s|V |2s〉 =

1− 3ϕ(t)2 + 2ϕ(t)4

(1 + ϕ(t)2)4
,

〈2p,m = 1|V |2p,m = 1〉 =
1

(1 + ϕ(t)2)3
, 〈2p,m = 0|V |2p,m = 0〉 =

1− 5ϕ(t)2

(1 + ϕ(t)2)4
,

〈1s|V |2s〉 =
256

√
2ϕ(t)2

(9 + 4ϕ(t)2)3
, 〈1s|V |2p〉 =

384
√

2ϕ(t)
(9 + 4ϕ(t)2)3

, 〈2s|V |2p〉 =
3ϕ(t)

(
1− ϕ(t)2

)
(1 + ϕ(t)2)4

,

where
ϕ (t) = ϕ0T (t) .

It is seen that the matrix elements written above satisfy all properties mentioned above and also
demonstrate some additional properties, which consist in the fact that the diagonal matrix elements
sharply drop out when ϕ0 ≈ 1, and nondiagonal matrix elements achieve their maxima in the region of
ϕ0 ≈ 1.

The matrix elements of ionization transitions can also be calculated in the analytic form with the
help of hydrogen continuum spectrum eigenfunctions, which are

Ψk =
Ckl

(2l + 1)!
(2kr)le−ikrF

(
i

k
+ l + 1, 2l + 2, 2ikr

)
Yl(θ) = Rkl(r)Yl(θ),
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where

Ckl = 2keπ/2k

∣∣∣∣Γ(l + 1− i

k

)∣∣∣∣ ,
F

(
i

k
+ l + 1, 2l + 2, 2ikr

)
is the confluent hypergeometric function, Γ (l + 1− i/k) is the Gamma func-

tion, and Yl (θ) is the spherical function. Notice, that in the above equations the wave number k is
dimensionless due to its multiplication with the Bohr radius aB.

The states of the continuum spectrum are infinitely degenerated with respect to the angular momen-
tum. Due to the dipole approximation selection rules ∆l = ±1, this degeneracy is not important in weak
laser fields. However, at the near-atomic laser field strength, such structure of the continuum spectrum
states affects crucially the emission spectra and angular distributions of the ionized electrons, because
the spherical symmetry of the intra-atomic field is significantly broken by the laser field; as a result, the
dipole approximation selection rules cease to be valid.

We have calculated the matrix elements V (l)
k1s for l running from 0 to 5. For example, in the case of

l = 1 the matrix element is

V1s→k = 〈1s|l = 1〉 =
2k2√πeπ/2k |Γ (2− i/k)|√

3

×
{

Γ(3)
ϕ(t)

[2F1

(
i

k
+ 2, 3; 4;

2ik
ik + 1− iϕ(t)

)
(ik + 1− iϕ(t))3

+
2F1

(
i

k
+ 2, 3; 4;

2ik
ik + 1 + iϕ(t)

)
(ik + 1 + iϕ(t))3

]

− Γ(2)
(ϕ(t))2 i

[2F1

(
i

k
+ 2, 2; 4;

2ik
ik + 1− iϕ(t)

)
(ik + 1− iϕ(t))2

−
2F1

(
i

k
+ 2, 2; 4;

2ik
ik + 1 + iϕ(t)

)
(ik + 1 + iϕ(t))2

]}
,

where 2F1 is the hypergeometric function and T (t) is the temporal profile of the laser field. Other matrix
elements have the similar form.

When the laser-field strength exceeds the intra-atomic field level, the atomic response could be con-
sistently described only if we take into account the fact that the ionized electron wave function is the
sum over continuum spectrum eigenfunctions with different angular momenta. The input of each angular
momentum state is directly determined by the magnitude of an appropriate matrix element V l

1s→k.

3.2. Analytically and Numerically Calculated Emission Spectra

The quantity of matrix elements needed for “exact” solving of the set of equations (19)–(20) consists
of an infinite number of equations. However, the calculated matrix elements enable one to estimate the
required number of equations at any given parameters of the laser pulse (amplitude, frequency, temporal
width). The results of the numerical and analytic calculations of emission spectra are presented in Figs. 1
and 2. Figure 2 shows the emission spectrum of a hydrogen-like atom in the ground 1s state. The two
curves in this figure correspond to the cases where two and five terms have been taken into account in
expansion (12). It is clearly seen that the matrix elements with the highest value give the main input.
The profile of the spectrum is practically unchanged if we take into account the additional terms.

This allows us to state that, in the case of an initially non-excited atom driven by the near-atomic
external field, the main contribution to processes of HHG and ionization give the ground state and
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Fig. 1. Emission spectra of a single hydrogen-like atom (1s-2p-3s) driven by laser pulse with the electric-field
amplitude E = 1.3Eat (numerical calculation).

Fig. 2. Emission spectra of a single hydrogen-like atom (1s-2p-1s), curve 1, and (1s-2p-2s-3s-3p-3d), curve 2,
driven by a laser pulse with the electric field amplitude E = Eat (analytical calculation)
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some low states located nearby. The reason for the small contribution of exited states consists in their
instability under the external-field impact.

4. Angular Distributions of the Ionized Electrons

The results below deal with involvement of continuum band wave functions and, as follows, ionization
processes. Modification of the selection rules could be fairly seen on the angular distribution of ionized
electrons.

4.1. Selection Rules for Orbital Quantum Numbers

Let us turn now to a detail discussion of the dependences of the ionization transition matrix elements
presented in Fig. 3. The laser field strength varies in the region from 0.005Eat up to 2.5Eat.
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Fig. 3. Maximum value of ATI matrix elements as a function of the laser-field amplitude normalized to the
intra-atomic field strength. Angular momentum l runs from 0 to 5.

The first region in Fig. 3 corresponds to the conditions under which the eigenstates of l = 1 dominate
over any other states in the wave function of the ionized electron. In this region of the laser-field strength,
the atomic response agrees reasonably well with the dipole approximation selection rules, i.e., ∆l = ±1.
On the other hand, when the laser-field strength exceeds the intra-atomic field strength, the probability
of transitions to the continuum states of l = 2 exceeds that for l = 1, as is clearly seen in Fig. 3. Hence, in
the second region, the atomic response ceases to be completely determined by the dipole-approximation
selection rules. It is also seen, that in the region of the over-atomic laser field strength the atomic

214



Volume 29, Number 3, 2008 Journal of Russian Laser Research

response could not be reasonably calculated without taking into account the ionized electron states with
high angular momentum, i.e., l > 1.

4.2. Angular Distribution Features

In the regime of the above-threshold ionization (ATI), the laser photon energy exceeds the ionization
energy. In this case, the set of equations (19)–(20) can be substantially simplified, because from the
variety of the discrete spectrum states only the ground state has the nonzero probability to be populated
and, hence, only this state of the discrete spectrum should be taken into account. The matrix elements
of V were calculated above for discrete-discrete 〈d|V |d′〉 and discrete-continuum 〈d|V |c〉 transitions. It
can easily be shown that the magnitude of these matrix elements exceeds significantly the magnitude of
matrix elements for the continuum–continuum transitions 〈c|V |c′〉. As a result, the sums

∑
m
VnmEmV

−1
mk

include the summation over the discrete-spectrum states only. Thus, in the case of the ATI process, the
set of equations (19)–(20) reads

dail(t)
dt

= −iE

(
yi(t, l)b(t) +

lmax∑
m=0

nmax∑
k=0

dik(t, l,m)akm(t)

)
, (22)

db(t)
dt

= −i
[(

V1s1sV
−1
1s1s −

lmax∑
l=0

nmax∑
k=1

V
(l)
1s→kk

2V
−1(l)
1s→k

)
b(t) + E

lmax∑
l=0

nmax∑
k=1

yk
∗(t, l)akl(t)

]
,

(23)

where ai(t) are the probability amplitudes for continuum states, b(t) is the probability amplitude for the
ground state, and

yi(t, l) = V1s1sV
−1(l)
1s→i , dik(t, l,m) = V

(l)
i→1sV

−1(m)
1s→k .

The solution of the above equations provides the spatial profile of the wave function of the ionized
electrons

ψphotoel(~r, t) =
∫
dk a(k, l, t)u(k, l, ~r).

The angular distributions of the ionized electrons are given by the Fourier transform of the wave function

ψphotoel(~k, t) =
√

4π
5∑

l=0

nmax∑
n=0

a(n, l, t)i2l
√

2l + 1(2(n− iδ)2)l
exp [π/2(n− iδ)]

∣∣∣Γ(l + 1− i/(n− iδ)
)∣∣∣

k(2l + 1)!

×
( l∑

j=0

i−l+j−1(l + j)!
j!(l − j)!(2k)j

Γ (l − j + 2) (i((n− iδ)− k))(−(l−j+2))

×2F1

(
i

n− iδ
+ l + 1, l − j + 2; 2l + 2;

2(n− iδ)
n− iδ − k

)
+

l∑
j=0

i−l+j−1(l + j)!
j!(l − j)!(2k)j

Γ (l − j + 2) [i((n− iδ) + k)](−(l−j+2))

×2F1(
i

n− iδ
+ l + 1, l − j + 2; 2l + 2;

2(n− iδ)
n− iδ + k

)
)
Pl(cos θ), (24)
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where δ is the lifetime of the continuum state. In numerical calculations, we put δ = 0.27ω−1
0 . It is

seen that the angular distributions are sums of the Legendre polynomials Pl(cos θ), where θ is the angle
between the photoelectron wave vector ~k and the vector potential ~A of the laser field.
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Fig. 4. Angular distributions of photoelectrons with k = 0.05 (a), 0.95 (b), 1.55 (c), and 4.25 (d) at the external
field amplitude E = 2.5Eat.

Angular distributions of ionized electrons (a sample from the number of them) are shown in Fig. 4.
At the near-atomic laser filed strength, we can clearly see the appearance of the additional wings. Within
the framework of the perturbation theory, the spectrum of ionized electrons is a comb of maxima E =
E0 + n~ω. According to the dipole approximation, the electron transitions from the state of angular
momentum l to the states of l± 1 have approximately the same probability. As a result, for the angular
distributions of the ionized electrons of energy E = E0 + n~ω, we obtain

pn (θ) ∼

∣∣∣∣∣∣
l0+n∑

l={l0−n,0}

alPl (cos θ)

∣∣∣∣∣∣
2

,
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where l0 is the angular momentum of the ground atomic state. It is seen that the angular distributions
presented in Fig. 4 cannot be described by this equation. The angular distributions depend significantly
on the ionized electron energy E = ~2k2/2m, but the increase in the electron energy is not accompanied
by an increase in the number of side lobs. Such behavior of the angular distributions is in qualitative
agreement with the results of the experimental measurements by Nandor et al. [8]. An additional feature
of the samples is that the angular distributions are asymmetric with respect to directions θ = 0◦ and
θ = 180◦. This is due to the finite temporal width of the laser pulse.

We should note that in the subatomic region of the laser field strength, angular distributions that
arise in our numerical experiments are reasonably well modeled by a Legendre polynomial of the first
order. Angular distributions of such a kind are in agreement with the dipole selection rules.

5. Summary and Conclusions

The interaction of a single hydrogen-like atom with the laser pulse of the near-atomic field strength has
been studied. The presented theory is based on the use of the exact solutions of the eigenvalue problem
on the particle motion in a cylindrically symmetric field (CSF) as a basis for the wave-function expansion.
The superposition of the spherically symmetric intra-atomic field and linearly polarized laser field has
the cylindrical symmetry. Hence, the use of the free-atom eigenfunctions as a basis for the wave-function
expansion requires an infinitely increasing number of spherical harmonics (i.e., free-atom eigenfunctions)
when the laser field strength approaches the intra-atomic field strength. The CSF problem eigenfunctions
directly depend on the laser field strength. As a result, they do not require imposing limitation on the
ratio of the laser field strength to the intra-atomic field strength E0/Eat, and the calculated matrix
elements are nonlinear functions of the field strength. Thus the contribution of any nonlinear process to
the atomic emission spectra is taken into account in a consecutive manner.

In the region of subatomic field strength, the spectra calculated are in agreement with the classical
picture of the odd harmonic train with the cut-off frequency linearly depending on the laser field intensity.
In the region of the near-atomic field strength, the emission spectra take the form of the quasicontinuum
generation spectra. Nevertheless, they display the plateau and cut-off frequency. As the laser field
strength approaches the intra-atomic field strength, the cut-off frequency rises as the laser-pulse intensity
slows down and then it saturates.

In the region of the near-atomic field strength, the energy spectrum of the ionized electrons is a wide
curve with one peak at E0 < Eat and a few peaks at E0 > Eat. The appearance of the additional maxima
is due to the increase of the contribution of the high l continuum states. Angular distributions of the
ionized electrons have been calculated. At the near-atomic laser field strength, the angular distributions
are significantly different from that calculated with the help of the perturbation theory. They show clearly
that the probability of ionization transitions to the continuum states of different l depends substantially
on the energy of the ionized electron. The results obtained are in agreement with the recent experimental
data.
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