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Abstract

We have considered evanescent plane waves in structures with a layer of a substance with ε, µ < 0 and
with a layer of a well-reflecting metal, ε < 0, µ ≥ 1. Waves with increased amplitude as compared
with the initial wave have been found to occur, due to which evanescent waves with wave number
as in the initial wave but with increased amplitude arise behind these layers. A composite material
with ε, µ < 0 at optical frequencies are proposed. Surface waves on a metal layer are considered in
detail. It is shown that surface waves with a sufficiently arbitrary wave number can be excited. It is
also shown that, on very thin layers, surface waves with wave number exceeding ten times that of a
homogeneous plane wave in vacuum can be excited. Propagation losses are calculated. For a silver
layer, the wave path can be from 30 up to 100 wavelengths. Practical use in developing techniques
for optical transformations of short-wave surface waves in 2D space, similar to those in 3D space, are
pointed out.
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1. Introduction

This work arose as a result of the work of 1967 by Veselago [1], where he pointed to the paradoxical
properties of a material with simultaneously negative permeability and permittivity. It was suggested to
call such a medium “left-handed” for a plane electromagnetic wave that propagates in it. In this medium
and this wave, the Poynting vector ~S = (c/4π) ~E× ~H has a direction opposite to the wave vector. At the
interface between a traditional medium, ε, µ ≥ 1, and a left-handed medium, ε, µ < 0, the plane wave
is refracted in an exotic way, so that the wave vector of the plane refracted wave is a mirror image of
the wave vector of the traditionally refracted wave, its direction being changed to the opposite. To date,
artificial materials with left-handed properties in a range of microwave frequencies have been fabricated.
These substances are two-dimensional sets of split rings (resonators) and wires [2]. One may think that
isotropic left-handed materials would soon be developed.

A plane plate of a substance with ε, µ = −1, as shown well back in [1], possesses focusing properties.
The focusing properties of such a plate are stated in [3] to be perfect: it is claimed that such a lens can
construct more fine structures than the wavelength of incident radiation. The same work [3] showed that
for evanescent plane waves (their definition is given below) with wave number kx � (ω/c)

√
εµ the same

property is characteristic of a layer of a metal reflecting well on optical frequencies.
The work [3] triggered numerous studies whose results either disproved or confirmed the idea of the

perfect lens from a left-handed material. A notion on this discussion can be formed based on the narration
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of it in [4, 5]. These works are also of interest per se, as they present quite definite, discussable arguments
in favor of perfect focusing.

Arguments in favor of and against perfect focusing are developed, as a rule, by considering evanescent
plane waves in an evanescent space with a left-handed medium. We shall not explore the issue of perfect
focusing here, as we are not yet convinced that consideration of evanescent plane waves solves the problem
of this focusing. We shall consider a more general problem, namely, the form of evanescent waves in a
multilayer structure containing either a left-handed material or a well-reflecting metal. The calculations
made below will show that, indeed, the amplitudes of evanescent waves both behind the layer of the
substance with ε, µ < 0 and behind the metal layer can (strongly) exceed the amplitude of an evanescent
wave on the side facing the source. In a sense, this can serve as a proof of the idea that the focusing
reproduces the near-field pattern of a vanishingly small object. In this connection, we shall discuss our
proposal how to make a substance with ε, µ < 0 at optical frequencies. Next, we will concentrate ourselves
on evanescent waves in structures with a metal layer, on so-called surface plasmons. We will propose a
method of organizing the propagation of plasmons with large amplitude and with wave number (space
frequency) k0x that exceeds k0 = ω0/c, the wave number at a given frequency ω0 in vacuum, tenfold.
Propagation losses for these plasmons will be calculated. These calculations will serve as the basis for
our proposal to develop the optics of highly shortened surface waves for nanooptical applications.

The evanescent wave is described by the following formulas:

~E(~r, t) = (Ex, Ey, Ez)e−κzzei(kxx+kyy−ωt),
(1)

~H(~r, t) = (Hx,Hy,Hz)e−κzzei(kxx+kyy−ωt).

A distinction of this wave is that in the plane of constant phase the amplitude of the wave is not
constant in contrast with the usual homogeneous plane wave. The wave propagates along the direction
~k = ~axkx + ~ayky and decays (κz is a real value and greater than zero) along the z axis. Note that
the evanescent wave ~E(~r, t) = ~Ee−κzzei(~k~r−ωt), ~k = ~axkx + ~ayky is not identical to the decaying wave
~E(~r, t) = ~Ee−

~k′′~rei(~k′~r−ωt), ~k = ~k′ + i~k′′.
Evanescent waves occur in an experiment with total internal reflection in a medium with a smaller

refraction index (see, e.g., [6]) and in experiments with the excitation of surface plasmons on a well-
reflecting metal [7]. The evanescent wave is a solution of the wave equation with the characteristic
equation

k2
x + k2

y − κ2
z = (ω0/c)εµ. (2)

Formally, the evanescent wave (1) is a solution of the wave equation in the entire homogeneous space.
However, from the physical point of view, the unlimited growth of the solution towards z → ∞ is
inadmissible. This means that the evanescent wave (1) is acceptable as a physical solution only in a
space containing the boundary at some value of z. Exactly this situation is observed in the above
mentioned experiments on the excitation of an evanescent wave.

Consider successively (i) an evanescent wave in an experiment with total internal reflection, (ii) an
evanescent wave in a structure with a layer of a substance with ε, µ < 0, and (iii) in a structure with a
layer of a well-reflecting metal, ε < 0, µ ≥ 1.
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Fig. 1. Components S1x (1), S1z (2), modulus S1 (3), and direction arctan(S1z/S1x) (4) of the Poynting vector in
an evanescent wave. The upper diagram shows the direction and modulus ~S (arrows) in the plane of the interface.

2. Evanescent Wave in an Experiment with Total Internal
Reflection

The phenomenon of total internal reflection is observed when k2
0x, the square of the wave number along

the interface between the media, exceeds (ω0/c)2ε1, µ1. Here ε1, µ1 are the parameters of the medium
adjacent to the total internal reflection prism with a higher refraction index. We shall consider that
ky = 0; the y axis, as the x axis, lies in the plane of the interface; and the z axis is directed normal to
the plane of the interface towards the low-density substance. If k2

0x > (ω0/c)2ε1, µ1, then k2z is a purely
imaginary value. The magnitude of k2

0x increases with increase in the angle of incidence of the plane
wave on the interface between the optically dense and low-density substances on the side of the dense
substance. The angle of incidence is reckoned from the normal to the interface. The limiting large value
of k2

0x is equal to (ω0/c)2ε, µ. Here ε, µ are the parameters of the material of the prism. In the medium
with ε1, µ1, there occurs an evanescent wave propagating along x on the interface and vanishing along z,
i.e., along the normal to the surface.

It would be useful to see here how the Poynting vector behaves in an evanescent wave. The data of
the calculations are given in Fig. 1. The lower fragment of the figure shows the tangential and normal
components S1x, S1z of the Poynting vector, its modulus S1 and direction arctan(S1z/S1x) relative to the
plane of the interface. In the upper fragment, the arrows show the direction and modulus of ~S1 in the
plane of the interface. In the evanescent wave, on average, there is no energy flux along the z axis, along
the normal to the interface. Along the x axis, there is a directed energy flux. In the known experiment
with the so-called disturbed total internal reflection, though, the evanescent wave passes the energy along
the z axis. A respective device is used in laser experiments.
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Fig. 2. Three-layer structure, designations.

3. Inhomogenous Wave in a Structure with a Layer of a Substance
with ε, µ < 0

We shall consider a structure consisting of three plane layers of a substance, see Fig. 2. Layers 1 and
3 shall be considered substances with the traditional properties, ε1, µ1 ≥ 1 and ε3, µ3 ≥ 1; layer 2, a
left-handed substance with ε2, µ2 < 0. In region 1, there is an evanescent wave

H0y(~r, t) = H0ye
−κ0zzei(k0xx−ωt),

E0x(~r, t) = i
cκ0z

ωε1
H0ye

−κ1zzei(k0xx−ωt), (3)

E0z(~r, t) = −ck0x

ωε1
H0ye

−κ0zzei(k0xx−ωt).

In the wave, we choose the subscript 0 as in the incident wave, though, certainly, it is not incident on
the interface at z = d1 as it moves along x, but is adjacent to this interface and penetrates it. As in
[3], we shall consider that ε1/µ1 = ε2/µ2 = ε3/µ3 and there is no reflection and, therefore, is no need
to introduce reflected waves into consideration. The wave to the right of the interface z = d1 (the wave
index i = 2) shall be sought for as

Hiy(~r, t) = Hiye
ikizzei(kixx−ωt),

Eix(~r, t) =
ckiz

ωεj
Hiye

ikizzei(kixx−ωt), (4)

Eiz(~r, t) = −ckix

ωεj
Hiye

ikizzei(kixx−ωt).

The electric field components Eix(~r, t) and Eiz(~r, t) follow from the expression for Hiy(~r, t) by the
equation rot ~H = (ε/c)(∂ ~E/∂t). The amplitude of this wave shall be determined, using the boundary
conditions

H0y(~r, t)|z=d1
+ H1y(~r, t)|z=d1

= H2y(~r, t)|z=d1
,

(5)
E0x(~r, t)|z=d1

+ E1x(~r, t)|z=d1
= E2x(~r, t)|z=d1

.
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In this case, H1y(~r, t)|z=d1
= 0 and E1x(~r, t)|z=d1

= 0, as there is no reflected wave. The result is as
follows:

k2x = k0x, k2z = −iκ0z
e2

ε1
, e2 = ε2,

H2y(~r, t) = H0ye
−κ0zd1(1+e2/ε1)eκ0z(e2/ε1)zei(k0xx−ωt),

(6)
E2x(~r, t) = i

cκ0z

ωε1
H0ye

−κ0zd1(1+e2/ε1)eκ02(e2/ε1)zei(k0xx−ωt),

E2z(~r, t) =
ck0x

ωe2
H0ye

−κ0zd1(1+e2/ε1)eκ0z(e2/ε1)zei(k0xx−ωt).

From (6), it is seen that the evanescent wave behaves paradoxically in a layer of a substance with
ε2, µ2 < 0. The wave grows along the coordinate z. Note that, when deducing (6), we did not have to
choose the sign in k2z. The sign of k2z was determined from the equations.

There is no need for special calculation of the Poynting vector on the left- and right-hand side from
the interface, z = d1. Its normal components on the left and on the right shall be equal to one another.
But ~Sn = ~az(c/4π)ExHy, i.e., is equal to the product of the tangential components of the field, Ex and
Hy. Since, when applying the boundary conditions, we equated these components, it is clear without

calculations that the equality ~S0n

∣∣∣
z=d1

= ~S2n

∣∣∣
z=d1

holds.

Let us now consider the field at the interface z = d2, see Fig. 2. We will need the formulas for the
“incident” and transmitted waves, and the reflected wave is absent as we chose ε2/µ2 = ε3/mu3. In this
case, the “incident” wave is described by formulas (6), and the transmitted wave shall again be sought as
(4). The boundary conditions are described by formulas (5), in which the subscript 0 should be replaced
by 2, 2 by 3, and d1 by d2. The result is as follows:

k3x = k0x, k3z = iκ0z
ε3

ε1
,

(7)
H3y(~r, t) = H0ye

−κ0zd1(1+e2/ε1)eκ0zd2(e2/ε1+ε3/ε1)eκ0z(e2/ε1)zei(k0xx−ωt),

Figure 3 shows the distribution of the field along the z axis in a homogeneous space and in a space with
a layer of a substance with ε2, µ2 < 0 located between z = d1 and z = d2. The evanescent wave decays
exponentially in the regions 0 ≤ z ≤ d1 and d2 ≤ z and grows exponentially in the region d1 ≤ z ≤ d2.
The field of the evanescent wave H3y, penetrating over the layer of the substance with ε2, µ2 < 0, again
becomes equal to the initial (in the plane z = 0) value H0y in the plane

z0 = d2(e2 + ε3)/ε3 − d1(e2 + ε1)/ε3. (8)

This plane is the same for all κ0x.
Formulas (6) contain no explicit dependence on µ1, µ2, µ3. This dependence is contained implicitly

in κ0z and k0x. At k0x � (ω/c)
√

ε1µ1, when the equality κ0z ≈ κ2z holds approximately, this explicit
dependence can be neglected. But the negative sign in µ2 at negative ε2 enabled us to admit the absence
of reflected waves. At positive µ2, reflected waves inevitably occur.

The observed independence on µ2 served in [3] as a reason for considering the evanescent wave in
a space with a layer of a substance with ε2 < 0, µ2 ≥ 1. These properties are characteristic of well-
reflecting metals at optical frequencies. The work [3] demonstrated in electrostatic approximation for
Maxwell equations the effect of approximated preservation of the subwave structure of the field behind
a small-thickness metal layer. We shall make here a similar consideration, using the above method of
eigenwaves and boundary conditions.
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Fig. 3. Distribution of the field in an evanescent wave in a structure with a layer of a substance ε2, µ2 < 0. Two
waves for two values of κ0x are shown.

4. Evanescent Wave in a Space with a Layer of Well-Reflecting Metal

We shall again consider a structure consisting of three plane layers of a substance, see Fig. 2. Layers 1
and 3 shall be considered substances with ε1, µ1 ≥ 1 and ε3, µ3 ≥ 1; layer 2, a well-reflecting metal,
ε2 < 0, µ2 ≥ 1. In region 1, there is an evanescent wave, with wave index i = 0, which in this case has
the form of (3). Besides an incident wave in layer 1, there is a reflected wave, with wave index i = 1,
since ε1/µ1 6= ε2/µ2. The reflected wave is described by formulas of the form (4) upon substitution of the
subscripts i and j by 1. We shall assume that the reflected wave has no effect on the source of the incident
wave, as it decays exponentially towards negative z, as will be clear later, and its repeated reflections
can be neglected. In layer 2, which we consider yet infinitely extended, there is a transmitted wave that
is described by formulas (4) with subscripts i = 2, j = 2. Again, we apply the boundary conditions and,
as a result, obtain (e2 = −ε2):

k0x = k1x = k2x, (9)

H1y(~r, t) =
1 + κ2zε1/κ0ze2

1− κ2zε1/κ0ze2
H0ye

κ0z(z−d1)ei(k0xx−ωt), (10)

H2y(~r, t) =
2

1− κ2zε1/κ0ze2
H0ye

−κ2z(z−d1)ei(k0xx−ωt). (11)

At κ2zε1/κ0ze2 = 1, the amplitudes of the reflected and transmitted waves become infinitely large. This
infinitely disappears when we take into account the losses in medium 2. The phenomenon of resonance
is observed. If we calculate k0x taking into account the latter equality κ2zε1/κ0ze2 = 1, we obtain

k2
0x = (ω/c)2ε1ε2

ε1µ2 − ε2µ1

(ε−ε2)(ε1 + ε2)
. (12)
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At µ1 = µ2 = 1 we obtain a well-known formula kpl
0x = (ω/c)

√
ε1ε2/(ε1 + ε2) for the wave number of the

surface plasmon; see, e.g., [7]. Thus, formulas (10) and (11) demonstrate the existence of surface-plasmon
resonance.

Now we consider the evanenscent wave in a space with a plane metal layer of restricted extent along z.
As previously, we will mean a well-reflecting metal, ε2 < 0, µ2 ≥ 1. The space structure and designations
are the same as in Fig. 2. In this case, one needs to consider an incident wave with subscript 0, a
wave reflected by the interface at z = d1 with subscript 1, a wave that penetrated the metal layer with
subscript 2, a wave reflected at the interface z = d2 with subscript r, and a wave that penetrated space 3
with subscript 3. There are grounds to believe that

k0z = iκ0z, k1z = iκ0z, k2z = iκ2z, krz = −iκ2z, k3z = iκ0z. (13)

Herewith, we assume that ε3 = ε1. The waves are chosen as follows:

k0z = iκ0z,

Hiy(~r) = Hiye
ikizz, H0y(~r) = H0ye

−κ0zz,

Eix(~r) = (ckiz/ωεj)Hiye
kizz, E0x(~r) = i(cκ0z/ωε1)H0ye

−κ0zz,

Eiz(~r) = −(ckix/ωεj)Hiye
kizz, E0z(~r) = −(ck0x/ωε1)H0ye

−κ0zz,

k1z = −iκ0z, k2z = iκ2z,

H1y(~r) = H1ye
κ0zz, H2y(~r) = H2ye

−κ2zz,

E1x(~r) = −i(cκ0z/ωε1)H1ye
κ0zz, E2x(~r) = −i(cκ2z/ωe2)H2ye

−κ2zz,

E1z(~r) = −(ck0x/ωε1)H1ye
κ0zz, E2z(~r) = (ck0x/ωe2)H2ye

−κ2zz,

krz = −iκ2z, k3z = iκ0z,

Hry(~r) = Hrye
κ2zz, H3y(~r) = H3ye

−κ0zz,

Erx(~r) = i(cκ2z/ωe2)Hrye
κ2zz, E3x(~r) = i(cκ0z/ωε1)H3ye

−κ0zz,

Erz(~r) = (ck0x/ωe2)Hrye
κ2zz, E3z(~r) = −(ck0x/ωε1)H3ye

−κ0zz.

We will use the boundary conditions at the interfaces.

Field on the left from z = d1 Field on the right from z = d1

Hd1ε1
sy

∣∣
z=d1

= H0ye
−κ0zd1 + H1ye

κ0zd1 , Hd1ε2
sy

∣∣
z=d1

= H2ye
−ik2zd1 + Hrye

ikrzd1 ,

Ed1ε1
sx

∣∣
z=d1

= i cκ0z
ωε1

(
H0ye

−κ0zd1 −H1ye
κ0zd1

)
, Ed1ε2

sx

∣∣
z=d1

= c
ωε2

(
k2zH2ye

ik2zd1 + krzHrye
ikrzd1

)
,

Field on the left from z = d2 Field on the right from z = d2

Hd2ε2
sy

∣∣
z=d2

= H2ye
ik2zd2 + Hrye

ikrzd2 , Hd2ε2
3y

∣∣∣
z=d2

= H3ye
ik3zd2 ,

Ed2ε2
sx

∣∣
z=d2

= c
ω

(
krz
ε2

Hrye
ikrzd2 + k2z

ε2
H2ye

ik2zd2

)
, Ed2ε2

sx

∣∣
z=d2

= ck3z
ωε3

H3ye
ik3zd2 ,

As a result, we have the following equations:
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H1y −H2y + 0 ·H3y −Hry = −H0y,

−H1y +
κ2zε1

κ0ze2
H2y + 0 ·H3y −

κ2zε1

κ0ze2
Hry = −H0y,

(14)
0 ·H1y + H2ye

−(κ2z−κ0z)d2 −H3y + Hrye
(κ2z+κ0z)d2 = 0,

0 ·H1y −
κ2zε1

κ0ze2
H2ye

−(κ2z−κ0z)d2 −H3y +
κ2zε1

κ0ze2
Hrye

(κ2z+κ0z)d2 = 0.

The determinant of this system of linear equations has the following form:

∆ =

1 −1 0 −1
−1 K 0 −K

0 e1 −1 e2
0 −Ke1 −1 Ke2

= −(K − 1)2e2 + (K + 1)2e1, (15)

e1 = e−(κ2z−κ0z)d2 , e2 = e(κ2z+κ0z)d2 , K = κ2zε1/κ0ze2.

The calculations yield the following result:

H1y = −H0y
(K − 1)(K + 1)(1− e1/e2)
(K − 1)2 − (K + 1)2e1/e2

,

H2y = −2H0y
(K − 1)

(K − 1)2 − (K + 1)2e1/e2
,

(16)
H3y = −4H0y

Ke1
(K − 1)2 − (K + 1)2e1/e2

,

Hry = −2H0y
(K + 1)e1/e2

(K − 1)2 − (K + 1)2e1/e2
.

There is the plasmon resonance at two values of K:

K =
κ2zε1

κ0ze2
=


1+
√

e1/e2

1−
√

e1/e2
= 1+e−κ2zd2

1−e−κ2zd2
,

1−
√

e1/e2

1+
√

e1/e2
= 1−e−κ2zd2

1+e−κ2zd2
.

(17)

The effect of the splitting of the surface-plasmon resonance in a limited-thickness metal layer was discussed
in detail in [8]. The splitting is due to the existence of the symmetric and antisymmetric modes. Note,
by the way, that in a metal cylinder the splitting for the plasmon mode TM0 is absent owing to complete
axial symmetry. At a small thickness of the metal layer, the splitting of the resonance is large, as
1 + e−κ2zd2 � 1− e−κ2zd2 , and at a large thickness of the layer, when e−κ2zd2 � 1, the splitting is small,
and the resonance value of K is approximately 1, which coincides with the earlier obtained value for a
metal layer of unrestricted thickness.
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Fig. 4. An evanescent wave in a space with a silver layer for κ0x + 0%,±0.1%. H0y(z = 0) = 1. Ag at
0 < z < 50 nm.

Let us construct the fields, see Fig. 4. For silver, ε2 = −10.67 and µ2 = 1 at a wavelength λ0 =
514.7 nm [9].

Hy(~r, t) = H0ye
−κ0zz, −d1 < z ≤ 0,

Hy(~r, t) = H2y(~r, t) + Hry(~r, t)

= −2H0y
(K−1)e−κ2zz+(K+1)e−2κ2zd2eκ2zz

(K−1)2−(K+1)2e−2κ2zd2
, 0 < z ≤ d2,

Hy(~r, t) = H3ye
−κ0zz

= −4H0y
Ke−(κ2zz−κ0z)d2e−κ0zz

(K−1)2−(K+1)2e−2κ2zd2
, d2 < z.

Unlike the case with a layer of a substance with ε, µ < 0, here we observe a significant dispersion, the
dependence of the effect of the amplification of the field by the adjacent layer of the substance on κ0x.
The structure of the field is also completely different.

The results of considering the evanescent plane wave in a layer structure are the plots in Figs. 3 and 4.
Behind the layer of a substance with ε = −1, µ = −1, as well as behind the layer of a well-reflecting metal,
ε < 0, µ = 1, the amplitude of the evanescent wave proves to be significantly increased as compared with
its value on the side of the layer facing the source. The effect in the structure with the layer ε = −1,
µ = −1 has no dependence on the wave number k0x of the evanescent wave (has no dispersion), and in
the structure with the metal layer the dispersion of the effect is great. Despite some similarity of the
final result, the form of the fields in the two layers considered has different dependences on the transverse
coordinate.

The rise in amplitude of the evanescent wave in the transverse direction does not violate the energy
conservation law. The fact is that the above problems are not problems for the propagation of electro-
magnetic radiation, but are meant to search for the eigenwaves ~Hn(~r) of the time-free wave equation
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Fig. 5. A nanocylinder and a nanoring as half-wave resonators for surface plasmons: the core is an electric dipole
resonator; the ring, a magnetic dipole resonator. The ring is shown enlarged three times as compared with the
core.

∆ ~H(~r) + (ω/c)2εµ ~H(~r) = 0 in an evanescent space, i.e., with respective boundary conditions. The prob-
lem for propagation is the search for the solution of equation ∆ ~H(~r, t) − (1/ν) ~H(~r, t) = 0 in the form
~H =

∑
n

[
an(t) ~Hn + a∗n(t) ~H∗

n

]
, where ~Hn(~r) are the solutions of the time-free wave equation. The problem

is beyond the scope of this consideration.
The field in the space with a metal layer affected by the evanescent wave contains simultaneously five

evanescent waves. These are the acting wave H0y, the wave H1y reflected from the first interface, the
wave H2y that penetrates the metal layer, the wave Hry reflected by the second interface, and the wave
H3y that penetrates over the metal layer. For definiteness, we chose for the discussion the transverse
magnetic wave Hiy, i.e., a TM wave. The amplitudes of the waves H1y, H2y, Hry, and H3y significantly
exceed that of Hoy. Under conditions of surface-plasmon resonance, these amplitudes turn to infinity (in
the absence of the losses), whereas H0y remains finite. The boundary condition of the equality of the
tangential components of the fields at the first interface is met due to the approximate equality of H1y

and H2y at this interface. At the second interface, the effect is repeated: the wave H2y, being small at
the second interface, generates the waves Hry and H2y, approximately equal and larger in amplitude.
The waves H1y, H2y and Hry, H3y, acting pairwise, form surface waves at the first and second interface
of the metal, respectively.

5. Surface Plasmons on Metal Wires and Thin Netal Layers

We shall not discuss further the evanescent waves in a medium with ε = −1, µ = −1. At the
moment, a topical problem is the search for or fabrication of a material with ε = −1, µ = −1 at optical
frequencies. Possibly, such materials can be composites from metal rods and the same rods bent into split
rings, see Fig. 5. Each of these elements supports a surface plasmon and is in one instance an electric
dipole resonator excited by an electric field ~E of an incident wave and in the other instance a magnetic
dipole resonator excited by the magnetic field ~H of the incident wave. Just the surface plasmons on rods
and rings are what distinguishes our proposal from that presented in [2]. The wavelength of the surface
plasmon on a small-diameter cylinder is tens of times smaller than that in a free space [10]. The structural
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elements shaped as rods and rings and possessing a half-wave resonance will be small as compared with
the wavelength in a free space. At frequencies near the resonance frequency the composite medium will
have ε < 0, µ < 0 and will not possess a noticeable light scattering. The technique for fabrication of
nanorings 110 nm in diameter from silver is described in [11]. The same work reports on surface plasmons
on these rings as excited by radiation with a wavelength of 1000 nm.

Proceeding from equalities (17) and substituting κ0z from the formula κ0z =
√

k2
0x − (ω/c)2ε1µ1, we

can plot two curves k0x = ϕ1(κ2z) and k0x = ϕ2(κ2z):

k0x = ϕ1(κ2z) =

√(
κ2zε1

e2

1 + e−κ2zd2

1− e−κ2zd2

)2

+ (ω/c)2ε1µ1 ,

(18)

k0x = ϕ1(κ2z) =

√(
κ2zε1

e2

1− e−κ2zd2

1 + e−κ2zd2

)2

+ (ω/c)2ε1µ1 .

At κ2zd2 � 1 both curves coincide, having the form

k0x =
√

(κ2zε1/ε2)2 + (ω/c)2ε1µ1 . (19)

In the theory of surface plasmons, one usually constructs the functions ω = ω(k0x). Hereafter, we do
not consider this dependence and write down all formulas at ω = const.

At κ2z = 0, using formulas (18), we obtain

min1k0x = ϕmin1
1 (κ2z) =

√
(2ε1/d2e2)2 + (ω/c)2ε1µ1 ,

(20)
min2k0x = ϕmin2

2 (κ2z) = (ω/c)
√

ε1µ1 ,

Curves (18) are the geometric locus of pairs of points κ2z and k0x or, respectively, κ2z and κ0z, which
turn the denominators in formulas (16) to zero. However, when choosing κ2z, the value of k0x (or vice
versa) is obtained from the formula

κ2z =
√

k2
0x + (ω/c)2e2µ2 . (21)

Intersection of curves by formulas (21) and (18) or (19) yields the wave number of the surface plasmon
kpl

0x = (ω/c)
√

ε1ε2/(ε2 + ε1) .
Figure 6 shows the behavior of curves (18), (19), and (21), where the thickness of the silver layer is

50 nm. Of the three almost vertical curves in Fig. 6, the left-hand side curve belongs to the plasmon
with a lower space frequency; the right-hand side curve, to the plasmon with a larger space frequency;
in between them, to the plasmon on the surface of the infinitely thick metal. The slopping curve was
plotted by formula (21).

Curves (18), (19), and (21) intersect at values of k0x from 1.26 · 105 cm−1 up to 1.32 · 105 cm−1,
which exceeds 1.221 ·105 cm−1, the value of k0 = ω0/c, by not much. Intersections are spatial frequencies
of plasmon resonances. Waves with a sufficiently arbitrary spatial frequency k0x can be excited on the
surface, including short waves, e.g., with k0x = 0.9 · 106 cm−1. The inserts show the amplitudes of the
excited waves. On two upper inserts, one can see that close to the plasmon resonance the amplitudes
of the surface waves exceed the amplitude H0y(z = d1) of the adjacent wave 107 times (left, for the
symmetric plasmon and right, for the antisymmetric plasmon); in the absence of the resonance, see the
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Fig. 6. Behavior of curves (18), (19), and (21) at a thickness of the silver layer of 50 nm.

Fig. 7. The same as in Fig. 6 at a thickness of the silver layer of 2 nm.

lower insert, the amplitude is approximately equal to 2H0y(z = d1). Away from the plasmon resonance,
the amplitude of the surface wave is small. This poses the problem of increasing the efficiency of excitation
of short-wave surface waves.

This problem is solved by changing over to small-thickness metal layers. Figure 7 presents the same
curves as in Fig. 6 but for a 2-nm thick silver layer. Of the three almost vertical curves in Fig. 7, the left
curve belongs to a plasmon with smaller spatial frequency; the right curve, to a plasmon with a larger
spatial frequency; and the curve in between them, to a plasmon on an infinitely thick metal surface. The
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gently slopping curve is plotted by formula (21).
Splitting of plasmon modes for this film is significantly increased as compared to splitting for a 50-nm

film. Curve (21) in this case intersects with that for the antisymmetric plasmon at k0x ≈ 0.95 · 106 cm−1.
On the inset in Fig. 7, one can see that close to this value of k0x the amplitude of the excited wave proves
again to be extremely large, exceeding H0y(z = d1) by more than 107 times.

The revealed efficient excitation of short (∼50 nm) surface waves whose wavelength is almost ten times
smaller than the wavelength in a vacuum at a chosen frequency, opens a vista for the development of
the optics of very short surface waves (i.e., optical transformations such as deviation, focusing, Gaussian
beams, photon crystals, etc.). This possibility may prove very useful in applications. Let us calculate
the propagation losses of these waves. We will make this calculation in the same way as was made for
the plasmon on the surface of an infinitely-thick metal in [7].

We need to find the complex root of the equation

2
d2
− e2k0x

ε1

[
1−

(ω

c

)2 ε1µ1

2k2
0x

]
=

√
k2

0x +
(ω

c

)2
e2µ2 . (22)

Then we find Imk0x at e2 = e′2 + ie′′s .
We shall consider that e2 = e′2 + ie′′s and that e′2 � e′′s . Correspondingly, we shall believe that

k0x = k′0x + ik′′0x and that |k′0x| � |k′′0x|. Let us make conversions in (22):

−e2

k

[
(δ − η)(2k2 − 1) + 4ηk2

]
=

√
k2 + e2

δe2 + 2ηk2

k2 + e2
. (23)

Here, instead of e2, we take e2(1 + iδ) and instead of k0x/k0, we take k(1 + iη); δ and η are small values,
and ε1 = µ1 = µ2 = 1. As a result, we get

k′′0x = −e′′2k0x
k + (2k2 − 1)

√
k2 + e2

2k3 + e2(2k2 + 1)
√

k2 + e2

. (24)

If we take into account that k � 1, then we have

k′′0x ≈ −
e′′2
e2

k0x

(
e2 −

k

e2

√
k2 + e2

)
≈ −e′′2

e2
k0x. (25)

At a wavelength of 514.5 nm, the ratio |ε′| /ε′′ is ∼30. This implies that the wave path is about 30
wavelengths. Figure 8 shows that at a wavelength of about 1000 nm the wave path can be up to 100
wavelengths.

Consider in more detail the structures with a metal layer. Using the effect of a metal layer, we
can construct a signal coupler from a plane optoelectronic structure or a lightguide. The possibility of
greater spatial freedom by using a coupler could be useful in practice. The dispersion of the effect of
amplification of the evanescent wave penetrating through a metal layer can be used in a sensitive device
for measuring the wavelength in an experiment similar to the experiment with total internal reflection,
or for measurements of the size of the structural elements in nanodevices generating evanescent waves in
the space adjacent to the nanodevice.

Of (practical) interest is the development of the optics of two-dimensional (2D) surface waves at a
dielectric–metal interface, similar to the optics of three-dimensional (3D) waves in 3D space. As in 3D
optics, the use of lenses, prisms, mirrors, diffraction gratings, photon crystals, lightguides, etc. is possible
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Fig. 8. Permittivity of silver at various wavelengths (according to the data from [9]). The relation ε′/ε′′ is also
shown.

here. Two things are an advantage: (i) surface waves occupy a limited plane layer and (ii) surface waves
are noticeably slower than waves in 3D space. Optical devices with surface waves can be combined into
multilayer (multistack, to be more exact) structures. The structural elements shall be more fine than
similar elements in 3D space, as diffraction restrictions will come into play at, respectively, small sizes
owing to the smallness of the length of the surface wave. Absorption, peculiar to the surface waves, can
be overcome by applying a thin amplifying layer, as demonstrated in [12].

6. Conclusions

The program of the 89th OSA Annual Meeting and Laser Science XXI on the Frontiers in Optics 2005
to be held October 26 (the program is posted on the website of the American Optical Society) includes a
report by Prof. Eli Yablonovich, University of California at Los Angeles (USA) on Plasmonics: Optical
Frequencies with X-Ray Wavelengths. As judged by the title, this presentation deals with the idea voiced
in the above paragraph. It is true, though, that x-ray wavelengths are wavelengths of photons with an
energy greater than 1 kV, i.e., wavelengths of 1 nm and shorter. If one has in mind dielectrics, then by
the method of total internal reflection optical surface waves of such small length on plane interfaces can
be obtained using a dielectric with an unreal value of εµ = 2.5 ·105. On nanocylinders from a metal, there
is an additional deceleration [10], which can be called geometric. The surface wave can be decelerated
30 to 40-fold. A segment of a nanocylinder can serve as a device for exciting the short surface wave.

For a thin layer of metal and, possibly, for the metal surface layer, the values of ε and µ may differ
from those for a massive metal layer. The issue requires a separate study.

Surface waves exist not only as plasmons, but also as surface polaritons; see, e.g., [13]. The existence
of weakly decaying evanescent waves at the interface between the traditional dielectric and the so-called
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Fig. 9. Designations for an experiment with a plane wave incident on the plane interface between two media with
different values of ε and µ.

photon crystal is also predicted [14]. In this paper, we were interested in predicting small propagation
losses. The problem requires additional research.

For the completeness it is necessary to mention the paper [15] appeared in 2005 at the moment of
accomplishment of the present work. The paper [15] demonstrates a compensation effect for plasmon
propagation losses by usage of a thin layer of an excited dye solution that underlays the metal film.
The paper [15] has a direct relation to Sec. 5 of this paper because it radically solves the problem of
propagation losses.
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Appendix

The table below presents expressions for fields of plane waves at the plane interface between two
media with different permittivities and permeabilities, ε1, µ1 and ε2, µ2, respectively. The dependence
on time is chosen as e−iωt. The formulas refer to the TM wave (the so-called transverse magnetic wave).
The x-axis is directed along the surface; the z-axis, normal to the interface surface towards the second
medium. The surface z = 0 coincides with the plane of the interface. The formulas are applicable for
media with ε < 0, µ < 0 and for evanescent plane waves in which the projection k2z is a purely imaginary
value. The fields have subscripts, of which 0 pertains to the incident wave; 1, to the reflected wave; and 2,
to the refracted wave. These formulas substitute for the usually used formulas with angles of incidence,
reflection, and refraction for reflected and refracted waves. In this paper, these angles would have to be
replaced by an angular coordinate, which, certainly, is also acceptable.
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H0y(~r) = H0ye
i(k0xx+k0zz), E0x(~r) = ck0z

ωε1
H0ye

ik0zzeik0xx,

E0z(~r) = − cκ0x
ωε1

H0ye
ik0zzeik0xx,

H1y(~r) = 1−K
1+K H0ye

i(k0xx−k0zz), E1x(~r) = − ck0z
ωε1

H0ye
i(k0xx−k0zz),

E1z(~r) = − cκ0x
ωε1

1−K
1+K H0ye

i(k0xx−k0zz),

H2y(~r) = 2
1+K H0ye

i(k2xx+k2zz), E2y(~r) = ck2z
ωε2

H0ye
i(k2xx+k2zz),

E2z(~r) = − ck2x
ωε2

H0ye
i(k2xx+k2zz).

In the table, K = k2zε1/k0zε2 and the following relations between the wave numbers of the waves
involved

k0x = k1x = k2x,

k0z =
√

(ω/c)2ε1µ1 − k2
0x , k1z = −

√
(ω/c)2ε1µ1 − k2

0x = −k0z,
(A.1)

k2z =
√

(ω/c)2ε2µ2 − k2
0x , for k2

0x ≤ (ω/c)2ε2µ2,

k2z = i
√

(k2
0x − ω/c)2ε2µ2 , for k2

0x > (ω/c)2ε2µ2,

are taken into account.
Relations (1) occur due to the equality of the tangential components of the fields at the interface:

H0y(~r, t)|z=0 + H1y(~r, t)|z=0 = H2y(~r, t)|z=0 ,
(A.2)

E0x(~r, t)|z=0 + E1x(~r, t)|z=0 = E2x(~r, t)|z=0 .

The sign of k0z is taken arbitrarily positive. For k1z, the sign is taken to be opposite to that of k0z, since
otherwise we would have an incident wave. For k2z we choose the plus sign so that the wave moves away
from the surface.
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