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Abstract

The problem of bound states in scattering point centers in the presence of a field described by a non-
stationary quadratic potential is studied. One-dimensional and three-dimensional cases are considered.
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1. Introduction

Zero-range potentials or point potentials or δ-potentials are widely used in atomic and nuclear physics
(see [1–3]).

In this context, the possibility of finding the exact solution to nonstationary Schrödinger equation
for such potential is of special interest. For scattering δ-centers, the exact solution for the bound state
described by exponentially decreasing functions has been presented in [4].

A well-known example of the exact solution of the nonstationary Schrödinger equation is that of
the equation for an oscillator with the frequency dependent explicitly on time. The equation for one-
dimension parametric oscillator was solved by Husimi [5] (see, for example, also [2, 6]). In this case, the
potential depends smoothly on coordinates.

The aim of the present work is to consider the possibility of exact solutions of the Schrödinger
equation with a combined potential of a linear nonstationary oscillator and scattering δ-centers in both
one-dimensional and three-dimensional problems.

2. A Particle in the Quadratic Nonstationary Potential and Classical

Integral of Motion

The Schrödinger equation with a quadratic nonstationary potential in the one-dimentional problem
has the following form:

i
∂ψ

∂t
+

1
2
∂2ψ

∂x2
+

Ω2(t)x2

2
ψ = 0, (1)

where ψ is the wave function, x and t are the coordinate and time, respectively, and Ω(t) is the time-
dependent imaginary frequency of the oscillator. We take dimensionless units and assume thatm = ~ = 1.
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In order to solve Eq. (1), we use the change of variables x, t→ y, τ given by

y =
x

η(t)
, t = ξ(τ).

Then one obtains the Schrödinger equation in the form

i

ξ̇

∂ψ

∂τ
− iy ∂ψ

∂y

η′

η
+

1
2η2

∂2ψ

∂y2
+

Ω2y2η2

2
ψ = 0,

where
ξ̇ =

dξ

dτ
=
dt

dτ
, η′ =

dη

dt
.

Then let us assume that

ψ =
1
√
η
φ(y, τ) exp

iy2η′η

2
.

We arrive at the equation for φ in the following form:

i

ξ

∂φ

2τ
+

1
2η2

∂2φ

∂y2
+
y2η

2
(Ω2η − η̈)φ = 0. (2)

Let us assume now that

ξ̇ =
dt

dτ
= η2, i.e., τ =

∫
dt′

η2(t′)
.

Equation (2) can be solved in two different ways.
Suppose that the auxiliary function η(t) satisfies the equation

η′′ − Ω2(t)η = 0. (3)

Then Eq. (2) has a solution in the form of a plane wave in variables y and τ , namely,

φ = exp
{
ip2τ

2
+ ipy

}
and it leads to the following solution of Eq. (1):

ψp(x, t) = exp
{
ip
x

η
− ip2

2

∫
dt′

η2(t′)
+
ix2η′

2η

}
. (4)

The classical equation of motion corresponding to Eq. (1) reads

ẍ− Ω2(t)x = 0. (5)

It is known that Eq. (5) has an integral of motion that is linear in ẋ and x. This linear integral of
motion is not directly related to the space–time symmetry properties. It can be written as follows:

I(1) = −η′x+ ηẋ.

Calculation of the derivative dI(1)/dt taking into account (3) and (5) demonstrates the conservation of
I(1).
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For the quantum-mechanical problem, the momentum ẋ has to be replaced by the operator −i∂/∂x.
In this case, one has the eigenvalue equation(

−iη ∂
∂x
− η′x

)
ψp = pψp, (6)

where p is the eigenvalue of the operator [6, 7]

Î(1) = −iη ∂
∂x
− η′x.

Linear integrals of motion were recently used to solve some nonstationary problems in [8, 9].
The function φp(x, t) defined by Eq. (4) satisfies Eq. (6).
The second way to solve Eq. (2) is as follows.
Instead of Eq. (3) let us require that η(t) satisfy the following equation:

η′′ − Ω2(t)η =
Ω2

0

η3(t)
, (7)

where Ω0 ≡ const. This means that Eq. (2) is reduced to the oscillator equation with a constant frequency
Ω0. Besides the linear integral of motion of Eq. (5), there exists also a quadratic in the x, ẋ integral of
motion

I(2) = (η′x− ẋη)2 + Ω2
0

x2

η2
.

Calculation of the derivative dI(2)/dt taking into account Eqs. (3) and (7) demonstrates that
dI(2)/dt ≡ 0. After replacing ẋ by the operator −i∂/∂x, one obtains the eigenvalue equation(

x2η′2 + 2iηη′x
∂

∂x
+ iηη′ − η2 ∂

2

∂x2
+ Ω2

0

x2

η2

)
ψa = aψa, (8)

where a is the eigenvalue of the operator Î(2) (see, [6, 10]). The corresponding function φ(y, τ) satisfies
the equation (

Ω2
0y

2 − ∂2

∂y2

)
φa = aφa. (9)

Comparing (9) with (2) one can see that the parameter a = 2E, where E plays the role of the harmonic-
oscillator energy. It is worthy noting that Eq. (1) describes a situation where the energy is not preserved.
Therefore, the operator Î(2) can be considered as a generalization of the energy operator for a nonsta-
tionary problem.

The solutions of Eq. (2) described by different auxiliary functions η(t) are mutually related. The
connection between the problems of a harmonic oscillator and a free particle has been analyzed in [11].

3. A Particle in the Potential of Point Centers Superposed

with a Quadratic Potential

Let us add on the right-hand side of Eq. (1) a term describing scattering δ-centers, whereby we have

i
∂ψ

∂t
+

1
2
∂2ψ

∂x2
+

Ω2x2

2
ψ = −α

[
δ
(
x− x0(t)

)
+ δ

(
x+ x0(t)

)]
ψ. (10)
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Using the change of variables employed in the previous section, one arrives at the following equation:

i
∂φ

∂τ
+

1
2
∂2φ

∂y2
+
y2η3

2
(Ω2η − η′′)φ = −αη

[
δ

(
y − x0

η

)
+ δ

(
y +

x0

η

)]
φ. (11)

Equation (11) can be solved if
x0

η
≡ const and αη ≡ const. Under these conditions, the variables τ

and y are separated. In addition, it is possible to assume the equality

η′′ − Ω2η =
Ω2

0

η3
;

then
αα′′ − 2α′2 + Ω2(t)α2 = −Ω2

0.

In this case, after separating the variables τ and y, one obtains a more complicated equation for the
function of y, which is the oscillator equation with a constant frequency in the presence of two stationary
δ-centers. Situations where the separation of variables is impossible are the most interesting.

The case where α ≡ const, η(t) = c∗t, and x0 = vt is widely known [4,12]. Here η′′ ≡ 0 and Ω ≡ 0. If
one assumes η = τ−2, then

t = − 1
3τ3

, η =
1

(3t)2/3
, η′′ =

10
(3t)2/3

and, in order to exclude the term proportional to y2 in Eq. (11), the initial equation (10) should have
an external force described by a quadratic potential Ω2x2/2, where Ω2 = 10/3t2.

The equation for φ is reduced to the following one:

i
∂φ

∂τ
+

1
2
∂2φ

∂y2
= − α

τ2

[
δ(y − y0) + δ(y + y0)

]
φ. (12)

For t→ −∞, i.e., at τ = 0 and φ = 0, Eq. (12) can be presented in the integral form, in view of the
retarded Green function, as follows:

φ(y, τ) =
iα√
2πi

τ∫
0

dτ ′√
τ − τ ′

1
(τ ′)2

φ(y0, τ
′)
(

exp
[
i(y − y0)2

2(τ − τ ′)

]
+ exp

[
i(y + y0)2

2(τ + τ ′)

])
. (13)

Let us consider now the symmetric case where φ(y, τ) ≡ φ(−y, τ).
Introducing the notation

φ(y, τ)
τ2

= c(τ),

one has the following equation:

τ2c(τ) =
iα√
2πi

τ∫
0

dτ ′c(τ ′)√
τ − τ ′

(
1 + exp

[
2iy2

0

τ − τ ′

])
, (14)

which is a consequence of Eq. (13).
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Assuming that

H(p) =

∞∫
0

exp(−pτ)c(τ)dτ,

Eq. (14) implies that
d2H

dp2
=

αH√
−2ip

[
1 + exp

(
− 2y0

√
−2ip

)]
.

By introducing the variable q =
√
−2ip, one obtains

d2H

dq2
− 1
q

dH

dq
= −αHq

[
1 + exp(−2y0q))

]
. (15)

As a result, the solution to Eq. (13) may be rewritten in the form of a two-fold integral, with c(τ)
being expressed in terms of H using the inverse Laplace transform, which should be substituted into the
integral in expression (13). Equation (15) is unlikely to have a compact analytical solution but finding
the numerical solution is rather simple.

Another case providing the solution of the Shrödinger equation is the case where η = τ , t = τ3/3. If
the external force in Eq. (10) is described by the frequency Ω2 = −2/9t2, then the equation for φ(y, τ)
reads as follows:

i
∂φ

∂τ
+

1
2
∂2φ

∂y2
= −ατ

[
δ(y − y0) + δ(y + y0)

]
φ, (16)

where φ = 0 at t = +∞, i.e., at τ = 0.
In view of the advanced Green function, the above equation can be written in the integral form

φ(y, τ) =
α√
2πi

∞∫
τ

τ ′dτ ′√
τ ′ − τ

φ(y0, τ
′)
(

exp
[
i(y − y0)2

2(τ ′ − τ)

]
+ exp

[
i(y + y0)2

2(τ ′ − τ)

])
. (17)

While considering the symmetrical case, let us assume that

φ(y0, τ) = φ(−y0, τ) = c(τ).

From (17) follows

c(τ) =
α√
2πi

∞∫
τ

τ ′dτ ′c(τ ′)√
τ ′ − τ

(
1 + exp

[
2iy2

0

τ ′ − τ

])
. (18)

Since one of the limits of the integral in (18) equals ∞, the solution can be presented (similar to [1])
in the form

c(τ) =
∫
L

exp(ipτ)g(p) dp, (19)

where the path of integration L is determined by the condition of integral convergency. For g(p), it is
possible to obtain the equation

g(p) = i
dg

dp

α
√
p

[
1 + exp(−2y0

√
2p)

]
. (20)
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Assuming p = q2/2, the solution to Eq. (20) reads

g(q) = C exp
(
− i

α
√

2

∫
q dq

1 + exp(−2y0q)

)
, (21)

where C is a constant.
It is possible to calculate the integral in Eq. (18), and the expression for φ can be found in the

following form:

φ = C

∫
L0

g(q) dq exp
(
iq2τ

2

) {(
τ +

i

q2
+ i
|y − y0|

q

)
exp(−q|y − y0|)

+
(
τ +

i

q2
+ i
|y + y0|

q

)
exp(−q|y + y0|)

}
. (22)

The path of integration L0 contains two lines in the complex plane, i.e., −(1 + iε)∞, 0 and 0,+∞,
where the constant ε satisfies the condition 1� ε > 0.

4. Three-Dimensional Problem of a Particle in Combined Potential

The problem of scattering δ-centers for the three-dimensional case has been considered in a number of
papers (see, for example, [12–15], where [12–14] deal mainly with the scattering states in the nonstationary
problem and [15] considers the bound states in the presence of δ-centers). In this section, we study the
bound states in the system of scattering centers in the presence of a linear force described by a quadratic
potential.

In this case, the Schrödinger equation has the following form:

i
∂ψ

∂t
+

1
2
4ψ + V (r, t)ψ =

2π
χ0

{[
ψ(1− i~r(~r − ~r0(t))) + (~r − ~r0(t))∇ψ

]
δ(~r − ~r0(t))

+
[
ψ(1 + i~r(~r + ~r0(t))) + (~r + ~r0(t))∇ψ

]
δ(~r + ~r0(t))

}
, (23)

where V = Ω2(t)r2/2, χ0 is the depth of the bound level, and ±~r0 are the positions of δ-centers at
the time moment t. At V ≡ 0 and ~̇r0 = ~v = const, Eq. (23) describes the scattering point potentials
(see [12,13]).

In accordance with [12], in order to solve Eq. (23), it is necessary to introduce time-dependent
coordinates

~ρ =
~r

|~r0(t)|
, t = ξ(τ).

We assume that

ψ = r
3/2
0 exp

[
ir2

2
r′0
r0

]
φ(r, t),

where r′0 = dr/dt. If ~r0(t) is varying only in magnitude while preserving the direction, then from Eq.
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(23) follows

i

ξ

∂φ

∂τ
+

1
2r20

∂2φ

∂~ρ2
+ φ

ρ2

2

(
ξ̈

ξ3
r0ṙ0 −

r0r̈0

ξ̇2

)
+

Ω2(ξ(τ))ρ2r20
2

φ

=
2π
χr30

{[
φ+ (~ρ− ~ρ0)

∂φ

∂~ρ

]
+

[
φ+ (~ρ+ ~ρ0)

∂φ

∂~ρ

]
δ(~ρ+ ~ρ0)

}
, (24)

where

ξ̇ =
dt

dτ
, ṙ0 =

dr0
dτ

= r′0ξ̇.

Let us consider now the case where

V +
ρ2

2

(
ξ̈

ξ3
r0ṙ0 −

r0r̈0

ξ̇2

)
≡ 0 and ξ̇ ≡ r20.

Under these conditions, it is suitable to use the Green function of the Schrödinger equation. In the
symmetric case under consideration, the boundary conditions read(

φ+ (~ρ− ~ρ0)
∂φ

∂~ρ

)
~ρ→~ρ0

=
(
φ+ (~ρ+ ~ρ0)

∂φ

∂~ρ

)
~ρ→−~ρ0

= −χ0c(τ). (25)

In view of the advanced Green function, Eq. (24) can be written in integral form:

φ = − 2π
(2πi)3/2

∞∫
τ

dτ ′c(τ ′)
(τ ′ − τ)3/2r0(τ ′)

{
exp

[
i(~ρ− ~ρ0)2

2(τ ′ − τ)

]
+ exp

[
i(~ρ+ ~ρ0)2

2(τ ′ − τ)

]}
. (26)

Using Eq. (26) with the boundary condition (25) one can obtain the following equation for c(τ):

χ0c(τ) =
2π

(2πi)3/2

{
2

∞∫
τ

[
d

dτ ′
c(τ ′)
r0(τ ′)

]
dτ ′√
τ ′ − τ

+

∞∫
τ

dτ ′

(τ ′ − τ)3/2

[
c(τ ′)
r0(τ ′)

]
exp

[
2iρ2

0

τ ′ − τ

]}
. (27)

While deriving Eq. (27), which describes the bound state, it is supposed that τ increases with t and
at t→∞ , φ ≡ 0. In addtion, the operation of “subtruction of infinities” (see [1, 15]) is applied.

Now we consider the case where r0 = aτ and

t =
a2τ2

3
, τ =

(
3t
a2

)1/3

, r0 = (3at)1/3.

The potential of the external force reads

V (r, t) = − r2

9t2
.

In addition to the force attracting the particles to δ-centers, there exists a nonstationary force attracting
them to the point ~r = 0.
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The solution to Eq. (27) can be found in the following form:

c(τ)
r0(τ)

=
∫
L

u(p) exp(ipτ) dp, (28)

where the path of integration L has to be chosen from the condition of integral convergency.
From (27), the following equation for u(p) can be derived:

aχ0
du

dp
= −i

√
2pu(p) +

i

2ρ0
u(p) exp(−2ρ0q) (29)

and one has

u(q) = C exp
{
− i

aχ0

(
q3

3
+
q exp(−2qρ0)

4ρ2
0

+
exp(−2qρ0)

8ρ3
0

)}
. (30)

The following expression for φ(ρ, τ) can be obtained from (28), (30), and (26):

φ = C̃

∞∫
i∞

q dq u(q) exp
(
iq2τ

2

) {
exp(−q|ρ− ρ0|)

|~ρ− ~ρ0|
+

exp(−q|ρ+ ρ0|)
|~ρ+ ~ρ0|

}
. (31)

It is not difficult to check that the integral in (31) converges at both q ∈ [+i∞, 0] and q ∈ [0,+∞].
The solution for ψ(~r, t) reads

ψ =
1

r
3/2
0

exp
(
i

2
r2r′0
2r0

)
φ

[
~r

(3at)1/3
,

(
3t
a2

)1/3]
.

Thus, in this paper we presented partial solutions of the nonstationary Schrödinger equation, which
can be important in analyzing particular experiments.

Some methods of solution were presented where the problem under consideration was reduced to
solving the standard differential equations and evaluating the integrals.
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