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Abstract
Objectives Crime counts are sensitive to granularity choice. There is an increasing inter-
est in analyzing crime at very fine granularities, such as street segments, with one of the 
reasons being that coarse granularities mask hot spots of crime. However, if granularities 
are too fine, counts may become unstable and unrepresentative. In this paper, we develop 
a method for determining a granularity that provides a compromise between these two 
criteria.
Methods Our method starts by estimating internal uniformity and robustness to error for 
different granularities, then deciding on the granularity offering the best balance between 
the two. Internal uniformity is measured as the proportion of areal units that pass a test 
of complete spatial randomness for their internal crime distribution. Robustness to error 
is measured based on the average of the estimated coefficient of variation for each crime 
count.
Results Our method was tested for burglaries, robberies and homicides in the city of Belo 
Horizonte, Brazil. Estimated “optimal” granularities were coarser than street segments 
but finer than neighborhoods. The proportion of units concentrating 50% of all crime was 
between 11% and 23%.
Conclusions By balancing internal uniformity and robustness to error, our method is capa-
ble of producing more reliable crime maps. Our methodology shows that finer is not nec-
essarily better in the micro-analysis of crime, and that units coarser than street segments 
might be better for this type of study. Finally, the observed crime clustering in our study 
was less intense than the expected from the law of crime concentration.
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Introduction

Crime mapping is a valuable tool: knowing where crime is more frequent leads not only to 
a more effective and efficient deployment of police forces and other public policies, it can 
also lead to more accurate models and theories through which the underlying causes can be 
examined and better understood (Santos 2016; Chainey and Ratcliffe 2013; Wang 2012). 
The question of where crime takes place, however, implies a definition of “where?” Should 
crimes be counted and analyzed per police district, or should we use neighborhoods, cen-
sus tracts, street blocks, or some other unit? Does it really matter? Current scientific con-
sensus is that it does, with issues such as the Modifiable Areal Unit Problem (MAUP, see 
Openshaw 1979; O’Sullivan and Unwin 2014: 30) and the Ecological Fallacy (O’Sullivan 
and Unwin 2014: 30) being common examples.

Within this context, there is currently a movement within criminology towards analyzing 
crime at finer spatial granularities (e.g. street segments, street blocks) as opposed to coarser 
units such as neighborhoods and census tracts (Gerrel 2017; Groff et al. 2009; Oberwittler 
and Wikström 2009; Weisburd 2015; Weisburd et al. 2012; Weisburd et al. 2012). There 
have been two key reasons for this new approach. One stems from theoretical considera-
tions on how routine patterns (Cohen and Felson 1979) and other forms of social dynamics 
(Weisburd et al. 2014) can be related to micro-geographical units such as single street seg-
ments (Weisburd et al. 2012). We will not focus on this aspect for now, but will return to it 
in the Discussion section later in the article. The second key reason is based on the empiri-
cal observation that crime is usually extremely concentrated in only a small percentage of 
those units, and that aggregating to coarser units would mask this clustering of crime at 
specific micro-places (Weisburd et al. 2009). The research by Sherman et al. (1989) is con-
sidered to have sparked the interest in analyzing crime at the micro-unit level. The authors 
pointed out that “just over half (50.4%) of all calls to the police for which cars were dis-
patched went to a mere 3.3% of all addresses and intersections” a pattern known as Zipf’s 
law or the Pareto distribution (Newman 2005). This phenomenon has also been observed in 
a range of other social and physical phenomena, such as volunteered geographic informa-
tion and social media data. Another key driver of the movement towards analyzing crime at 
the street segment level is the work of Weisburd et al. (2004), and (2012). Their thorough 
analysis of spatial–temporal crime patterns in Seattle provided solid evidence for the pres-
ence of clustering at the street segment level in that city. Their observations have been 
reproduced by other researchers (Groff et al. 2009; Braga et al. 2011; Curman et al. 2015), 
culminating with Weisburd (2015) arguing for a law of crime concentration in which “for 
a defined measure of crime at a specific micro-geographic unit, the concentration of crime 
will fall within a narrow bandwidth of percentages for a defined cumulative proportion of 
crime.” While not explicitly specified in the law, this micro-geographic unit has commonly 
been assumed to be at the scale of street segments (Weisburd et al. 2012). Alternatively, 
but in a similar line, some authors have proposed that spatial analysis of crime should be 
conducted at the finest geographical unit available (Oberwittler and Wikström 2009; Gerrel 
2017). Empirical evidence of the effectiveness of this paradigm (often known as hot spot 
policing) for crime prevention has been found (Sherman and Weisburd 1995; Taylor 1998), 
indicating not only that police presence at the right place and time can reduce crime, but 
that these places and times correspond to only a small proportion of the total environment, 
allowing for a more efficient use of resources.

Our present study raises some issues that go against some of these commonly held prin-
ciples of criminology of place such as “finer is better” (Oberwittler and Wikström 2009; 
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Bernasco 2010; Gerrel 2017), pointing towards a more nuanced approach as to how these 
micro-geographic locations are defined and the implications for crime prevention. On a 
theoretical side, we argue that, although finer units reduce the risk of the Ecological Fal-
lacy, the marginal benefit of finer and finer granularities decreases after a certain point, 
while the robustness of crime counts gets progressively worse. Furthermore, on the empiri-
cal side, after analyzing crime patterns in the city of Belo Horizonte, Brazil, we found 
evidence that contradicts the claim that crime necessarily has a distinctive concentration at 
the street segment granularity. We argue that a more careful analysis should be conducted 
with any crime dataset being used before deciding on a specific spatial unit of analysis, and 
a methodology is proposed to find a granularity that provides a balance between internal 
uniformity and robustness to error. In addition, we discuss the implications of our study to 
policing and policy making, as well as to criminological theory such as the law of crime 
concentration proposed by Weisburd (2015).

This paper is organized as follows. In the Background section, previous work related 
to the problem of determining an appropriate geographical unit of analysis is discussed, 
with a focus on the spatial analysis of crime. Metrics for estimating internal uniformity 
and robustness to error are described in the Methodology section, as well as the criteria for 
finding a balance between the two. The Data section describes the dataset used for testing 
the methodology, and the Study Area describes the city of Belo Horizonte, Brazil, from 
which the data originated. The results of the application of the methodology over the cho-
sen dataset are shown in the Results, and in the Discussion section, practical and theoreti-
cal implications are discussed.

Background

The Importance of Granularity

Granularity stands for the level of detail in a dataset (i.e. resolution1), and in a geographical 
context, to the particular size and shape of the units used for mapping and analysis (Kuhn 
2012; Stell and Worboys 1998). Issues involving granularity are a staple in geography and 
related disciplines. A prime example, the Modifiable Areal Unit Problem (MAUP) refers 
to models and inferences yielding different results when changing the granularity used to 
sample a study region (Openshaw 1979; O’Sullivan and Unwin 2014: 30). If the geograph-
ical units are arbitrarily chosen, this effect can be problematic, since the results may be 
partially dependent on the units.

Another difficulty is known as the Ecological Fallacy. If inferences about individuals 
are to be made based on group characteristics, then a poorly specified granularity can lead 
to this fallacy, when aggregate indicators do not faithfully represent individual character-
istics within the group. Additionally, correlations observed among variables at the aggre-
gated level might not hold at finer granularities (Robinson 1950 is credited for first study-
ing these effects; see also O’Sullivan and Unwin 2014: 32 for relevance in spatial analysis). 
For instance, if crime incidence is calculated for a whole neighborhood when certain loca-
tions have much more crime than others, the aggregated crime incidence will be a poor 

1 Some studies differentiate between granularity and resolution (Fonseca et  al. 2002; Degbelo and Kuhn 
2012), but we consider this distinction to be out of scope for this paper.
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reflection of actual safety within different parts of the neighborhood (Weisburd et al. 2012). 
As can be seen, these granularity problems are related to the uniformity of attributes within 
areal units (and the absence of it), a concept explored in the following subsection.

Uniformity and Regionalization

From a spatial perspective, uniformity (or homogeneity) refers to measurable properties, 
objects or events (e.g. crimes) being equally distributed across a given area, without any 
significant clusters. For point sets and processes, then, uniformity is manifested as com-
plete spatial randomness (O’Sullivan and Unwin 2014). In geography, uniformity has been 
closely related to the concept of region, with Bunge (1966) defining a uniform region as 
an areal unit identifiable by one or more characteristics that are equally present within the 
whole area, but not its neighbors. Therefore, a good regionalization map defines regional 
boundaries so as to minimize variability within each region while maximizing variability 
between regions; a poor regionalization, on the other hand, would lead to the problems of 
the Ecological Fallacy. In crime studies and policing, these matters can have very practical 
consequences, since regionalization maps are sometimes used to define public crime pre-
vention policies (Castro et al. 2004).

Multiple regionalization methods have been proposed, as in Openshaw (1977), Assun-
ção et al. (2006), Duque et al. (2012), as well as more general clustering techniques such as 
k-means (MacQueen 1967). While these methods may differ, they all build up their regions 
by aggregating finer areal units into coarser units, according to the contiguity of the finer 
units and the similarity of their attributes. Therefore, these methods assume: (1) a set of 
micro-areal units is available; and (2) their attributes are reliable. These assumptions do not 
hold when aggregating point distributions: even if these points are first aggregated into fine 
areal units, the estimated counts may lack robustness if these units are too fine, potentially 
interfering with the regionalization algorithm. The concept of robustness to error is elabo-
rated in the following subsection.

The Importance of Robustness to Error

Robustness to error refers to the relation between error and measurement in a dataset; the 
smaller the relative amount of error in comparison to the measured quantity, the greater 
the robustness of the dataset.2 While less discussed in the methodology of regionalization, 
robustness to error has been recognized as an important feature in geographic analysis 
(Xiao et  al. 2007; Zhang and Goodchild 2002), and is an important consideration when 
choosing a bandwidth in kernel density estimation (KDE).

In KDE (Silverman 1986), a wider bandwidth will lead to smoother density maps, fil-
tering out potential noise but possibly hiding finer interesting details; on the other hand, a 
shorter range will not hide small variations, but will be more susceptible to random fluctua-
tions. Also, from a probabilistic perspective, if the point density generated by KDE is to be 
interpreted as an estimate of the underlying probability field for the point distribution, then 
a smaller bandwidth means a smaller sample, and a greater uncertainty for the estimate.

2 An alternative terminology, more common in geostatistics, is that of signal and noise, as in Atkinson et al 
(2007).
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Choosing the best bandwidth has, therefore, often been approached as striking a good 
balance between detail and robustness to error. Silverman’s rule of thumb3 (Silverman 
1986: 43) can be mentioned as one of the most commonly used approaches, minimizing 
error in cases where the data is normally distributed in space. For crime patterns, however, 
this assumption is at best simplistic, if not altogether implausible. Nevertheless, the princi-
ple that increasing the range leads to greater robustness to error is a valuable one,4 suggest-
ing that while there are good reasons to use finer granularities (i.e. improving internal uni-
formity), there are also valid reasons for adopting a broader one, indicating that multiple 
factors should be considered for deciding on a particular granularity, including uniformity, 
robustness and other practical considerations.

Issues of Granularity, Uniformity and Robustness in Spatial Criminology

Interest in studying crime from a geographical perspective has existed for more than a cen-
tury (Guerry 1833; Quetelet 1842), but it is only fairly recently that granularity, uniformity 
and robustness started to attract the attention of crime researchers (Weisburd et al. 2009). 
The effects of granularity over observed crime patterns was studied as early as 1976 by 
Brantingham et al. (1976); in addition, an interest in analyzing crime at micro-geographic 
units was sparked by the work of Sherman et al. (1989), who observed that only 3% of all 
addresses accounted for half of the police calls. However, it is from the year 2000 onwards 
that a more systematic approach has been taken to data granularity in crime analysis, par-
ticularly in the advantages of analyzing crime with micro-geographic units such as street-
segments versus other traditional units such as neighborhoods or census units.

The main drivers of this effort can be found in Weisburd et al. (2004), as well as Eck 
and Weisburd (1995) and Weisburd et al. (2012) and Weisburd (2015). In both Weisburd 
et  al. (2004) and (2012), the authors examined the distribution of crimes per street seg-
ment in Seattle from 1989 through 2002, observing a significant concentration on a few 
segments which persisted through time. Based on this evidence, and other studies that 
presented similar observations (Groff et al. 2009; Braga et al. 2011; Curman et al. 2015), 
Weisburd (2015) proposed the existence of a law of crime concentration, stating that “for 
a defined measure of crime at a specific micro-geographic unit, the concentration of crime 
will fall within a narrow bandwidth of percentages for a defined cumulative proportion of 
crime.” While not explicitly stated in this formulation, this bandwidth has usually been 
identified as having the dimension of street segments; even when alternative definitions are 
used for a micro-geographic unit. In practice, the unit used is a street segment or a street 
block (as seen in Oberwittler and Wikström 2009; Gerrel 2017).

Therefore, granularity (and uniformity, albeit less explicitly) have been recognized as 
key concepts in the geography of crime. Aggregating to coarse units would lead to non-
uniform regions, masking internal clusters within each area. One of the practical impli-
cations of this insight is on police allocation, in that a great proportion of crime can be 
tackled by allocation of resources to a few specific locations (a strategy known as hot spot 

3 Silverman’s rule of thumb, for one dimensional cases, states that the optimal bandwidth h to minimize 

mean integrated squared error, assuming an underlying Gaussian distribution, is h =

(
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5 , 
with n being the number of points considered and �̂� the standard deviation of the points’ locations.
4 This principle can be related to the more general accuracy-precision distinction, as in Kuhn (2012).
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policing). Therefore, looking at crime at micro-locations may have the virtue of not only 
reducing the complexity of the crime problem but also potentially reducing costs.

In contrast, robustness to error has not been given as much attention in spatial studies 
of crime. In studies such as Weisburd et al. (2012), a high robustness of spatial patterns 
was inferred based on their temporal stability and to the large volume of crime data points 
used. However, not every study may have large enough datasets to automatically guarantee 
that crime counts taken at very fine granularities will be robust. So far, few studies have 
attempted to measure robustness of crime counts at different granularities, and its inter-
play with uniformity in determining an adequate unit of analysis. In particular, we are not 
aware of a study that has explicitly measured robustness and uniformity at various different 
granularities in order to determine an adequate unit of analysis.

Oberwittler and Wikström (2009) analyzed the tradeoff between robustness and internal 
uniformity is the regression study. Their conclusion is that smaller areas are better: not 
only they are more internally homogeneous but they also allow for more sample units to 
be used, leading to higher statistical power for regressions. However, their definition of 
robustness differs from ours, ours being the robustness of crime counts, theirs the robust-
ness of the regression itself. Moreover, only two granularities were tested, and it is worth 
considering whether “smaller is better” would still be the conclusion had a wider range of 
granularities been studied. The issue of error in fine units was also brought up by Gerell 
(2017), mentioning the trade-off between error and uniformity. This tradeoff, however, was 
not used in the study’s comparison between granularities. Instead, the criterion used was 
solely the degree of Intra Class Correlation (a metric of internal uniformity). Finally, the 
study by Malleson et  al. (2019) raises similar arguments to this study in favor of a bal-
ance between fine and coarse, presenting a multiscale study to determine an adequate unit 
of analysis. However, their methodology for finding such a balance has significant differ-
ences to ours, with their study considering the behavior of a similarity index (see Andresen 
2009) at different granularities (see also Andresen and Malleson 2011 for a study testing 
the influence of scale when comparing different point patterns).

While robustness to error has not been given so much attention compared to uniform-
ity and granularity, it can also have practical implications for policing and policy making. 
If police forces are intended to concentrate at these crime hot spots, a greater uncertainty 
associated with these hot spots means a greater proportion of police being potentially mis-
allocated. Thus, for efficient allocation of resources, a compromise between uniformity 
and robustness must be sought out, along with any other practical considerations. It is the 
objective of our research to advance the understating of how to attain such balance.

Methodology

To estimate an appropriate micro-unit of analysis for counting and mapping crime, met-
rics for internal uniformity and robustness to error were calculated for a set of different 
granularities, and from that a granularity that offers the best balance between the two was 
determined.

Estimating Internal Uniformity

Internal uniformity is estimated through a series of spatial randomness tests. Given a gran-
ularity g, a set of n quadrats of that granularity Sg = {s1g s2g…sng} is generated over the 
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domain of crime points P being tested, and then for each quadrat sig, a spatial randomness 
test is performed for the points located inside it. The proportion of samples in Sg that fail to 
reject the complete spatial randomness (CSR) hypothesis at significance � is attributed as 
the internal uniformity level ug of the point set P at granularity g. This process is repeated 
for a range of different granularities. Figures 1 and 2 illustrate this process.

To generate the samples, two approaches are proposed: (1) a set of r quadrats of the 
same granularity (size) is randomly selected inside the bounding rectangle that delimits 
the point set P, or (2) the bounding rectangle is divided into a set of contiguous quadrats of 
the same granularity. Figure 3 illustrates these two different approaches. In both cases, any 
cells with only one point or zero are ignored.

For assessing spatial randomness, two approaches are considered: (1) Clark-Evans 
nearest-neighbor distance test (Clark and Evans 1954; O’Sullivan and Unwin 2014, pp 
143–145; see Maggi et al. 2017 for an application), and (2) a quadrat count test (Greig-
Smith 1952; O’Sullivan and Unwin 2014, pp 142–143; see Maggi et al. 2017 for an appli-
cation). In the Clark-Evans test, the mean distance between any point in the dataset to its 

Fig. 1  The proportion of samples 
that failed to reject the CSR 
hypothesis is assigned as the 
internal uniformity at granular-
ity g

Fig. 2  Internal Uniformity is calculated for a range of different granularities

Fig. 3  Two approaches for col-
lecting samples to be tested for 
spatial randomness
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nearest neighbor is calculated: if it significantly differs from what would be obtained by 
a random Poisson point process, then the null hypothesis of complete spatial randomness 
can be rejected. In the quadrat count approach, the point pattern is divided in equal bins 
(quadrats) and the number in each is counted: if that number significantly differs from 
that expected by a random Poisson point process, then then the null hypothesis of com-
plete spatial randomness can be rejected. While these two tests have their own limitations 
(O’Sullivan and Unwin 2014, pp 142–145; Clark et al. 2018; Perry et al. 2006), with Clark-
Evans being ill-suited for detecting patterns beyond the nearest neighbor scale and the 
quadrat count test being dependent on the specific quadrat dimensions considered, these 
are methods of low computational cost—an important feature considering that the test 
must be repeated multiple times for a given granularity (and then repeated for the multiple 
granularities being tested). Furthermore, the two tests work well as complements of each 
other: a quadrat count test is often capable of capturing longer distance patterns that Clark-
Evans would be ill-suited to detect, while the quadrat test’s incapability at detecting pat-
terns finer than its quadrats is remedied by Clark-Evan’s performance at closer distances. 
Therefore, although more sophisticated tests of complete spatial randomness exist and can 
be used—e.g. using Ripley’s K (Ripley 1977; O’Sullivan and Unwin 2014, pp 146–148) 
or Monte Carlo simulation approaches (Baddeley et al. 2014; O’Sullivan and Unwin 2014, 
pp 148–152), see also Clark et al. (2018) for a comparison between methods—we consider 
that these two tests of low computational cost are complimentary and adequate to perform 
the check for the purposes of this study.5

Estimating Robustness to Error

Robustness of the measured crime counts is evaluated in relation to the expected pro-
portional variation of crime incidence (i.e. the estimated coefficient of variation of the 
observed crime incidence). For example, a crime rate of 100 crimes per year with a coef-
ficient of variation of 5% is a more stable measure than a rate of 100 crimes per year with a 
20% coefficient of variation. As such, in Eq. 1, we define a metric rg for robustness to error 
at granularity g as a function of the average coefficient of variation of n sample quadrats of 
granularity g

The exponential transformation is applied to assure that rg will vary between (0, 1), being 
comparable to the uniformity metric. For the choice6 of k , we suggest k = 3 since at that 
value a coefficient of variation of 1 will yield a robustness close to zero (0.05), while a 
coefficient of variation of 0 will yield a maximum robustness of 1.

To estimate the coefficient of variation for the observed crime distributions, three differ-
ent methods were compared; additionally, two different approaches for selecting the sam-
ples were employed (similar to the calculation of internal uniformity).

(1)rg = exp

(

−k ×
1

n

n
∑

i=1

coef_var
(

sig
)

)

5 Additionally, at least for the case studies considered, the difference between the two methods is small for 
the purposes of finding a granularity.
6 While robustness is dependent on k, in practice the estimated granularity is not very sensitive to k. See the 
Appendix for a sensitivity analysis.
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The first method for estimating the coefficient of variation (binominal estimation) com-
pares the number of crimes ki within a quadrat of granularity g to the total number k of 
observed crimes. By assuming pi= ki/k as the likelihood of a crime occurring inside a quad-
rat sig, the coefficient of variation showed in Eq. 2 follows that of a binomial distribution:

The second method (Poisson estimation), assumes that the crime incidence within a quad-
rat follows a Poisson distribution and then proceeds to fit the observed sample to that distri-
bution, yielding an estimated coefficient of variation:

The third and last method (resampled estimation), effectively combines the first two for 
estimating the coefficient of variation. In the Poisson distribution, the coefficient of vari-
ation is dependent on λi. However, not only is the estimated lambda uncertain, its relation 
to the coefficient of variation is non-linear. Thus, to estimate the coefficient of variation 
while taking account the uncertainty in λi, a resampling approach was used: m samples of 
crime counts are simulated following a binominal distribution with probability pi= ki/k for 
k events, and for each sample, the coefficient of variation is estimated by fitting it to a Pois-
son distribution. Finally, the simulated coefficients of variation are averaged to estimate the 
expected value of the coefficient of variation

Balancing Uniformity and Robustness

Having estimated the internal uniformity and robustness to error, the final step is to deter-
mine a granularity that offers a compromise between each metric. This can be considered 
a type of Multi-Criteria Decision Analysis (MCDA) problem (Budiharjo and Muhammad 
2017; Melia 2016; Kittur et al. 2015; Tofallis 2014), since there are two metrics that need 
to be optimized. Drawing in part from MCDA literature, three different approaches are 
considered here, but it is worthy to remark that other approaches could be considered and 
may be explored in future work.

One approach considered here is to find the granularity that maximizes the product of inter-
nal uniformity and robustness to error (Eq. 5). This approach mirrors the Weighted Product 
Model from MCDA (Budiharjo and Muhammad 2017; Melia 2016; Kittur et al. 2015; Tofal-
lis 2014), and particularly penalizes cases where one of the criteria is too close to zero. Since 

(2)

coef_var
�

sig
�

= pi
�

1 − pi
� 1
√

k

pi =
ki

k

(3)

�i = ki

coef_var(sig) =
1

√
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(4)

coef_var(sig) =
1

m
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uniformity and robustness both vary from zero to one, and are given equivalent importance, 
the same weight (one) is given to both metrics

A second approach is maximizing the sum of the internal uniformity with robustness to 
error (Eq. 6), essentially a version of Weighted Sum Model from MCDA (Budiharjo and 
Muhammad 2017; Melia 2016; Kittur et al. 2015; Tofallis 2014). Again, both metrics are 
given the same weight of one. In contrast to the previous criterion, there is less of a penalty 
if one of the metrics is relatively low

Finally, a third approach considered in this study is to fit a curve for internal uniformity 
varying as a function of robustness to error, and then find the point where its derivative is 
equal to minus one (Eq. 7). At this point, the marginal gain in robustness is the same as the 
marginal loss in uniformity of the same magnitude, and vice versa, meaning that a devia-
tion from that point would be more costly than beneficial for either metric. As far as we 
are aware, this approach has no direct equivalent in the MCDA literature, but related ideas 
on the importance of taking account diminishing marginal utility are discussed in Tofallis 
(2014)

Each of these approaches may be suitable to different situations, and they may be used in 
combination to determine a granularity. However, as will be shown in the Results, they 
typically yield similar optimal granularities.

Data

The data used in this study is composed of three point sets representing the locations of three 
types of crime events reported to the police in the city of Belo Horizonte, Brazil: residential 
burglaries, street robberies, and homicides. For residential burglaries, there is a total of 44,560 
events, spanning the period 2008 to 2014; for street robberies, there are 11,626 events, from 
the year 2012 to 2013; for homicides, the total amount is 1826 cases from 2012 to 2014.

These point sets were generated from boletins de ocorrência, registers created by the 
police in Brazil to document reported crime incidents. In the case of these particular boletins 
de ocorrência, they were ceded by the Polícia Militar de Minas Gerais, the branch responsi-
ble for police enforcement in the state of Minas Gerais, where the city of Belo Horizonte is 
located. The street addresses of the reported crimes were geocoded into latitude and longitude 
coordinates, with an accuracy rate of 95% following the methodology proposed by Chainey 
and Ratcliffe (2016), Chainey and Ratcliffe (2013).

(5)maxu(g)r(g)

(6)max(u(g) + r(g))

(7)
du

(

gbest
)

dr
(

gbest
) = −1
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Study Area

Belo Horizonte, is located in the southern region of Brazil, on the border of São Paulo and 
Rio de Janeiro states. With an estimated population of 2,523,794 people in 2017, it has a 
demographic density of about 7167 inhabitants per square kilometer in an area of almost 
332 square kilometers. According to the 2010 Census, out of 628,447 households in Belo 
Horizonte, 66.58% are owner-housing units; 7.23% are in the process of being purchased; 
and 18.06% are rental housing units. There are 487 neighborhoods in Belo Horizonte 
including 215 favelas (slums), vilas (improved favelas), and other public housing spread 
throughout the city. Nearly half a million people live in the more than 130,000 households 
located in these areas.

Results

The results were obtained by applying our methodology over three datasets: residential 
burglaries, street robberies and homicides. The set of granularities analyzed for burglaries 
ranged from quadrats of 25 ms7 to 1000 meters, with 25 meter intervals (that is, quadrats of 
25 meters, 50 meters, etc.); for robberies and homicides, the granularities analyzed ranged 
from 25 meters to 5025 meters, with intervals of 100 meters. A different set of granulari-
ties is shown for burglaries because little variation was found in the metrics beyond 1,000 
meters; since a shorter range was used, we decided to also shorten the difference between 
each individual granularity, so that enough points are generated for the tradeoff analysis.

In short, our findings show that: first, for all three types of crime evaluated, internal 
uniformity increases with finer granularities, while robustness to error decreases; second, 
the optimal granularity is different for each type of crime considered, and third, the optimal 

Fig. 4  Internal uniformity decreases with granularity, while robustness to error increases

7 It is worth noting that for granularities as fine as 25 meters (typically encompassing no more than 4 
addresses), few points are likely to be found per quadrat sampled. This should not impact the tests, since 
only samples with more than one point will be considered for the purposes of testing uniformity and robust-
ness. Since burglaries are registered per address, samples with only one address within the quadrat will 
(correctly) be resolved by the test as being uniform.
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granularities in most cases do not match those granularities traditionally used in the litera-
ture (namely, street segments, census units, and neighborhoods).

These findings for the case of burglaries in Belo Horizonte are illustrated in the next fig-
ures. In Fig. 4, the variation of internal uniformity as a function of granularity (i.e. quadrat 
size) is shown on the left, and the variation of robustness to error as a function of granular-
ity is shown on the right. Notice how internal uniformity increases with smaller quadrat 
sizes (finer granularities), meaning that a greater proportion of sampled quadrats can be 
considered uniform (i.e. failed to reject complete spatial randomness), while robustness 
decreases as quadrats get smaller.

In Fig. 5, the tradeoff between uniformity and robustness to error is illustrated for each 
of the three criteria considered (i.e. balance of gains, product, and sum criteria). On the 
left, uniformity is plotted as a function of robustness, with the point of balance (derivative 
equal to minus one) shown in blue. In the middle, the product of uniformity and robustness 
is shown as a function of granularity (quadrat size), as well as the maximum extracted from 
the fitted curve. Finally, in the right, the sum of uniformity and robustness is shown as a 
function of granularity, as well as the corresponding optimal granularity for this criterion. 
For comparison, the optimal using the balance of gains criterion is also displayed in the 
middle and right plots (green point).

Equivalent graphs for homicides and robberies can be seen in the Appendix; in addition, 
the Appendix also shows a comparison between the different variants proposed to calculate 
uniformity, robustness and the optimal granularity (as described in the Methodology). The 
general pattern of these analyses is similar to those shown here.

Fig. 5  Optimal granularity for burglary dataset estimated by three different criteria (balance of gains, prod-
uct and sum criteria)

Table 1  Summary of results for estimating the optimal granularity for each dataset considered

Type of crime Number of points Opt. Granularity 
(meters)–Mean (Std. 
Dev.)

% of units with 
50% of crimes

Uniformity Robustness

Burglary 44,560 278.75 (51.21) 22.65 0.90 0.30
Robbery 11,626 775.00 (221.74) 11.17 0.86 0.31
Homicides 1826 1725.00 (250.00) 21.31 0.90 0.34
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The results for estimating optimal granularities for each type of crime are listed in 
Table 1. As can be seen, the estimated optimal granularities are significantly different 
for each type of crime. Between the three types of crime the one with the finest optimal 
granularity is burglary, which is also the one with the greatest number of points; homi-
cide is the type with the least number of points and the coarsest granularity. That was 
not unexpected, as a greater number of points tends to lead to more stable rates (better 
robustness at finer granularities).

For all three types of crimes, the estimated optimal granularities are coarser than the 
usual scale of street segments or street blocks (100 m on average for Belo Horizonte, see 
Freitas et al. 2013). Additionally, for two of them (burglary and robbery), the estimated 
optimal granularities are finer than that of neighborhoods (0.68  km2 on average for Belo 
Horizonte, see Prefeitura 2017).

Fig. 6  Maps of crime counts per areal unit for burglary, homicide, robbery and log(robbery), using their 
estimated optimal granularities
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Maps of crime incidence using the estimated optimal granularities are shown in Fig. 6. 
Since robbery is overly concentrated in the downtown area, a log transformation was 
applied to facilitate visualization, shown alongside the original. As can be seen from these 
maps, not only are the optimal micro-units different according to each type of crime, so too 
are their spatial distributions. Burglary has the finest units, at least in part due to the larger 
quantity of data points available; homicide, having the smallest number of data points, has 
the coarsest units, with robbery having an optimal unit of an intermediate size when com-
pared to that of burglary and homicide.

As a whole, the results obtained all indicate the same relationship between uniform-
ity, robustness and granularity: uniformity tends to increase as granularity becomes finer, 
while robustness tends to decrease. However, the sensitivity of uniformity and robustness 
to granularity seems to vary across different types of crime, leading to different optimal 
granularities; furthermore, these estimated optimal granularities do not necessarily match 
traditionally used units like neighborhoods, census units or street segments. In light of that, 
we find that choosing a granularity without considering the specifics of the dataset can 
lead not only to an absence of internal uniformity, such as in the Ecological Fallacy, but 
also to problems of robustness in the measured crime incidences. Finally, the proportion of 
units concentrating 50% of crimes when using the estimated optimal granularity also varies 
according to the dataset examined, which seems to contradict some formulations of the law 
of crime concentration (this is discussed in more detail in the following section).

Discussion

Choosing a Granularity: Conciliating Multiple Perspectives

One of the goals of this study is to highlight the importance of balancing uniformity and 
robustness when choosing a granularity. Therefore, our study indicates that “finer is not 
necessarily better”, in particular for smaller datasets, as shown in Table  1 (notice that 
uncertainties in geocoding may be an additional reason to use broader units, see Andresen 
et al. 2020). We do not mean to claim that robustness and uniformity are the only important 
criteria for choosing a granularity and there are often theoretical and operational reasons 
for selecting a particular unit. Nevertheless, we believe that these theoretical and opera-
tional criteria are also not absolute, and should not justify ignoring spatial considerations.

To illustrate our point, consider the choice of street segments as the preferred granular-
ity. As mentioned in the Introduction, that choice has not solely been based on the observed 
concentration of crimes, but from an understanding that street segments constitute funda-
mental units that influence and shape the routine of both potential victims, offenders and 
guardians (the fundamental triangle of Routine Activities Theories, as in Cohen and Felson 
1979). For instance, people within a segment share a visual and physical space and are 
more likely to know each other, increasing opportunities for interaction; in addition, their 
movements are shaped by the layout of street segments (Taylor 1998). However, one could 
also list factors of potential significance that manifest at a different granularity. Neighbor-
hood characteristics encompass a swath of street segments; routine patterns are not solely 
a function of specific segments, but of a broader activity space (Brantingham and Brant-
ingham 1993); facilities like subway stations, schools and malls often project their influ-
ence much further than their own segment (Frank et al. 2011; Groff and Lockwood 2014). 
Moreover, theories derived from one context (e.g. Western developed countries) might not 



433Journal of Quantitative Criminology (2021) 37:419–443 

1 3

apply to others. This is particularly important in this case study since clustering patterns 
of repeat and near-repeat for residential burglaries have been observed to be significantly 
less intense in the city of Belo Horizonte when compared to cities in the US and the UK 
(Chainey and Silva 2016). Finally, operational considerations such as police beats match-
ing street segments should also not be considered an absolute criterion, since police organi-
zation is not uniform across countries or even regional units, and they can be reorganized 
(e.g. see Blattman et al. 2017).

As such, our conclusion is that it would be imprudent to decide on a granularity based 
solely on a specific set of theoretical principles (sometimes subject to their own uncertain-
ties), disregarding the evidence from the spatial data at hand or even other theoretical fac-
tors. In light of these considerations, we view this study as offering an additional spatial 
frame of reference against which theoretical and operational factors can be evaluated and 
compared, leading to a more grounded choice for a granularity.

Implications to the Law of Crime Concentrations

In its most general form, the law of crime concentration states that at a certain micro-geo-
graphic unit, a relatively large proportion of crime will be concentrated in a small propor-
tion of units. However, if these proportions are not specified, this statement can in principle 
be applied not only to crime distributions, but also to random point patterns (see Hipp and 
Kim 2017; Bernasco and Steenbeek 2017; Mohler et al. 2019). In practice, most studies 
consider that these proportions are such that 50% of crimes concentrate in less than 10% 
(typically 5%) of the units (Chainey et al. 2019; Braga et al. 2017; Gill et al. 2017). If that 
version is considered, then the distribution of crimes observed in our study (using the esti-
mated optimal granularity) is less concentrated than predicted by that law (see Table 1). 
While higher concentrations could be attained if finer units were used, this would mostly 
be due to the geometrical properties of aggregating discrete data to areal units, since in 
our case an average of 90% of the optimal units are already internally uniform, not hiding 
any finer clusters (as much as the data can tell). These distortions of having too many areal 
units compared to points is also examined by Bernasco and Steenbeek (2017) and Mohler 
et al. (2019), albeit with a different methodology (using a Gini-style Lorenz curve to adjust 
the rates).

Just as there is a diversity of theoretical reasons that justify the use of different granular-
ities, there are multiple reasons that could explain some crime distributions being less con-
centrated than others: while some types of crime tend to occur close to specific facilities, in 
other cases the influence small scale places can be manifested at wider areas (Brantingham 
and Brantingham 1995; Frank et al. 2011, Eck and Weisburd 2015); target selection may 
manifest in patches (Johnson 2014; Bernasco 2009); and rates of repeat and near-repeat 
may vary with crime type and region (Chainey & Silva). Although we cannot disregard the 
fact that the number of points available can also affect the optimal granularity estimated 
with our method, thus artificially affecting the perceived concentration; nevertheless, in our 
study, burglary had the lowest spatial concentration of all three types of crime considered, 
despite having the greatest number of points, suggesting a lower spatial concentration of 
the underlying phenomena. Moreover, it is worth noting that, at least with our method, a 
finer granularity does not necessarily mean a greater concentration, as shown in Table 1.

Does our study indicate that the law of criminology should be reformulated? Not by 
itself, since that would require repeating similar studies in other regions, and it is not in 
the scope of this article to do so. Although there is a growing body of literature that tends 
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to conform to the current formulation of the law of crime concentration (Gill et al. 2017; 
Carter et al. 2019; Umar et al. 2020; Chainey et al. 2019), it is unclear how their findings 
would relate to the issues of uniformity and robustness raised by our study. We hope to 
examine these questions in future work.

Implications for Policing and Policy Making

Crime maps are useful for efficient allocation of police patrols and other resources (Sher-
man 1997; Braga 2001; Wang 2012; Chainey and Ratcliffe 2013). This usefulness, how-
ever, is dependent on the reliability of the crime frequencies being depicted. There are 
many aspects influencing this reliability, including underreporting and uncertainties in 
geocoding of crime events (Chainey and Ratcliffe 2013). Here, we discuss how our meth-
odology for finding an adequate granularity in terms of uniformity and robustness can 
improve crime map reliability and resource allocation.

Table 2 indicates what would be the expected crime concentrations, uniformities and 
robustness for our burglary dataset if counted at three different granularities: the estimated 
optimal, an oversized granularity, and an undersized granularity. We can see that fewer 
units would need to be covered in order to account for 50% of the burglaries if the optimal 
granularity (278.25 m) were used instead of the oversized one (1650 m), which could mean 
more police resources available per targeted unit. Moreover, the uniformity in the oversized 
granularity is only 0.074, which means that most of the units contain finer clusters that 
cannot be represented at that granularity, while for the optimal granularity the uniformity 
is 0.90.

Why then not use the undersized granularity (100 m), in which 50% of all burglaries 
are concentrated in only 15% of locations and the uniformity is 1? While that is the case, 
the estimated robustness value for the undersized granularity is 0.11, indicating that on 
average the crime rates are expected to have a coefficient of variation of 73% in relation to 
their estimated value, while for the optimal granularity, this coefficient of variation would 
be 39% (i.e. robustness equal to 0.31), meaning that the optimal granularity produces more 
stable rates while still revealing the majority of the crime clusters.

One practical implication for policing is that more stable crime maps decrease the 
chance that resources will be misallocated to a false hot spot of crime. One of the advan-
tages of looking at crime in micro-units is the more efficient allocation of police and other 
resources; however, if these rates are unstable, that would impact the efficiency of this allo-
cation. For instance, if police forces are to be allocated in proportion to crime distributions 
(as in directed patrolling and other forms of hot spot policing, see Braga 2001; Sherman 
1997; Wang 2012), a robustness of 0.15 (corresponding to an average coefficient of varia-
tion of 0.63) would mean that approximately 63% of the police forces will be misallocated 

Table 2  Expected crime concentrations, uniformities and robustness when varying the granularity used (for 
residential burglaries)

Granularity Percentage of units that concentrate 
50% of crimes

Uniformity Robustness

Oversized (1650 m) 25% 0.074 0.74
Optimal (278.75 m) 22.65% 0.90 0.31
Undersized (100 m) 15% 1.000 0.11
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on average. In addition, the production of more reliable maps of crime in general should be 
useful for Evidence-Based crime prevention programs (Sherman et al. 2002; Wang 2012), 
both for planning new prevention strategies as well as for evaluating results.

Naturally, this all depends on the specific strategies chosen for policing and crime pre-
vention, which may involve factors that transcend those considered here (e.g. legal and 
administrative requirements, socio-cultural considerations, political factors). However, 
should these strategies depend on spatial aspects of crime (as in hot spot policing strate-
gies), crime maps need to be reliable, and these issues of robustness must then be consid-
ered. Even if the areal units to be used are predefined by external criteria, the proposed 
methodology can be used to estimate the robustness to error and the internal uniformity for 
this predefined granularity, and how much it differs from the optimal, provided that point 
data for each individual crime event is available.

Moreover, even though hot spot targeting has been shown to be an efficient strategy 
for policing, its economic viability can still be an issue depending on the quantity of hot 
spots to be covered and the resources available. For instance, budgetary reasons may force 
individual patrol units to cover areas broader than the traditional micro-units (e.g. indi-
vidual street segments or blocks), the other option being some of the hot spots are left 
uncovered. Although this may be problematic if these areas are large, heterogeneous, and 
difficult to be effectively covered by a single patrol unit (for instance, the traditional police 
quadrants referred to in Blattman et al. 2017), areas comprising small groups of blocks or 
segments may not only feature a uniform crime distribution but may be coverable by indi-
vidual patrols with significant results (see the study from Chainey et al. 2020). This type 
of compromise provides an additional reason why finer may not always be better in crime 
mapping (see Gibson et al. 2017 for a similar idea in the temporal domain). This becomes 
specifically significant in regions such as Latin America, which not only lack a tradition in 
data driven approaches (often leading to issues of data limitations and robustness), but also 
tend to feature both high crime rates and budget constraints (Bergman 2018; Beato et al. 
2008).

Lastly, more reliable crime maps can improve the general public’s perception of the 
nature of crime and its geography,8 helping in a better mutual understanding between 
the police (and other public authorities) and the population. As shown by Alkimim et al. 
(2013), perceptions of crime and violence by the general public do not necessarily match 
the actual distribution of crime events, which could lead to misguided impressions by the 
public on how the police and other public authorities may or may not be doing their work.

Limitations and Future Improvements

One limitation of the proposed methodology is that granularity is required to be the 
same throughout the whole study area. While this facilitates data manipulation, it may 
pose problems for point distributions with a sufficiently high degree of clustering. In 
areas where a cluster is present, the point density is higher, which would not only allow 
for a finer granularity (i.e. more points, more robustness), but would also probably 
require a finer granularity to ensure internal uniformity. However, outside of clusters 

8 This of course depends on georeferenced crime data being actually recorded and published, either by the 
police or by victimization surveys. While not a universal practice, some police departments do release their 
geocoded crime data, and crime maps have often been published (in varying granularities) by the police or 
third parties, such as news agencies or specialized websites.
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broader granularities would be required. Unsurprisingly, one possible solution for this 
is to allow granularities to vary across the study area; the problem then becomes one of 
finding a polygon mesh that provides adequate levels of robustness and uniformity for 
all its polygons. This approach will be investigated in future work.

Also, an issue of using uniform grids is that these units are abstract, not equivalent to 
real-world entities such as street segments, neighborhoods, etc., and that environmental 
data is often available only at these real units. However, while grids may not be equiv-
alent to real-world units, they could be considered adequate approximations in some 
cases. It is out of the scope of this study to test the quality of such approximations; how-
ever, it is worth mentioning that our methodology could be used to calculate robustness 
and uniformity for these real units (e.g. street blocks, neighborhoods), which can then 
be compared against each other and against different abstract grids. In addition, resam-
pling schemes may be used to convert data from one set of units to another. While this 
is an imperfect solution, it is often the case that different environmental indicators are 
given at different granularities, and the question is then what variable should be given 
priority in deciding the granularity. For most crime studies, we would argue that crime 
data should be given priority.

An additional limitation of using square cells (but also of using most areal units, such as 
census tracts) is that they assume crime events can happen anywhere inside the cell, which 
is not usually the case. Instead, crime locations will normally follow the shape of streets 
and roads (pointing to a potential benefit of using street segments). This may create some 
distortions in the uniformity tests and may also overestimate the concentration of crime, 
since areas that cannot possibly have any crime might be accounted for in the calculations. 
This may then indirectly impact evaluations of the law of crime concentration. However, it 
is worth noting that the observed concentrations in our study were already lower than the 
ratio predicted by that law; if it is being overestimated, then the real concentration is even 
lower. It is outside the scope of this paper to evaluate these distortions, but we consider that 
they probably affect more at the finer granularities, and it is unclear if that would affect the 
shape of the tradeoff curve and the choice of granularity.

Another limitation in our methodology is that it calculates crime rates at a place by 
counting how many points are found within each unit of analysis; as such, abrupt varia-
tions in crime rates are to be observed across boundaries. A common solution to this type 
of problem is to use kernel density estimation to generate a smooth field. However, it is 
not entirely clear how our estimated optimal granularity can be applied to a kernel den-
sity approach. On a preliminary assessment, it seems likely that the estimated granularity 
should influence the bandwidth of the kernel; however, how exactly it should be influenced 
and whether it should determine the pixel size and the kernel function shape is something 
yet to be investigated.

There is also a limitation in the specific methods selected for testing complete spatial 
randomness, as well as the specific methods for balancing uniformity and robustness. The 
methods employed for testing spatial randomness are two out of many existing in the lit-
erature; moreover, different tests have different limitations, encouraging the use and com-
parison of different tests. The specific tests were selected due to their low computational 
cost; however, future work should explore the effects of adopting different types of tests. 
Similarly, the approaches adopted for finding a balance between uniformity and robust-
ness are not necessarily exhaustive, with other methods possibly existing. Nevertheless, it 
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is important to remark that while each of the approaches considered had significant differ-
ences from a methodological point of view, they all yielded similar results, giving support 
to the main conclusion that an adequate granularity is neither the finest nor the coarsest.

Finally, our methodology makes few assumptions about the underlying phenomena, 
which may or may not be a limitation depending on the context. For instance, our method-
ology is particularly useful when data is limited and there is a lack of quantitative crimi-
nological knowledge about the study area. However, if we do have reasonable assumptions 
about the crime phenomena, other methodologies could in principle use this additional 
information to improve the robustness of the estimated crime rates, allowing finer granu-
larities. Examples of these techniques include Empirical Bayes smoothing (Anselin et al. 
2004; Filho et al. 2001; Santos et al. 2005) or Markov Chain Monte Carlo (Liu and Zhu 
2017; Zhu et  al. 2006). The cost, however, is introducing a bias in the case where the 
assumed prior information does not fit the phenomena being investigated or is unreliable 
for other reasons. This points to an additional tradeoff dimension of bias versus robustness 
(often referred to as bias versus variability). It is not the focus of this paper to explore this 
issue, but we recognize it as an additional important consideration to be made.

Appendix

This appendix expands on the results presented in the Results section, adding more details 
that were not included there for brevity and simplicity.

In Fig. 7, the graphs for internal uniformity and robustness to error varying with granu-
larity are shown for all three types of crime considered: burglaries, robberies, and homi-
cides (the simplified graph was shown in Fig. 4). All four variants for estimating internal 
uniformity are plotted, as well as the six variants for estimating robustness to error.

As can be seen from Fig.  7, the patterns displayed are similar for the three types of 
crime: internal uniformity decreasing as granularity becomes coarser and robustness to 
error increasing, though the granularity ranges in which that occurs vary. For robustness 
to error, all six variants yielded similar values; for internal uniformity, though, a slight 
but noticeable difference can be observed between nearest-neighbor and quadrat count 
approaches. Nevertheless, both exhibit the same general pattern of decreasing approxi-
mately at the same rate as granularity becomes coarser.

In Fig. 8, for each type of crime, plots for all three criteria proposed for estimating the 
optimal uniformity are shown. The optimal granularity according to each criterion is listed 
in Table 3 for each type of crime, as well as the mean values and standard deviations.

As can be seen from Table 3, for a given type of crime, the optimal granularity esti-
mated by each criterion is quite similar, while the mean optimal granularity differs signifi-
cantly for each type of crime.

Finally, Fig. 9 shows how this study’s methodology is not particularly sensitive to the 
value chosen for k in the robustness to error metric. The tradeoff analysis is shown for bur-
glaries using three different values of k: while the curves may be different, the estimated 
optimal granularities are similar (on the order of 300 m) for the different values of k.



438 Journal of Quantitative Criminology (2021) 37:419–443

1 3

Fig. 7  Internal uniformity and robustness to error estimated for three types of crimes: residential burglary, 
street robbery, and homicides
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Fig. 8  Optimal granularity estimated by three different criteria (balance of gains, product and sum criteria) 
for the three different types of crimes (burglary, robbery and homicides)



440 Journal of Quantitative Criminology (2021) 37:419–443

1 3

References

Alkimim A, Clarke KC, Oliveira FS (2013) Fear, crime, and space: the case of Viçosa, Brazil. Appl Geogr 
42:124–132

Andresen MA (2009) Testing for similarity in area-based spatial patterns: a nonparametric Monte Carlo 
approach. Appl Geogr 29(3):333–345

Andresen MA, Malleson N (2011) Testing the stability of crime patterns: implications for theory and 
policy. J Res Crime Delinquency 48(1):58–82

Andresen MA, Malleson N, Steenbeek W, Townsley M, Vandeviver C (2020) Minimum geocoding 
match rates: an international study of the impact of data and areal unit sizes. Int J Geogr Inf Sci 
5:1–17

Anselin L, Kim YW, Syabri I (2004) Web-based analytical tools for the exploration of spatial data. J Geogr 
Syst 6(2):197–218

Assunção RM, Neves MC, Câmara G, da Costa Freitas C (2006) Efficient regionalization techniques for 
socio-economic geographical units using minimum spanning trees. Int J Geogr Inf Sci 20(7):797–811

Atkinson PM, Sargent IM, Foody GM, Williams J (2007) Exploring the geostatistical method for esti-
mating the signal-to-noise ratio of images. Photogrammetric Eng Remote Sens 73(7):841–850

Baddeley A, Diggle PJ, Hardegen A, Lawrence T, Milne RK, Nair G (2014) On tests of spatial pattern 
based on simulation envelopes. Ecol Monogr 84(3):477–489

Beato Filho CC, Assunção RM, Silva BFAD, Marinho FC, Reis IA, Almeida MCDM (2001) Conglom-
erados de homicídios e o tráfico de drogas em Belo Horizonte, Minas Gerais, Brasil, de 1995 a 
1999. Cadernos de Saúde Pública 17(5):1163–1171

Beato C, Silva BFAD, Tavares R (2008) Crime e estratégias de policiamento em espaços urbanos. Dados 
51(3):687–717

Bergman M (2018) More money, more crime: prosperity and rising crime in Latin America. Oxford 
University Press, Oxford

Table 3  Optimal granularity for each type of crime, estimated with each criterion

Type of crime Total 
number of 
points

Optimal Granularity (meters) according to each criterion

Balance of 
gains

Product crite-
rion

Sum criterion Mean Standard 
Deviation

Burglary 44,560 250 355 260 278.75 51.21
Robbery 11,626 700 1100 800 825 189.30
Homicides 1826 1500 2000 1600 1650 238.05

Fig. 9  Tradeoff analysis for burglaries using three different values of k for the robustness metric (k  = 2, k  = 
3, and k = 4)



441Journal of Quantitative Criminology (2021) 37:419–443 

1 3

Bernasco W (2009) Foraging strategies of homo criminalis: lessons from behavioral ecology. Crime Pat-
terns Anal 2(1):5–16

Bernasco W (2010) Modeling micro-level crime location choice: application of the discrete choice 
framework to crime at places. J Quant Criminol 26(1):113–128

Bernasco W, Steenbeek W (2017) More places than crimes: implications for evaluating the law of crime 
concentration at place. J Quant Criminol 33(3):451–467

Blattman C, Green D, Ortega D, Tobón S (2017) Place-based interventions at scale: the direct and spillo-
ver effects of policing and city services on crime (No. w23941). National Bureau of Economic 
Research

Braga AA (2001) The effects of hot spots policing on crime. Ann Am Acad Political Soc Sci 
578(1):104–125

Braga AA, Hureau DM, Papachristos AV (2011) The relevance of micro places to citywide robbery trends: 
a longitudinal analysis of robbery incidents at street corners and block faces in Boston. J Res Crime 
Delinquency 48(1):7–32

Braga AA, Andresen MA, Lawton B (2017) The law of crime concentration at places
Brantingham PJ, Dyreson DA, Brantingham PL (1976) Crime seen through a cone of resolution. Am Behav 

Sci 20(2):261–273
Brantingham PL, Brantingham PJ (1993) Nodes, paths and edges: considerations on the complexity of 

crime and the physical environment. J Environ Psychol 13(1):3–28
Brantingham P, Brantingham P (1995) Criminality of place. Eur J Crim Policy Res 3(3):5–26
Budiharjo APW, Muhammad A (2017) Comparison of weighted sum model and multi attribute decision 

making weighted product methods in selecting the best elementary school in Indonesia. Int J Softw 
Eng Appl 11(4):69–90

Bunge W (1966) Theoretical geography, 2d rev. and enl. ed., Lund studies in geography. Ser. C, General and 
mathematical geography; no. 1. Royal University of Lund, Department of Geography, Lund, Sweden; 
Gleerup

Carter JG, Mohler G, Ray B (2019) Spatial concentration of opioid overdose deaths in Indianapolis: an 
application of the law of crime concentration at place to a public health epidemic. J Contemp Crim 
Justice 35(2):161–185

Castro MSM, Silva BFA, Assunção RM, Beato Filho CC (2004) Regionalização como estratégia para a 
definição de políticas públicas de controle de homicídios Regionalization as a strategy for the defi-
nition of homicide-control public policies. Cad Saúde Pública 20(5):1269–1280

Chainey SP, da Silva BFA (2016) Examining the extent of repeat and near repeat victimization of 
domestic burglaries in Belo Horizonte, Brazil. Crime Sci 5(1):1

Chainey S, Ratcliffe J (2013) GIS and crime mapping. Wiley, New York
Chainey SP, Pezzuchi G, Rojas NOG, Ramirez JLH, Monteiro J, Valdez ER (2019) Crime concentration 

at micro-places in Latin America. Crime Sci 8(1):5
Chainey SP, Serrano-Berthet R, Veneri F (2020) The impact of a hot spot policing program in Montevi-

deo, Uruguay: an evaluation using a quasi-experimental difference-in-difference negative binomial 
approach. Police Pract Res 5:1–16

Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in popula-
tions. Ecology 35(4):445–453

Clark CD, Ely JC, Spagnolo M, Hahn U, Hughes AL, Stokes CR (2018) Spatial organization of drum-
lins. Earth Surf Proc Land 43(2):499–513

Cohen LE, Felson M (1979) Social change and crime rate trends: a routine activity approach. Am Sociol 
Rev 44(4):588–608

Curman AS, Andresen MA, Brantingham PJ (2015) Crime and place: a longitudinal examination of 
street segment patterns in Vancouver, BC. J Quant Criminol 31(1):127–147

Degbelo A, Kuhn W (2012) A conceptual analysis of resolution. In: GeoInfo, pp 11–22
Duque JC, Anselin L, Rey SJ (2012) The max-p-regions problem. J Reg Sci 52(3):397–419
Eck JE, Weisburd D (1995) Crime and place, crime prevention studies. Monsey, NY: Criminal Justice 

Press. EckCrime and Place, Crime Prevention Studies 4
Eck J, Weisburd DL (2015) Crime places in crime theory. Crime and place: Crime prevention studies, 

vol 4
Fonseca F, Egenhofer M, Davis C, Câmara G (2002) Semantic granularity in ontology-driven geographic 

information systems. Ann Math Artif Intell 36(1–2):121–151
Frank R, Dabbaghian V, Reid A, Singh S, Cinnamon J, Brantingham P (2011) Power of criminal attrac-

tors: modeling the pull of activity nodes. J Artif Soc Soc Simul 14(1):6
Freitas EDD, Camargos VP, Xavier CC, Caiaffa WT, Proietti FA (2013) A systematic social observation 

tool: methods and results of inter-rater reliability. Cadernos de saude publica 29(10):2093–2104



442 Journal of Quantitative Criminology (2021) 37:419–443

1 3

Gerell M (2017) Smallest is better? The spatial distribution of arson and the modifiable areal unit prob-
lem. J Quant Criminol 33(2):293–318

Gibson C, Slothower M, Sherman LW (2017) Sweet spots for hot spots? A cost-effectiveness compari-
son of two patrol strategies. Cambridge J Evidence-Based Policing 1(4):225–243

Gill C, Wooditch A, Weisburd D (2017) Testing the “law of crime concentration at place” in a suburban 
setting: implications for research and practice. J Quant Criminol 33(3):519–545

Greig-Smith P (1952) The use of random and contiguous quadrats in the study of the structure of plant 
communities. Ann Bot 96:293–316

Groff ER, Lockwood B (2014) Criminogenic facilities and crime across street segments in Philadel-
phia: uncovering evidence about the spatial extent of facility influence. J Res Crime Delinquency 
51(3):277–314

Groff E, Weisburd D, Morris NA (2009) Where the action is at places: examining spatio-temporal pat-
terns of juvenile crime at places using trajectory analysis and GIS. In: Putting crime in its place, pp 
61–86. Springer New York

Guerry AM (1833) Essai sur la statistique morale de la France. Clearwater
Hipp JR, Kim YA (2017) Measuring crime concentration across cities of varying sizes: complications 

based on the spatial and temporal scale employed. J Quant Criminol 33(3):595–632
Johnson SD (2014) How do offenders choose where to offend? Perspectives from animal foraging. Legal 

Criminol Psychol 19(2):193–210
Kittur J, Vijaykumar S, Bellubbi VP, Vishal P, Shankara MG (2015) Comparison of different MCDM 

techniques used to evaluate optimal generation. In: 2015 international conference on applied and 
theoretical computing and communication technology (iCATccT), pp 172–177. IEEE

Kuhn W (2012) Core concepts of spatial information for transdisciplinary research. Int J Geogr Inf Sci 
26(12):2267–2276

Liu H, Zhu X (2017) Joint modeling of multiple crimes: a Bayesian spatial approach. ISPRS Int J Geo-
Inf 6(1):16

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceed-
ings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, No. 14, pp 
281–297

Maggi F, Bosco D, Galetto L, Palmano S, Marzachì C (2017) Space-time point pattern analysis of flaves-
cence dorée epidemic in a grapevine field: disease progression and recovery. Front Plant Sci 7:1987

Malleson N, Steenbeek W, Andresen MA (2019) Identifying the appropriate spatial resolution for the analy-
sis of crime patterns. PloS one 14(6):e0218324

Melia Y (2016) Multi attribute decision making using simple additive weighting and weighted product 
in investment. Int Acad J Bus Manag 3(7):1–15

Mohler G, Brantingham PJ, Carter J, Short MB (2019) Reducing bias in estimates for the law of crime 
concentration. J Quant Criminol 10:1–19

Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5):98
Oberwittler D, Wikström POH (2009) Why small is better: advancing the study of the role of behavioral 

contexts in crime causation. In: Putting crime in its place, pp 35–59. Springer New York
Openshaw S (1977) A geographical solution to scale and aggregation problems in region-building, par-

titioning and spatial modelling. Trans Inst Br Geogr 2(4):459–472. https ://doi.org/10.2307/62230 0
Openshaw S (1979) A million or so correlation coefficients, three experiments on the modifiable areal 

unit problem. In: Statistical applications in the spatial science, pp 127–144
O’Sullivan D, Unwin D (2014) Geographic information analysis. Wiley, New York
Perry GL, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial 

point patterns in plant ecology. Plant Ecol 187(1):59–82
Prefeitura BH (2017) Numero de bairros http://gesta ocomp artil hada.pbh.gov.br/estru tura-terri toria l/bairr 

os. (Accessed on November 20 2017)
Quetelet A (1842) A treatise on man and the development of his faculties. W. and R. Chambers, London
Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B (Methodol) 39(2):172–192
Robinson WS (1950) Ecological correlations and the behavior of individuals. Am Sociol Rev 15(3):68
Santos RB (2016) Crime analysis with crime mapping. Sage publications, New York
Santos AE, Rodrigues AL, Lopes DL (2005) Aplicações de Estimadores Bayesianos Empíricos para 

Análise Espacial de Taxas de Mortalidade. In: GeoInfo, pp 300–309
Sherman (1997) Policing for crime prevention. In: Lawrence WS, Denise CG, Doris LM, John EE, Peter 

R, Shawn DB (eds) Preventing crime: What works, what doesn’t, what’s promising, chapter  8. 
Washington, DC: National Institute of Justice, U.S. Department of Justice

Sherman LW, Weisburd D (1995) General deterrent effects of police patrol in crime “hot spots”: a rand-
omized, controlled trial. Justice Q 12(4):625–648

https://doi.org/10.2307/622300
http://gestaocompartilhada.pbh.gov.br/estrutura-territorial/bairros
http://gestaocompartilhada.pbh.gov.br/estrutura-territorial/bairros


443Journal of Quantitative Criminology (2021) 37:419–443 

1 3

Sherman LW, Gartin PR, Buerger ME (1989) Hot spots of predatory crime: routine activities and the 
criminology of place. Criminology 27(1):27–56

Sherman LW, MacKenzie DL, Farrington DP, Welsh BC (eds) (2002) Evidence-based crime prevention. 
Routledge, London, p 10

Silverman BW (1986) Density estimation for statistics and data analysis, vol 26. CRC Press, New York
Stell J, Worboys M (1998) Stratified map spaces: a formal basis for multi-resolution spatial databases. 

In: SDH, vol 98, pp 180–189
Taylor RB (1998) Crime and small-scale places: What we know, what we can prevent, and what else 

we need to know. In: Crime and place: plenary papers of the 1997 conference on criminal justice 
research and evaluation, pp 1–22. Washington, DC: National Institute of Justice

Tofallis C (2014) Add or multiply? A tutorial on ranking and choosing with multiple criteria. INFORMS 
Trans Educ 14(3):109–119

Umar F, Johnson SD, Cheshire JA (2020) Assessing the spatial concentration of urban crime: an insight 
from Nigeria. J Quant Criminol 5:1–20

Wang F (2012) Why police and policing need GIS: an overview. Ann GIS 18(3):159–171
Weisburd D (2015) The law of crime concentration and the criminology of place. Criminology 

53(2):133–157
Weisburd D, Bushway S, Lum C, Yang SM (2004) Trajectories of crime at places: a longitudinal study 

of street segments in the city of Seattle. Criminology 42(2):283–322
Weisburd D, Bruinsma GJ, Bernasco W (2009) Units of analysis in geographic criminology: historical 

development, critical issues, and open questions. In: Putting crime in its place, pp 3–31. Springer, 
New York

Weisburd D, Groff ER, Yang SM (2012) The criminology of place: street segments and our understand-
ing of the crime problem. Oxford University Press, Oxford

Weisburd D, Groff ER, Yang SM (2014) The importance of both opportunity and social disorganization 
theory in a future research agenda to advance criminological theory and crime prevention at places. 
J Res Crime Delinquency 51(4):499–508

Xiao N, Calder CA, Armstrong MP (2007) Assessing the effect of attribute uncertainty on the robustness 
of choropleth map classification. Int J Geogr Inf Sci 21(2):121–144

Zhang J, Goodchild MF (2002) Uncertainty in geographical information. CRC Press, New York
Zhu L, Gorman DM, Horel S (2006) Hierarchical Bayesian spatial models for alcohol availability, drug “hot 

spots” and violent crime. Int J Health Geogr 5(1):54

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Too Fine to be Good? Issues of Granularity, Uniformity and Error in Spatial Crime Analysis
	Abstract
	Objectives 
	Methods 
	Results 
	Conclusions 

	Introduction
	Background
	The Importance of Granularity
	Uniformity and Regionalization
	The Importance of Robustness to Error
	Issues of Granularity, Uniformity and Robustness in Spatial Criminology

	Methodology
	Estimating Internal Uniformity
	Estimating Robustness to Error
	Balancing Uniformity and Robustness

	Data
	Study Area
	Results
	Discussion
	Choosing a Granularity: Conciliating Multiple Perspectives
	Implications to the Law of Crime Concentrations
	Implications for Policing and Policy Making
	Limitations and Future Improvements

	References




