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Abstract

We consider a simple model of the lossless interaction between a two-level single atom and a standing-
wave single-mode laser field which creates a one-dimensional optical lattice. The internal dynamics of
the atom is governed by the laser field, which is treated as classical with a large number of photons.
The center-of-mass classical atomic motion is governed by the optical potential and the internal atomic
degrees of freedom. The resulting Hamilton–Schrödinger equations of motion are a five-dimensional
nonlinear dynamical system with two integrals of motion, and the total atomic energy and the Bloch
vector length are conserved during the interaction. In our previous papers, the motion of the atom
has been shown to be regular or chaotic (in the sense of exponential sensitivity to small variations of
the initial conditions and/or the system’s control parameters) depending on the values of the control
parameters, atom–field detuning, and recoil frequency. At the exact atom–field resonance, the exact
solutions for both the external and internal atomic degrees of freedom can be derived. The center-of-
mass motion does not depend in this case on the internal variables, whereas the Rabi oscillations of the
atomic inversion is a frequency-modulated signal with the frequency defined by the atomic position
in the optical lattice. We study analytically the correlations between the Rabi oscillations and the
center-of-mass motion in two limiting cases of a regular motion out of the resonance: (1) far-detuned
atoms and (2) rapidly moving atoms. This paper is concentrated on chaotic atomic motion that may
be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that an atom,
depending on the value of its total energy, can either oscillate chaotically in a well of the optical
potential, or fly ballistically with weak chaotic oscillations of its momentum, or wander in the optical
lattice, changing the direction of motion in a chaotic way. In the regime of chaotic wandering, the
atomic motion is shown to have fractal properties. We find a useful tool to visualize complicated
atomic motion – Poincaré mapping of atomic trajectories in an effective three-dimensional phase space
onto planes of atomic internal variables and momentum. The Poincaré mappings are constructed using
the translational invariance of the standing laser wave. We find common features with typical non-
hyperbolic Hamiltonian systems – chains of resonant islands of different sizes imbedded in a stochastic
sea, stochastic layers, bifurcations, and so on. The phenomenon of the atomic trajectories sticking
to boundaries of regular islands, which should have a great influence on atomic transport in optical
lattices, is found and demonstrated numerically.
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1. Introduction

Light exerts mechanical forces on matter. This hypothesis was suggested by Kepler [1] in 1619 to
explain the deviation of a comet’s tail flying nearby the Sun. It was Maxwell who in 1873 estimated
the light pressure, using his theory of electromagnetism [2], and who showed that it is very small. P.
N. Lebedev was the first who in 1899 measured the light pressure on a macroscopic body [3]. The
first experiments on deviation of microscopic particles by light were carried out by W. Gerlach and O.
Stern [4], by P. Kapitza and P. Dirac [5], and by O. Frisch [6].

Manipulating by atomic motion with the help of laser beams, creating an optical lattice, is one of the
most rapidly growing fields of modern physics (for a review, see, for example, [7]). There are different
theoretical and experimental aspects of this interaction, including cooling and trapping of atoms, Bose–
Einstein condensation, quantum computing, and processing information with atoms.

In this paper, we review our recent results on nonlinear coherent dynamics of a single two-level atom
in an optical lattice created in a one-dimensional cavity by two counter-propagating laser waves. We
are working in the strong-coupling regime and neglect all the losses. We show that, even in a one-
dimensional approximation, the atomic motion can be very complicated. We analyze both regular and
chaotic motion of atoms in a stationary standing-wave laser field containing a large number of photons. It
should be stressed that there is a difference between various types of erratic atomic motion in an optical
lattice. Chaotic motion is strictly defined as the motion of a deterministic nonlinear dynamic system
that is exponentially sensitive to small variations in the system’s initial conditions or/and its control
parameters. There are different types of chaotic motion of atoms in an optical lattice, including chaotic
nonlinear oscillations of the atomic center of mass in a well of the optical potential, chaotic ballistic
motion where the atomic momentum oscillates chaotically around a value of the average momentum,
and, last but not least, chaotic wandering of an atom when it changes its direction of motion in a chaotic
way [8–13]. All types of chaotic atomic motion are quantified by positive values of the maximal Lyapunov
exponent.

In an optical lattice, chaotic motion in the strict sense of this notation may occur when there is no
noise of any kind, including atomic spontaneous emission, which is a random process. The respective
deterministic atomic equations of motion are approximate ones, but they are fundamental since sponta-
neous emission may be considered as a quantum noise. Random walking is a kind of motion that occurs
with ultracold atoms which are detuned far away from the carrier laser frequency, so their internal degrees
of freedom can be eliminated adiabatically. Because the values of the momentum of ultracold atoms are
compared with the value of the photon momentum, each time after emitting a spontaneous photon the
atom gets a kick in a random direction. This effect is a quantum analog of the classical random walking.

In a generic situation, we should take into account both the internal atomic motion and spontaneous
emission events. In this case, however, the equations of motion cease to be a deterministic dynamical
system, because they include random terms, and one may expect much more complicated types of atomic
motion which, besides chaotic motion caused by the fundamental atom-field interaction, includes a purely
stochastic component caused by random events of spontaneous emission. We have shown recently that, in
a range of the control parameters (detuning, laser intensity, and recoil frequency) and initial conditions,
atoms may change their direction of motion erratically even if their momenta are much larger than the
photon momentum. We will call this type of motion the chaotic walking.

The main aim of this paper is to describe different aspects of deterministic atomic motion in an optical
lattice, both regular and chaotic ones. The effects of spontaneous emission on the atomic motion will be

361



Journal of Russian Laser Research Volume 27, Number 4, 2006

considered in a forthcoming paper.

2. Hamilton–Schrödinger Equations of Motion

We consider a two-level atom with mass ma and transition frequency ωa, moving with momentum P

along the X axis in an ideal cavity through the standing laser wave with field frequency ωf and wave
vector kf . In a frame rotating with frequency ωf , the standard cavity QED Hamiltonian reads

Ĥ =
P̂ 2

2ma
+

1
2

~(ωa − ωf )σ̂z − ~Ω (σ̂− + σ̂+) cos kf X̂. (1)

Here σ̂±,z are the Pauli operators which describe the transitions between lower |1〉 and upper |2〉 states,
and Ω is the Rabi frequency, which is proportional to the square root of the number of photons in the
wave

√
n. The standing-wave field must be strong enough (n � 1) so that we can neglect the back

reaction of atoms on the field and consider the field as a classical one. For the electronic degrees of
freedom, the simple wave function is

|Ψ(t)〉 = a(t)|2〉+ b(t)|1〉, (2)

where a and b are the complex-valued probability amplitudes of finding the atom in the states |2〉 and
|1〉, respectively. Using the Hamiltonian (1), we get the Schrödinger equation

i
da

dt
=
ωa − ωf

2
a− Ωb cos kfX,

i
db

dt
=
ωf − ωa

2
b− Ωa cos kfX,

(3)

where the atomic position X is considered as a parameter. Let us introduce instead of the complex-valued
probability amplitudes a and b the following new real-valued variables:

u ≡ 2 Re (ab∗) , v ≡ −2 Im (ab∗) , z ≡ |a|2 − |b|2 , (4)

which are the quadratures of the atomic dipole moment (u and v) and the atomic population inversion
z.

In the process of emitting and absorbing photons, atoms not only change their internal electronic
states but their external translational states change as well due to the photon recoil. If the atomic average
momentum is large in comparison with the photon momentum ~kf , one can describe the translational
degree of freedom classically as satisfying the classical Hamilton equations of motion. The dynamics in
the strong-coupling regime is now governed by the Hamilton–Schrödinger equations

ẋ = ωrp,

ṗ = −u sinx,

u̇ = ∆v,

v̇ = −∆u+ 2z cosx,

ż = −2v cosx,

(5)
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where x ≡ kf 〈X̂〉 and p ≡ 〈P̂ 〉/~kf are the classical atomic center-of-mass position and momentum,
respectively. The dot denotes differentiation with respect to the dimensionless time τ ≡ Ωt. The normal-
ized recoil frequency ωr ≡ ~k2

f/maΩ � 1 and the atom–field detuning ∆ ≡ (ωf − ωa)/Ω are the control
parameters. The system has two integrals of motion, namely, the total energy

W ≡ ωr

2
p2 + U, (6)

where

U ≡ −u cosx− ∆
2
z (7)

is the potential energy, and the Bloch vector

u2 + v2 + z2 = 1. (8)

The conservation of the Bloch vector length immediately follows from Eqs. (4).
Equations (5) with two integrals of motion constitute a Hamiltonian autonomous system with two

degrees of freedom and motion on a three-dimensional hypersurface with a given energy value W . Gen-
erally, such a system has a positive Lyapunov exponent λ, a negative exponent equal in magnitude to
the positive one, and two zero exponents. The sum of all Lyapunov exponents of a Hamiltonian system
is zero [14]. The maximal Lyapunov exponent characterizes the mean rate of exponential divergence of
initially close trajectories

λ = lim
τ→∞

λ(τ), λ(τ) = lim
δ(0)→0

1
τ

ln
δ(τ)
δ(0)

(9)

and serves as a quantitative measure of dynamical chaos in the system. Here, δ(τ) is the distance (in the
Euclidean sense) at time τ between two trajectories close to each other at the initial time τ = 0. The
dependence of λ on the control parameters has been calculated in [8,9] with a similar system. It has been
shown that dynamical chaos in a strongly-coupled atom–field system exists in a wide range of parameters
and initial atomic momentum p0. The result of computation of the maximal Lyapunov exponent with
our system (5) in the space of control parameters ωr and ∆ is shown in Fig. 1. In the white domains
of the map, the maximal Lyapunov exponent λ is almost zero and the dynamics is stable. In the other
domains, the positive values of λ show the Lyapunov instability.

In all the numerical simulations, we use physically realistic parameters and initial conditions. For
example, we can choose cesium atoms with the transition wavelength λa ' 852 nm. The Rabi frequency
Ω depends on many factors, including the field strength, which can be changed in a wide range. In most
computations we use the Rabi frequency Ω ≈ 10 GHz. With this value of the Rabi frequency, we obtain
the normalized recoil frequency to be ωr = 10−5. Also we put the initial position x0 = 0. The detuning ∆
can be varied in a wide range, and the Bloch variables are restricted by the Bloch vector length (8). The
most interesting effects are observed with rather cold atoms. For example, p0 = 200 taken in computing λ
in Fig. 1 with our normalization corresponds to the atomic velocity va ≈ 0.7 m/s. It should be noted that
in this paper we use normalization to the laser Rabi frequency Ω, not to the vacuum (or single-photon)
Rabi frequency as has been done in our previous papers [8–12]. So the ranges of the normalized control
parameters, taken in this paper, differ from those in the cited papers.
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Fig. 1. Maximal Lyapunov exponent λ versus detuning ∆ and normalized recoil frequency ωr (p0 = 200, z0 = −1,
and u0 = v0 = 0).

3. Regular Dynamical Regime

3.1. Exact Atom–Field Resonance

At the exact resonance ∆ = 0, one can easily find an additional integral of motion

u = const. = u0. (10)

In this case, the fast and slow variables are separated from each other, allowing one to integrate exactly
the reduced equations of motion. The total energy becomes equal to

WR =
ωr

2
p2 − u0 cosx, (11)

and the potential energy gets the simple form

UR = −u0 cosx. (12)

The center-of-mass translational motion of the atom in such a spatially periodic potential of the standing
wave is described by the simple nonlinear equation for a free physical pendulum

ẍ+ ωru0 sinx = 0 (13)

and does not depend on evolution of the internal degrees of freedom.
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The translational motion is trivial when u0 is zero. In spite of the zero potential field, the structure
of the standing wave is still present in the cavity. In this case, the atom will move in one direction with
a constant velocity, and the Rabi oscillations modulated by the standing wave will occur. In the generic
case, one can easily get from (11) the dependence p(x)

p =
√

2
ωr

(WR + u0 cosx), (14)

which gives the phase portrait of the system in the (x, p) plane (Fig. 2a). It is the phase portrait of a
nonlinear pendulum with three types of trajectories depending on the value of its energy WR: oscillator-
like motion in a potential well if WR < u0, a separatrix if WR = u0, and ballistic-like motion if WR > u0.

0

-3 -2 -1 0 1 2 3

x

p

(a)

0

-3 -2 -1 0 1 2 3

x

p

(b)

Fig. 2. Typical regular phase portraits of the translational degree of freedom with ∆ = 0 (a) and |∆| & 0.2 (b).

For the initial values x0 = 0 and ẋ0 = ωrp0, the equation for the translational motion (13) has the
solution

x(τ) =


2 arcsin

(
K sn

[√
ωru0τ,K

])
, K2 6 1,

2 am
[
1
2
ωrp0τ,

1
K

]
, K2 > 1,

(15)

p(τ) =


p0 cn [

√
ωru0τ,K] , K2 6 1;

p0 dn
[
1
2
ωrp0τ,

1
K

]
, K2 > 1,

(16)
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where

K =
p0

2

√
ωr

u0
(17)

is the modulus of the elliptic Jacobi functions. The solution gives the critical value of the atomic mo-
mentum

pcr = 2
√
u0

ωr
. (18)

Atoms with p0 6 pcr are trapped by the standing-wave field, a result that is well known from early
studies [15]. The modulus K is simply connected with the normalized value of the difference between
the atom energy and its value on the separatrix

K2 = 1 +
WR − u0

2u0
. (19)

As to the internal atomic evolution, it depends on the translational degree of freedom since the force
of the atom–field coupling depends on the atom position in a periodic standing-wave potential. The
equation for the atomic population inversion z(τ) is derived from the two last equations of the set (5)
with ∆ = 0

ż = ∓2
√

1− z2 − u2
0 cos[x(τ)], (20)

where cos[x(τ)] is a known function of the translational variables which can only be found with the help
of the exact solutions obtained. It is easy to find the exact solution of Eq. (20)

z(τ) = ∓
√

1− u2
0 sin

(
2

∫ τ

0
cosxdτ ′ + ψ0

)
, (21)

where the sign is opposite to that for the initial value z0 and

ψ0 = ∓ arcsin
z0√

1− u2
0

(22)

is an integration constant. The internal energy of the atom can be considered as a frequency-modulated
signal with the instant frequency 2 cos[x(τ)] and the modulation frequency ẋ = ωrp(τ), but it is correct
only if the first value is much greater than the second one, i.e., |ωrp0| � 2. Such a signal is shown in
Fig. 3a for a ballistic atom (p0 = 5000, va ≈ 17.5 m/s). With |ωrp0| > 2, the modulation disappears and
the signal becomes a periodic one with the frequency ωrp. With fast atoms |ωrp0| � 2 and p ' p0 � pcr

(Raman–Nath approximation) Eq. (21) is simplified:

z(τ) ≈ z0 −
2v0
ωrp0

sinωrp0τ −
4z0
ω2

rp
2
0

sin2 ωrp0τ. (23)

3.2. Nonresonant Rabi Oscillations

With comparatively small detunings ∆, the dynamics of slow atoms can be chaotic. In this case,
the Rabi oscillations are still a signal with a frequency modulation but the amplitude is not constant
anymore; it jumps chaotically with the characteristic time 1/ωrp. With comparatively large detunings,
the Rabi oscillations become regular but with a prominent periodic amplitude modulation, while the
frequency modulation is not so deep (Fig. 3b).
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Fig. 3. Rabi oscillations: Frequency modulation at exact resonance ∆ = 0 and p0 = 5000 (a), amplitude
modulation far from resonance ∆ = −4 and p0 = 5000 (b), and Doppler–Rabi resonance ∆ = −4 and p0 =
400000 (c). In all panels, z0 = u0 =

√
0.5 and v0 = 0.

In two limit cases |∆| � max[|ωrp|, 2] and |ωrp| � max[|∆|, 2], the analytic solutions can be obtained.
In both cases, u and v are harmonic functions with frequency ∆, and for the internal energy we have

z ≈


z0 +

2u0

∆
− 2

√
u2

0 + v2
0

∆
cosx sin(∆τ + ϕ0), |∆| � max[|ωrp|, 2],

z0 +
2
√
u2

0 + v2
0

ωrp0
cos(∆τ + ϕ0) sinωrp0τ, |ωrp0| � max[|∆|, 2], ωrp

2
0 � 4,

(24)

where ϕ0 = arcsin(u0/
√
u2

0 + v2
0). The Rabi oscillations now are amplitude-modulated signals with two

characteristic frequencies |ωrp| and |∆|. The larger frequency is the main frequency and the other one is
the modulation frequency. In the solution for fast atoms, we also used the Raman–Nath approximation
x ' ωrp0τ , which is correct if the initial kinetic energy ωrp

2
0/2 is much greater than the amplitude

of potential energy variations (equal to 2 in our case). With ∆ = 0, the solution has the form (23)
but without the last term, which is small. Solutions (24) show good correspondence with the numerical
experiments performed in [12] with similar equations. The typical amplitude-modulated Rabi oscillations
are shown in Fig. 3b.

The more exact solution for u can be found using the approximation z ≈ const. ≈ z0 (i.e., zmax −
zmin � |z0|), which is correct in both the limiting cases considered above, excluding z0 ≈ 0. Then from
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Eq. (5) we get the equation for a driven linear oscillator

ü+ ∆2u ≈ 2z0∆ cosx, (25)

which has the solution

u(τ) ≈ 2z0 sin∆τ
∫

cos ∆τ cosxdτ − 2z0 cos ∆τ
∫

sin∆τ cosx dτ

+u0 cos ∆τ + v0 sin∆τ. (26)

For |∆| � |ωrp|, solution (26) can be approximated as follows:

u ≈ 2z0
∆

cosx+
√
u2

0 + v2
0 sin(∆τ + ϕ0). (27)

Using Eqs. (24) and (27), we get the periodic potential with the spatial period π (in contrast to the
resonant potential with the period 2π)

U ≈ −2z0
∆

cos2 x+ const. (28)

The corresponding phase portrait is shown in Fig. 2b.
When the frequencies are close |ωrp| ' |∆|, Doppler–Rabi resonance takes place [12] in spite of the

fact that the detuning may be very large. Let us consider the standing wave as a combination of two
counter-propagating waves. In the frame moving with the atomic velocity, their frequencies ω1 and ω2

are different because of the Doppler effect:

ω1 = ωf −
va

c
ωf , ω2 = ωf +

va

c
ωf , (29)

where va is the atomic velocity and c is the velocity of light. The atom is rather slow, so we can neglect
the relativistic effects. Let us consider atoms fast enough for the Raman–Nath approximation p ≈ p0

to be valid. Renormalizing all the frequencies to Ω, we define the dimensionless detunings between the
atomic transition and the running wave frequencies as follows:

∆1 ≡
ω1 − ωa

Ω
= ∆− ωrp0, ∆2 ≡

ω2 − ωa

Ω
= ∆ + ωrp0. (30)

The condition |∆| = |ωrp0| leads to the resonance between the atom and one of the waves. If |∆| � 1,
we can neglect the interaction with the other wave and consider the atom as if only one wave with the
frequency ω1 or ω2 exists. In the field of the wave, say ω1, the dynamics can be described by the Bloch-like
equations

u̇ = ∆1v, v̇ = −∆1u+ z, ż = −v, (31)

in which the interaction energy does not depend on the atomic position and its amplitude value is two
times smaller in comparison with the standing wave. Equations (31) have the solution

z =
u0∆1

ω2
z

(1− cosωzτ)−
v0
ωz

sinωzτ + z0

(
∆2

1

ω2
z

+
1
ω2

z

cosωzτ

)
, (32)

where ωz ≡
√

∆2
1 + 1 =

√
(∆− ωrp0)2 + 1. At the exact Doppler resonance (∆1 = 0), the atomic internal

energy z oscillates with the dimensionless frequency 1, and the amplitude of oscillations is maximum.
Numerical simulations with Eqs. (5) show that these speculations are correct (Fig. 3c, where p0 = 400000
and va ≈ 1400 m/s), and even very far from the resonance ∆ = 0 deep Rabi oscillations can be observed
since the atoms are fast enough.
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Fig. 4. Typical atomic trajectory in the regime of chaotic wandering (x0 = 0, p0 = 300, z0 = −1, u0 = v0 = 0,
ωr = 10−5, and ∆ = −0.05).

4. Irregular Dynamics: Chaos and Fractals

4.1. Chaotic Atomic Wandering

In Fig. 1 we depict the maximal Lyapunov exponent map in the space of control parameters ωr

and ∆. The maximal Lyapunov exponent depends not only on the parameters ωr and ∆ but on the
initial conditions of the system of equations (5) as well. Especially important is the value of the initial
momentum p0. The most interesting effects can be observed with rather cold atoms, when the initial
atomic kinetic energy is close to the amplitude of the optical potential. In this case, we get the chaotic
wandering of an atom in a standing wave. A typical chaotic atomic trajectory is shown in Fig. 4.

It follows from (5) that the translational motion of the atom at ∆ 6= 0 is described by the equation
of a nonlinear physical pendulum with a frequency modulation

ẍ+ ωru(τ) sinx = 0, (33)

in which u is the function of all the other dynamical variables. The normalized Rabi oscillation frequency is
of the order of ω′z ≡

√
∆2 + 4, which substantially exceeds the frequency of small-amplitude translational

motion
√
ωru0 � 1 in the potential well. Taking this into consideration, the mechanism of the arising

chaos can be revealed [10]. The stochastic layer width was estimated to be

D ' 8π
(
ω′z
ω0

)3

exp
(
−πω′z
2ω0

)
, (34)

where ω0 ≡
√

2ωr|∆|/ω′z and ω′z/ω0 � 1. The D value is the energy change in the neighborhood of the
unperturbed separatrix normalized with respect to the pendulum separatrix energy ω2

0. Small changes
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in the energy causes comparatively small changes in the frequency of oscillations. For energies of motion
that are strongly different from the separatrix energy, that is, close to the potential well bottoms and
high above the optical potential U hills, small frequency changes cause small phase changes during the
translation-motion period. However, close to the unperturbed separatrix, where the period of oscillations
tends to infinity, even small frequency changes can cause substantial phase changes. This is the reason
for the exponential instability of motion of the parametric nonlinear oscillator (33) and chaotic atomic
motion in the field of a periodic standing wave.

A clear idea of the character of chaotic wandering can be developed using the model of “two po-
tentials.” At resonance, the optical potential U reproduces the structure of the standing wave in the
cavity (12) with the period 2π (the phase portrait in Fig. 2a). Far from resonance, the potential has the
period π and is approximately described by Eq. (28), and the corresponding phase portrait is shown in
Fig. 2b. These potentials will be called resonant and nonresonant, respectively. We can say that when the
motion in the cavity is chaotic, both potentials “virtually” coexist. The well depths in both structures
change as time passes, and an atom randomly gets into one or another structure every time it crosses
a standing-wave node. The probability of getting into the resonant or nonresonant potentials depends
on the detuning. Near resonance the atom is in the resonant potential almost the whole time and only
rarely gets into the nonresonant one for a short time.

In our study [12] we have shown that chaotic wandering has fractal properties.

4.2. Dynamical Atomic Fractals

In Fig. 5 we depict the scheme of a gedanken experiment that consists of a Fabry–Perot optical
microcavity with two detectors and cold atoms placed in the cavity. To avoid complications that are

x

atom

standing-wave field

mirrors

detectors

Fig. 5. Schematic diagram of a standing-wave microcavity with detectors.

not essential to the main theme of this work, we consider a cavity with only two standing-wave lengths.
Atoms, one by one, are placed at the point x0 = 0 with different values of the detuning ∆. We measure
time T at which an atom reaches one of the detectors (exit time) and study the dependence T (∆) under
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Fig. 6. Atomic fractals. Exit time of cold atoms T vs the detuning ∆: p0 = 200, z0 = −1, u0 = v0 = 0.

other equal conditions imposed on the atom and the cavity field. Figure 6 shows the function T (∆) for
atoms with the initial momentum p0 = 200 (va ≈ 0.7 m/s). The exit time function demonstrates the
intermittency of the smooth curves and the complicated structures, which cannot be resolved in principle
no matter how large the magnification factor. The middle and low panels in Fig. 6 show successive
magnifications of the function for small intervals. Further magnifications reveals a self-similar fractal-like
structure that is typical for Hamiltonian systems with chaotic scattering [16].

The exit time T corresponding to both smooth and unresolved ∆ intervals increases with increase
in the magnification factor. Theoretically, there exist atoms never reaching the detectors in spite of the
fact that they have no obvious energy restrictions to leave the cavity. The tiny interplay between chaotic
external and internal dynamics prevents these atoms from leaving the cavity. A similar phenomenon in
chaotic scattering is known as dynamical trapping. In [12] for a similar fractal we have computed the
Hausdorff dimension and shown that it is not integer.

The different kinds of atomic trajectories before the detection can be characterized by the number
m− 1 of sign changes of the momentum. An mth trajectory corresponds to an atom which changes the
direction of motion before being detected m− 1 times. There are also special separatrix-like trajectories
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following which atoms asymptotically approach the points with the maximum of potential energy, having
no more kinetic energy to overcome it. In contrast to the separatrix motion in the resonant system
(∆ = 0) with the initial atomic momentum pcr, a detuned atom can asymptotically reach one of the
stationary points even after several oscillations in a well. Let us define the mS-trajectory as a trajectory
where the atom changes the direction of motion m− 1 times and then the separatrix-like motion begins.
Such asymptotic motion takes infinite time, the atom will never be detected.

The smooth ∆ intervals in the first-order structure (Fig. 6, upper panel) correspond to atoms which
never change the direction of motion, i.e., m = 1, and reach the right detector. The unresolved singular
points in the first-order structure with T = ∞ at the border between the smooth and unresolved ∆
intervals are generated by the 1S-trajectories. Analogously, the smooth and unresolved ∆ intervals in
the second-order structure (Fig. 6, middle panel) correspond to the second-order and other trajectories,
respectively, with singular points between them corresponding to the 2S-trajectories, and so on.

There are two different mechanisms of generation of infinite detection times, namely, dynamical
trapping with infinite oscillations (m = ∞) in a cavity and the separatrix-like motion (m 6= ∞). The
set of all detunings generating the separatrix-like trajectories is a countable fractal. Each point in the
set can be specified as a vector in a Hilbert space with m integer nonzero components. One is able to
prescribe to any unresolved interval of mth order structure a set with m integers, where the first integer
is a number of a second-order structure to which the trajectory under consideration belongs in the first-
order structure, the second integer is a number of a third-order structure in the second-order structure
mentioned above, and so on. Such a number set is analogous to a directory tree address: “<a subdirectory
of the root directory>/<a subdirectory of the 2nd level>/<a subdirectory of the 3rd level>/. . . Unlike
the separatrix fractal, the set of all detunings leading to dynamically trapped atoms with m = ∞ seems
to be uncountable.

The scattering function in the regime of chaotic wandering (time of exit T ) depends in a complicated
way not only on the control parameters but on the initial conditions as well. In Fig. 7 we demonstrate
the view of this function, whose values are modulated by grey scale darkness in two coordinates — the
initial atomic momentum p0 and the atom–field detuning ∆. From the fragment (a) to the fragment
(f), we increase subsequently the resolution. One can see the increasing complexity of the scattering
function with a prominent self-similarity. The computation has been performed with the recoil frequency
ωr = 9.17 · 10−5.

4.3. Poincaré Mapping

The five variables in the equations of motion (5) minus the two integrals of motion (6) and (8) provide
the motion in a three-dimensional space. To visualize the motion, we use the idea of mapping trajectories
on two-dimensional planes. Since we have no time-periodic perturbations in our equations of motion (5),
we cannot map trajectories through equal intervals of time provided by the period of a perturbation.
However, the system has a characteristic space period 2π imposed by the standing wave. So we map the
trajectories on a chosen plane at those time moments when the atoms reach the positions where cosx = 1.
We close our phase space along the position variable with the period 2π. The condition cosx = 1 under
fixed values of the integrals of motion (6) and (8) defines a closed two-dimensional surface the phase-space
points of which characterize unambiguously the system’s states. In other words, there is a set of points
on this two-dimensional surface which corresponds to each trajectory with a given value of the energy
W . This set can be projected onto a plane of any system’s variables except for the position x. Such
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Fig. 7. Fractal function of the exit time T versus the detuning ∆ and the initial momentum p0. The function is
shown in a shaded relief regime with ωr = 9.17 · 105.
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Fig. 8. Poincaré mapping in the Bloch variable space: u < 0, western Bloch hemisphere (a), u > 0, eastern Bloch
hemisphere (b), magnification of the small region in (a) fragment (c), and mapping with a single chaotic trajectory
in (b) fragment, illustrating the effect of sticking (d) at W = 33.8, peff = 2600, ωr = 10−5, and ∆ = −0.05.

a projection is, generally speaking, two-valued because the two-dimensional surface is closed. However,
one can map trajectories in its “eastern” and “western” parts separately.

In Fig. 8a and b, we demonstrate the Poincaré mappings of a number of atomic trajectories in the
western (u < 0) and eastern (u > 0) hemispheres of the Bloch sphere (u, v, z) on the v − z plane,
respectively. We fix the values of the detuning ∆ = −0.05, the recoil frequency ωr = 10−5, the total
energy W = 33.8, and the initial position x0 = 0 and map the trajectories with other different initial
conditions, which are restricted by (6) and (8). All the mappings were obtained with ballistic atoms
whose momenta slightly (but chaotically for some initial conditions) oscillate around the effective value
peff = 2600, which corresponds to the chosen energy value. This is the value of the momentum that an
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Fig. 9. Poincaré mapping in the Bloch variable space: u < 0, western Bloch hemisphere (a) and u > 0, eastern
Bloch hemisphere (b). The parameters are the same as in Fig. 8 but W = 36.45 and peff = 2700.

atom has at the moments when its potential energy U is zero. In Fig. 9 we demonstrate the Poincaré
mappings of a number of atomic trajectories in the western (u < 0) and eastern (u > 0) hemispheres of
the Bloch sphere (u, v, z) on the v − z plane just as in Fig. 8 with W = 33.8 but with the other value
of the total energy W = 36.45 and the effective momentum peff = 2700. A series of bifurcations occurs
just between these values of energy and we get in the end a central critical point instead of a saddle.
One can see a typical structure with surviving nonlinear resonances of different orders around the center
point and overlapping resonances.

In Figs. 8a, 8b, and 9, general views of the mappings in the western and eastern hemispheres are
shown. The pictures are rather typical with chaotic Hamiltonian systems [17]. We see regions of regular
motion in the form of islands and chains of islands filled by regular trajectories which are known as
Kolmogorov–Arnold–Moser (KAM) invariant curves. The islands are imbedded into a stochastic sea,
and they are produced by nonlinear resonances of different orders. Increasing the resolution of the
mapping, one can see that big islands are surrounded by islands of smaller size each of which, in turn,
is surrounded by a chain of even smaller islands, and so on to infinity. Stochastic layers of the ∞-like
form are situated between the islands. From the physical point of view, they are formed by broken
and overlapping nonlinear resonances. From the mathematical point of view, a stochastic layer is a
heteroclinic structure formed by transversal intersections of stable and unstable manifolds of hyperbolic
stationary points. A fractal-like structure of generations of islands, a trademark of Hamiltonian chaos,
is clearly seen on projections of the motion in both the western and eastern hemispheres. To illustrate
what happens upon increasing the resolution of the Poincaré mapping, we plot in Fig. 8c a close-up of a
small region in the stochastic layer in Fig. 8a.

We would like to pay attention to another typical phenomena in Hamiltonian systems, the so-called
sticking [17–21]. In Fig. 8d we demonstrate the phenomenon of sticking in the eastern Bloch hemisphere.
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Fig. 10. Poincaré mapping in the space of the momentum p and the internal energy z: W = 33.8 and peff = 2600 (a)
and W = 36.45 and peff = 2700 (b). The other parameters are the same as in Fig. 8.

The trajectory shown demonstrates an intermittent type of motion. It wanders for a while in the stochastic
sea as a chaotic trajectory, whose instability is characterized by a positive value of the finite-time maximal
Lyapunov exponent. Then it is stuck to the boundaries of the outermost visible chain of regular islands,
where it is practically regular with a zero value of the respective finite-time maximal Lyapunov exponent.
It may take a large amount of time to find a gap in a cantori structure, surrounding the outermost KAM
tori, and to get off in the stochastic sea. The process is repeated as time grows. It should be stressed
that sticking influences strongly transport properties in Hamiltonian systems, giving rise to anomalous
diffusion, and algebraic tails in the distributions of the Poincaré recurrence times and of times and lengths
of atomic flights.

In Fig. 10, we map the same atomic trajectories as in Figs. 8 and 9 onto the p− z plane. In this case,
both parts of the closed two-dimensional surface have the same projections because the set is symmetric
with respect to the hyperplane v = 0.

In order to quantify the instability of the trajectories on the Poincaré mappings in Figs. 8 and 9, we
have computed the maps of the maximal Lyapunov exponents exactly with the same initial conditions
and parameters as in those figures. The results in v0−z0 coordinates for eastern hemispheres at W = 33.8
and W = 36.45 with u > 0 are shown in Figs. 11a and 11b, respectively. The rather good correspondence
between the Poincaré mapping and the maximal Lyapunov exponents proves that the Poincaré mapping
we have constructed is a good means to visualize the complicated dynamics of coupled internal and
external atomic degrees of freedom.

A Poincaré mapping with a rich structure of regular and chaotic domains is typical only in a range of
values of the total energy W . At values W & 40, the atoms move regularly and the respective Poincaré
mapping consists of regular invariant curves only. With decreasing the energy, a series of bifurcations
occurs with the appearance of resonant islands of different order. Upon decreasing the energy even more,
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Fig. 11. Maximal Lyapunov exponent versus the initial values of the Bloch variables v0 and z0 with u0 > 0:
W = 33.8 and peff = 2600 (a) and W = 36.45 and peff = 2700 (b). The other parameters are the same as in Fig. 8.

global chaoticity takes place. At the exact resonance ∆ = 0, the value W = u0 corresponds to a separatrix
in mechanical variables. Out of the resonance, this separatrix is broken and the atoms may wander
chaotically in the optical lattice with the respective irregular Poincaré mapping. At W . u0 + ∆z0/2
(including negative values), the atoms are trapped in wells of the optical potential and oscillate there.

5. Conclusions

We have considered a simple model of the lossless interaction between a two-level single atom and a
standing-wave single-mode laser field which creates a one-dimensional optical lattice. Analytical solutions
of the Hamilton–Schrödinger equations of motion have been derived and analyzed in some limiting cases
of regular atomic motion. Correlations between the Rabi oscillations and the center-of-mass motion have
been established and demonstrated. In the regime of chaotic wandering, the atomic motion has been
shown to have fractal properties. Using a special type of Poincaré mapping of atomic trajectories in an
effective three-dimensional phase space onto planes of atomic internal variables and momentum, we have
found typical structures in Hamiltonian chaotic systems – chains of resonant islands of different sizes
imbedded in a stochastic sea, stochastic layers, bifurcations, and so on. The phenomenon of sticking of
atomic trajectories to the boundaries of regular islands found in numerical experiments should have a
great influence on atomic transport in optical lattices.

One of the aims of this paper was to describe analytically and numerically the fundamental aspects of
nonlinear dynamics of atom–field interaction. We have done that to some extent at the cost of simplifying
the model. To be more realistic, we should take into account spontaneous emission events. In this case,
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however, the equations of motion cease to be a deterministic dynamical system because they would include
random terms. Our previous results on Monte Carlo modeling of Hamilton–Schrödinger equations have
shown much more complicated types of atomic motion which, besides chaotic motion caused by the
fundamental atom–field interaction, include a purely stochastic component caused by random events of
spontaneous emission. We plan to study the effects of spontaneous emission on chaotic atomic motion in
the future.
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