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Abstract 
Objectives The project aims to: (1) investigate structural and functional changes in an 
Australian drug trafficking network across time to determine ways in which such networks 
form and evolve. To meet this aim, the project will answer the following research ques-
tions: (1) What social structural changes occur in drug trafficking networks across time? 
(2) How are these structural changes related to roles/tasks performed by network members? 
(3) What social processes can account for change over time in drug trafficking networks?
Method The relational data on the network was divided into four two years periods. 
Actors were allocated to specific roles. We applied a stochastic actor-oriented model to 
explain the dynamics of the network across time. Using RSiena, we estimated a number of 
models with the key objectives of investigating: (1) the effect of roles only; (2) the endog-
enous effect of degree-based popularity (Matthew effect); (3) the endogenous effect of bal-
ancing connectivity with exposure (preference for indirect rather than direct connections); 
(4) how degree-based popularity is moderated by tendencies towards reach and exposure.
Results Preferential attachment is completely moderated by a preference for having indi-
rect ties, meaning that centralization is a result of actors preferring indirect connections 
to many others and not because of a preference for connecting to popular actors. Locally, 
actors seek cohesive relationships through triadic closure.
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Conclusions Actors do not seek to create an efficient network that is highly centralized at 
the expense of security. Rather, actors strive to optimize security through triadic closure, 
building trust, and protecting themselves and actors in close proximity through the use of 
brokers that offer access to the rest of the network.

Keywords Drug trafficking · Social network analysis · Dynamic · Stochastic actor-
oriented models · Longitudinal social network analysis

Introduction

Illicit networks, including drug trafficking, people smuggling, and terrorist networks, are 
often characterised as dynamic, fluid and adaptive. The flexibility of illicit networks allows 
them to quickly adapt to changing circumstances such as new business opportunities, com-
petition, and law enforcement interventions (Duijn et al. 2014; Kleemans and Van De Bunt 
1999; Raab and Milward 2003). Most previous studies of illicit networks, and particularly, 
drug trafficking networks, have employed cross-sectional methods in which one or more 
networks are examined either at a single time point or merged across a discrete period of 
time (e.g., Bright et al. 2012; Morselli 2010; Natarajan 2006; and see Bichler et al. 2017). 
However, this type of research does not permit the study of network dynamics. Only a 
handful of studies have investigated illicit networks using longitudinal methods to investi-
gate changes across time (e.g., Bichler and Malm, 2013; Bright and Delaney 2013; Broc-
catelli et al. 2016; Grund and Morselli 2017; Morselli and Petit 2007).

Although the study of network dynamics is not new to the study of social groups (see, 
for example, (Doreian and Stokman 1997; Holland and Leinhardt 1977; Snijders 2001; 
Wasserman 1980; Xing et  al. 2010) the longitudinal study of illicit networks is fraught 
with difficulty, especially with respect to data collection. Indeed, collection of viable data 
is arguably the main challenge facing researchers in the illicit networks field (see Mor-
selli 2009a). The collection of relational data about an illicit network is difficult even for 
cross-sectional research. However, the problem of data quality is exacerbated in the case 
of longitudinal research on illicit networks. In order to conduct a longitudinal analysis of 
an illicit network, researchers must not only collect relational data, but must also collect 
panel data on the network across multiple time periods. Nonetheless, given that dynamic 
network analyses have been termed the “holy grail” of networks research (Morselli 2009a; 
Wasserman et al. 2005), some researchers have attempted this daunting task. The current 
study adds to this small but growing set of studies with a focus on network dynamics in 
drug trafficking networks.

Social Network Analysis (SNA) is a set of analytic techniques used to describe social 
groups by examining the actors in the groups and the connections between them. SNA can 
reveal patterns in social structure or connectedness in the group (e.g., density, a measure 
of connectedness) and the positioning of actors within the group (e.g., degree centrality, a 
measure of the number of ties an actor has to other actors; betweenness centrality, a meas-
ure of the extent to which an actor lies on the shortest social paths between pairs of actors; 
see Freeman 1978). While SNA has traditionally been used to examine the structure of a 
network at a single point in time (or merged across time points), analytic techniques such 
as exponential random graph modelling (ERGM) (Frank and Strauss 1986; Snijders et al. 
2006; Lusher et al. 2013) and stochastic actor oriented modelling (SAOM) (Snijders 2001) 
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are enabling the study of social processes that generate network structures. The current 
study uses SAOM using the SIENA program to examine changes across time in an illicit 
network. SAOM has not been used previously to study the evolution of illicit networks, but 
has been used to study the longitudinal dynamics of other illicit activities [e.g., the trade of 
small arms across countries; (Bichler and Malm 2013; Snijders 2001) and adolescent delin-
quency (Dijkstra et al. 2010; Turanovic and Young 2016; la Haye et al. 2013)].

In cross-sectional (or static) SNA, dynamic processes that occur at the level of actors, ties, 
subgroups and networks can only be observed indirectly. The majority of cross-sectional stud-
ies on illicit networks to date have focused on global network structure (e.g., density and cen-
tralisation; Bright et al. 2012; Morselli 2009a) and on the strategic positioning of actors in 
the network (e.g., Baker and Faulkner 1993; Morselli 2009b). These studies help to identify 
typical structural characteristics of illicit networks. Some studies have concluded that illicit 
networks are sparsely connected and highly centralised, and that a minority of actors in the 
network have a disproportionally large number of ties (e.g., Baker and Faulkner 1993; Bright 
et al. 2012; Morselli 2009a, b; Cockbain et al. 2011; Varese 2011). Other studies claim that 
illicit networks are decentralised (see for example, Enders and Su 2007; see also discussion on 
the inconsistency of claims in Oliver et al. 2014). While such observations have improved our 
understanding of illicit networks, such studies are not able to shed light on the social processes 
involved in the formation and evolution of illicit networks (but see Grund and Densley 2015 
regarding detection of mechanisms in cross-sectional criminal networks).

The study of network dynamics has the potential to reveal social processes that facilitate 
the formation and growth of illicit networks and which have implications for investigation, 
prevention and interventions (e.g., Bichler & Malm, 2015). For example, McCulloh and Car-
ley (2011) analysed the Al Qaeda communication network across the period 1988–2004 utilis-
ing a procedure called “social network change detection”, a statistical approach for detection 
of “abrupt and persistent” changes in the group’s behaviour over time. They found that aver-
age betweenness and closeness centrality scores increased between 1988 and 1994 and then 
plateaued. Interestingly, the authors report a “critical, yet stable” change in the network in 
2000, a year before the 2001 terrorist attacks on the United States. In studies of the Provisional 
IRA and the inner circle of the Suffragette movement, researchers have attempted to capture 
change by studying changes in cross-sectional summary measures, such as betweenness, den-
sity, etc. (Crossley et al. 2012; Stevenson and Crossley 2014). These results underscore one 
potential use of dynamic modelling: the identification of critical changes that may foreshadow 
future action.

Despite recent progress in the field of illicit network dynamics, a number of questions 
remain unanswered. For example, what types of ties are common in illicit networks? What 
social processes account for the social structures present in illicit networks? How do some 
individuals increase the number of ties to other actors over time? What social processes facili-
tate the evolution of illicit networks? The current study makes an important contribution to the 
understanding of social processes that underlie social structures observed in illicit networks. 
The study extends SNA on illicit networks from descriptive accounts of social structure to 
an exploration of the social processes that drive such observed structure. This will aid our 
understanding of collaboration in illicit contexts, with implications for policy and practice 
in law enforcement and security contexts. The study of network dynamics may also help to 
generate interventions against illicit networks. For example, are different foci required for law 
enforcement intervention that occurs early in illicit network development compared with more 
evolved networks? The following section outlines some of the previous theory and research on 
the types of social processes that occur within illicit networks across time.
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Processes of Covert Tie Formation

Research and theories of illicit networks typically incorporate references to the dynamic 
nature of networks, and generate predictions about the kinds of social processes and social 
structures likely to predominate in illicit networks (e.g., Bouchard 2007; Crenshaw 2010; 
Milward and Raab 2006). There are a number of social process explanations that may 
account for the growth and evolution of illicit networks. For example, Diviak et al. (2017) 
derives a number of possible social mechanisms that are consistent with the efficiency/
security trade-off (see Morselli et al. 2007 for discussion of the trade-off). He identifies the 
balance between efficiency and security as the combination of different processes. With 
longitudinal data we can refine the combination of mechanisms that achieve this balance. 
We focus on four primary possibilities that emerge from the literature on illicit networks.

Preferential Attachment

Preferential attachment is a mechanism whereby actors joining a network prefer to con-
nect to actors who have a large number of existing connections. Originally coined by Mer-
ton (1968) and referred to as the Matthew effect, rich-get-richer phenomenon, or cumula-
tive advantage (de Solla Price 1976), this represents an endogenous network mechanism 
whereby actors gain new ties by virtue of already having many ties.

Preferential attachment could explain the high levels of centralisation in covert networks 
identified by some authors. More specifically, it is consistent with the degree distributions 
found in illicit networks by a number of authors (Bright et  al. 2015; Malm and Bichler 
2011; Natarajan 2006; Qin et al. 2005; Duijn et al. 2014; Varese 2012). Wood (2017) sug-
gests preferential attachment as an underlying mechanism for the formation of ties in a 
drug trafficking network—large hubs create efficiency and allow for direct control. Xu 
et al. (2004), however, found no evidence for preferential attachment in illicit networks and 
argued that in illicit networks, individuals may prefer not to be connected to a large number 
of individuals due to the risks involved in being so “visible” (see also Morselli 2010). A 
number of authors (e.g., Carley et al. 2002) suggest that the presence of hubs introduce vul-
nerabilities in criminal networks. Most argue that decreasing density reflects actors’ desire 
for secrecy (Everton 2009; Crossley et al. 2012). All else being equal, we do not expect to 
find support for preferential attachment in the illicit network under examination here, as 
connecting to high centrality actors becomes a handicap (Baker and Faulkner 1993; Mor-
selli et al. 2007). Visibility is the key driver of preferential attachment but also something 
that individuals aim to avoid—if someone is visibly popular in a criminal network, this 
person is also a liability.

Triadic Closure

Trust is critical to how people deal with uncertainty in social situations. Individuals who 
tend toward criminality are unlikely to be “reliable, trustworthy and cooperative” (Gottfred-
son and Hirschi 1990). The criminal context is fraught with uncertainty, distrust, suspicion 
and paranoia (Gambetta 2009). Complicating matters further, in the criminal world, actors 
have no recourse to legal avenues of dispute resolution. This leaves actors in a quandary: 
how does one evaluate the trustworthiness of potential collaborators? Some possibilities 
are: reputation, observations of previous behaviour, and observations of current behaviour. 
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Trust becomes an important commodity and may drive relational structures in networks. 
Indeed, Von Lampe and Ole Johansen 2004 note that it is “rational to assume that the trus-
tee will not want to put his or her reputation in jeopardy through disloyal behaviour.” (p. 
170). Triadic closure may facilitate trust in illicit networks (e.g., Grund and Densley 
2015). Triangles as a closed social structure, offer a secure setting in which trustworthy 
or untrustworthy behaviour can be observed and used to render decisions to collaborate or 
not. This is illustrated in Fig. 1. In the social structure shown here, A’s behaviour toward 
C is observed by B. A is therefore motivated to behave in a trustworthy fashion toward C 
in order to prove his trustworthiness to B. Further, triads enhance trust by facilitating a 
collective responsibility and commitment to illicit activities; what we might call collective 
responsibility and culpability. In the current study, we seek to determine whether there is 
a preference for triadic closure in the network. While triadic closure is a prerequisite for 
trust-worthy ties, clustered regions (cohesive subgroups or communities) create redundan-
cies and increase the risk of detection (Diviak et al. 2017; Robins 2009).

Social Distance and Indirect Connections

As mentioned, actors in illicit networks must balance efficiency with security (Morselli 
et al. 2007).To prioritise security, actors may prefer to be separated by a two path rather 
than having direct connections with others. This creates social distance and a buffer (i.e., 
by intermediaries or brokers) that can enhance security. For example, in Fig. 2 below, if C 
is arrested, A is insulated by the presence of the intermediary B. “Distance two” is a SNA 
metric that is defined by the number of actors to whom an actor is indirectly tied (through 
one intermediary). To balance security with efficiency, actors may prefer to connect with 
many others in the network, but will do so via intermediaries rather than directly. In illicit 
network then, “distance two” may represent an active attempt by actors to strike a balance 
between the efficiency that is facilitated by many connections, and the security provided 
by indirect ties. A preference for indirect ties may provide incentives and opportunities for 
some individuals to act as brokers or intermediaries between other actors. The desire for 

Fig. 1  Triadic closure A
B

C

Fig. 2  Distance Two

A B C

1 2
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many indirect connections may result in the presence of hubs, formed not by preferential 
attachment, but emergent from attempts by actors to balance security and efficiency.

Roles and Supply Chains

Previous research on group structure and formation suggests that diverse and complemen-
tary skills can enhance the capacity of a group to undertake complex tasks (e.g., Bales 
1953; Ruef et al. 2003). According to Brinton, Milward and Raab (2006), illicit networks 
are characterised by a division of labor between actors who play different roles. In addi-
tion, Bakker et al. (2012) theorise that illicit networks will be characterised by few direct 
ties, but will show “transitory shortcuts” that connect different groups within the network. 
They also predict that illicit networks will build in redundancies in skills that render the 
network less efficient. They make specific predictions regarding replacement of skills: “the 
capability to maintain, replace or substitute nodes and linkages that have disappeared is the 
key to understanding the development of operational activity after a shock. Having a suf-
ficient number of individuals who have adequate skills and are willing to risk their freedom 
and their lives is a necessary condition for dark networks to engage in any kind of action” 
(p. 51). A range of different roles have been identified in a number of different illicit net-
works including heroin trafficking (Natarajan 2006), vehicle ringing operations (Morselli 
and Roy 2008), terrorist networks (Gilroy 2013), and methamphetamine trafficking (Bright 
et al. 2012). For example, some actors undertake a role as “courier”, conveying drugs or 
money between locations. Other actors have specialised skills in the manufacture of illicit 
drugs. Previous research suggests that actors will connect with other actors who play dif-
ferent roles (usually those who play roles that are temporally close in the supply chain) in 
order to facilitate the crime commission process (e.g., Bright and Delaney 2013; Malm and 
Bichler 2013).

Each role may be associated with a different balance of considerations of efficiency and 
security. For example, a labourer may have a larger number of ties to enhance efficiency of 
operations but this can increase vulnerability. Conversely, methamphetamine cooks may 
have a smaller number of ties and show increased transitivity (i.e., increased emphasis on 
trust) to ensure security and reduce probability of detection and arrest. Individuals who 
play particular roles may have different tendencies to connect with others, both in terms 
of the number of connections they tend to form with others, and the particular roles with 
whom they tend to make connections (see Bright and Delaney 2013; Morselli and Roy 
2008).

In summary, previous theory and research suggests three potential drivers for relational 
structures in illicit networks: (1) trust and triadic closure; (2) balancing security and effi-
ciency; and (3) roles and supply chains.

Current Paper

Using a stochastic actor-oriented model (SAOM), the current study examines a metham-
phetamine manufacture and trafficking network that expanded from small scale social 
dealing to a large scale profit-motivated business. Dynamic network analysis was used to 
evaluate both overall network structure and actor level characteristics. This paper aims to 
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determine which social processes (e.g., preferential attachment, triadic closure, and “dis-
tance two”) guide the tie-formation in the drug trafficking network?

Hypotheses

The current project tests the following three hypotheses:

 2a. Actors will form triadic relationships with others (to facilitate trust and security);
 2b. Actors will form indirect ties with others but avoid too visible others (to facilitate 

efficiency while maintaining security);
 2c. Actors will form ties with other actors who play different roles.

Method

Data

Data were extracted from file records of the Office of the Director of Public Prosecutions 
in the state of New South Wales, Australia. Files related to the investigation and prosecu-
tion of a group of individuals who were involved in the sourcing of precursor chemicals 
and laboratory equipment, manufacture of methamphetamine, and distribution of metham-
phetamine at wholesale and retail market levels. We requested files for two of the individu-
als deemed by law enforcement agencies to have been two of the most active and impor-
tant individuals in the network (actors 33 and 61). We made the case file selection on this 
basis in an attempt to enhance our prospects of revealing as much of the network as pos-
sible. Files included a large number (thousands) of documents detailing the activities of, 
and connections between, the network of individuals. Files included a range of documents: 
transcripts from listening devices and telephone intercepts, telephone call records, police 
surveillance reports, witness statements, sections of trial transcripts, and judges’ sentenc-
ing comments. Each document was assessed as to whether it contained relevant informa-
tion (i.e., information on the actors, relational data on links between actors, and informa-
tion about resources possessed by actors).

Although the files were marked with the names of these two individuals, they included 
a range of data relating to the broader activities of the network and to connections between 
actors. In this sense, the activities of actors 33 and 61 define the context of the ties—much 
like a workplace may define nodes in an organisational network—but not in the straightfor-
ward manner of a snowball sample or overlapping egonets. If data are aggregated across 
time, the actors who are directly connected to at least one of 33 or 61 do have higher aver-
age degree (5.75) than actors who are neither directly connected to 33 nor 61 (average 
degree: 4.1) but this may equally reflect a core-periphery. There are also indirectly con-
nected nodes that have a higher betweenness than directly connected nodes (betweenness 
calculated on the induced subgraph that omits 33 and 61).

A total of 86 actors were identified. All actors named in files as contributing to the illicit 
activities of the group were included in the network. Ties between actors were considered 
present if there was any information in files that the two actors communicated with each 
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other, had met each other, or had exchanged goods or information. This included direct 
evidence (e.g., photographed or observed together by police) or indirect evidence (e.g., 
someone provides a statement that two actors knew each other or had met each other). We 
consider ties as being states rather than events (see Morselli and Petit 2007; Grund and 
Densley 2015). As such, the presence of a tie is judged based on an overall assessment of 
the material and not necessarily on any individual instance of contact such as a wiretapped 
conversation. Based on the state of the network and its nodes, data were grouped according 
to four phases or waves: (Wave 1) 1991–1992, (Wave 2) 1992–1993, (Wave 3) 1994–1995, 
(Wave 4) 1995–1996.

Data were recorded regarding the role played by each actor.1 Information extracted from 
files was used to allocate each actor to a specific role. We started by allocating individuals 
to roles based on categories used in similar research (Bright et al. 2012), adding categories 
if required. Due to the nature of the data source, it was not possible to identify the roles 
played by some actors. Actors for whom role information was not available for a particular 
wave of data were given a code in the data to indicate that such data was missing.

We determined when actors joined and exited the network across the four waves. The 
files included sufficient information for us to pinpoint when actors joined and left the net-
work across these time points. Table 1 displays descriptive statistics for each wave. Some 
actors were absent from the network in between one and three waves. Each time period was 
treated as separate for the purposes of data extraction. If there was no mention of an actor 
in the documentation across a particular time period, they were considered not to be part of 
the network across that wave. For example, actor A may have been mentioned in the docu-
mentation between 1991–1992, 1992–1993, and 1994–1995, but not in 1995–1996. This 
actor would be not be considered to have been a network member in 1995–1996.

Analytic Plan

The main aim of the analysis was to explain the evolution of the network and to account 
for the formation and termination of relationships across the set of actors. We used 
RSiena to explore network dynamics and network evolution. Specifically, we estimated 
five models with different combinations of triadic closure, preferential attachment, indi-
rect ties, and role-heterophily. SAOM (Snijders 2001) are a class of statistical network 

Table 1  Descriptive network 
statistics across the four time 
periods

*At time 2 the median path length was undefined due to a large num-
ber of pairs in different components

Time 1 Time 2 Time 3 Time 4

No. of nodes 19 26 32 56
No. of links 26 40 90 142
Density 0.15 0.12 0.18 0.09
No. of components 4 4 1 1
Av. Path length 3 –* 2 2
Av. degree 2.74 3.08 5.63 5.07
Degree cent. 0.45 0.34 0.39 0.67

1 Roles included resource provider, labourer, cook, manager, dealer, security, corrupt official.
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models for longitudinal data that assume a network changes from “time 1” to “time 2” 
through a series of incremental changes. These incremental changes are called “mini-
steps” and are conceived as being the change of exactly one tie-variable. More specifi-
cally, change is modelled as a combination of a process for the decision to change and a 
model for what change is actually made given that a change is permitted. Here we follow 
the model formulation for undirected networks proposed by (Snijders and Pickup 2017), 
where ties are updated as a result of a ‘negotiation’ between the two actors. The decision 
process is constructed according to the “Unilateral initiative and reciprocal confirmation 
rule” (Ripley et al. 2017). In this model, one actor (the focal actor) is given an opportu-
nity to change one of their tie-variables. The focal actor decides to make the change that 
is most satisfactory to them. If the change is the dissolution of a tie, the tie is dissolved. 
However, if the change is the creation of a tie, the actor at the other end of the tie (the 
“alter”) must first agree. The focus of interest is to model ‘satisfaction’ with the outcomes 
of different decisions, which is modelled as a linear combination of network statistics 
fi(x) = �1si,1(x) + �2si,2(x) +⋯ + �psi,p(x) , weighted by statistical parameters that indicate 
how important the different local structures are to the focal actor. The alter agrees to the 
tie being created with probability fj

(

x+
)

− fj(x
−) , on the logit scale, where x+ and x− is the 

network with and without the tie {i, j} present, respectively. Similar to other discrete-choice 
models, the conditional probabilities of changes to tie-variables take the form of condi-
tional logistic regression.2 We estimate the model parameters using the Bayesian inference 
scheme of Koskinen and Snijders (2007) as implemented in the function sienaBayes in 
RSienaTest (the Bayesian inference procedure offers the advantage that it is more efficient 
than the method of moments and that it admits consistent inference under data missing at 
random).

Missing Data Approach

An actor is assumed to be part of the period [t, t + 1] if the actor is observed in at least one 
of the waves t and t + 1. This means that actors can be present in one period but absent 
in another (similar to the method used with changing composition). However, an actor 
is not forced to enter the network with degree zero. When an actor is absent at wave t 
(t + 1) but present at t + 1 (t), all of their ties at wave t (t + 1) are assumed to be missing 
and are imputed by draws from the full conditional posterior given everything else. Under 
the assumption of ‘missing at random’, this is the statistically optimal way of dealing with 
missing ties (Rubin 1976).3 Some actors were absent in between one and three waves.

2 A number of longitudinal models for networks have been proposed. We chose here a continuous-time 
framework rather than the discrete-time model proposed in Robins and Pattison (2001) and elaborated in 
Krackhardt and Handcock (2007) and Hanneke and Xing (2007). Snijders et al. (2010) discuss the princi-
pled differences between modelling tie-change in continuous- and discrete-time. This is further elaborated 
in Block et al. (2018). Furthermore, we chose an actor-oriented framework over a tie-based model. Block 
et al. (2017) provide a thorough comparison and a number of clarifications as to the differences and simi-
larities between tie-based and actor-based models.
3 Currently missing ties at the start of a period are treated in a close approximation to this scheme. See 
further in Ripley et al. 2017. For the first observation Krause et al. (2017) follow Koskinen et al. (2015) 
and assume an exponential random graph for the ties in order to account for missings. Missingness in sub-
sequent observations is handled using multiple imputation and not, as here, treated in a fully Bayesian way.
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For assessing the goodness-of-fit (GOF) of a model, you need to compare networks sim-
ulated from the fitted model conditionally on the observed data as well as unconditionally 
(as in Koskinen et al. 2013).

Results

SAOM

To investigate if preferential attachment is a plausible generative mechanism for the net-
work, we disaggregate the network in time, allowing us to observe and analyse how the net-
work was actually formed. If preferential attachment were driving the network, we would 
expect to see actors having a preference for connecting to high-degree nodes over time.

To make our four time-slices amenable to analysis using SAOMs, we made some 
assumptions about missing data and how consecutive waves relate to each other. As 
described above, for pairs of consecutive waves we define the actor set as those actors 
whose ties are observed in at least one of the waves. Table 2 gives a break-down of the 
actor numbers by wave and interval. By dividing the number of jointly observed actors 
(those that are present in both t and t + 1) by the combined number of actors (those that are 
present in at least t or t + 1 or both), we obtain the proportion of actors that are observed in 
both consecutive waves as 50, 53, and 17%. The change in the subgraphs induced by the 
actors that were consecutively observed is fairly constant and the Jaccard indices4 indicate 
a relatively high degree of stability.

Table 2  Summaries of dynamic 
data

t → t + 1 # observed actors # observed ties

t t + 1 Joint Combined t t + 1 Jaccard Index for 
jointly observed

1 → 2 19 26 15 30 26 40 0.67
2 → 3 26 32 20 38 40 90 0.51
3 → 4 32 56 13 75 90 142 0.65

Fig. 3  Schematic representation of missingness pattern in adjacency matrices for waves 3 (left) and wave 
4 (right)

4 Jaccard indices are used to measure the amount of change from one network panel to the next. Higher 
values are indicative of greater stability.
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Figure  3 illustrates the pattern of missingness and how consecutive waves are struc-
tured. Observed actors are indicated by white areas and correspond to 42.7% for wave 3 
and 74.7% for wave 4. The tie variables observed in both waves is indicated by grey hash 
( ) corresponding to 17.3% of actors. As the missing actors are to be considered non-
respondents, there are no tie-variables for missing actors. Hence, while 42% of actors are 

observed in wave 3, only 
(

32

2

)

= 496 tie-variables out of 
(

75

2

)

= 2775 tie-variables 

(i.e., 18%) are observed in wave 3. The networks resulting from pairwise analyses are dis-
played in Fig. 4. From top to bottom, networks at waves 1, 2, 3 and 4 are displayed pairwise 
after missing data arrangement. Colours of nodes correspond to roles, observed ties are 
indicated by black lines and missing tie-variables are indicated by grey lines. The network 

t1 t2

t2 t3

t3 t4

Fig. 4  Incomplete network over time (pairwise analysis)
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sizes for these pair-wise defined waves are 30, 38, and 75, respectively. While the combina-
tion of changing actor-sets and missing data adds considerable uncertainty in the estima-
tion process, disaggregating the cross-sectional network still gives us more information on 
any given dyad. 

The results from the five models are provided in Table 3. The similarity in Jaccard coef-
ficients (reported in Table 2) is reflected in the similarity of the estimated rate parameters 
in Table 2. At any given time interval, an actor is given on average eight opportunities to 
change their ties. To parse out whether the model is driven by purely dyadic mechanisms5 
or extra-dyadic endogenous processes,6 the models are divided into two main classes: 
dyadic and endogenous dynamics. By dyadic mechanisms, we refer to tie-formation pro-
cesses that only depend on properties of the nodes of the tie. For example, the effect on tie-
formation of two actors’ Roles does not depend on the roles of other actors. Extra-dyadic 
processes are those where the actions of one pair of actors are affect by the existence of 
a tie for another pair of actors. A typical example is triadic closure (Fig. 1), whereby the 
existence of a tie from A to B and from B to C increases the probability of the tie A to C.

Dyadic Mechanisms

Model One displays the effect of the dyadic mechanism role heterophily—the type of role 
played by the actors (same role is treated as a time-varying dyadic covariate). The coef-
ficient for ‘Role match’ is negative with high posterior probability suggesting that actors 
chose to form and maintain ties with alters who undertook roles that were different to the 
roles they themselves undertook.

Endogenous Dynamics

The tendency towards local closure (i.e., closure within the network surrounding an actor) 
is included in all structural models (the effect is called ‘transitive triads’ in RSiena). There 
is strong evidence that actors show a preference for closure in all models. In addition to 
local closure we want to test two competing mechanisms that explain the emergence of 
hubs. The first is preferential attachment, here modelled using the preference for having 
ties to actors with a high number of direct connections to others (in RSiena sqrt degree of 
alter). From Model 3, we conclude that there is no evidence for any tendency towards pref-
erential attachment (the posterior probability that the parameter is positive is only 0.91). 
Model 4 shows that the evidence for the preference to have indirect ties is much stronger—
the coefficient for actors at distance 2 (‘number of actor pairs at dist 2’) is positive with 
probability one (up to the computational precision of the MCMC inference scheme).

While evidence seems to be in favour of indirect ties explaining the emergence of hubs, 
a fair comparison can only be had from including both of the effects (distance 2 and pref-
erential attachment) in the same model. In the complete model (model 5) we include all 
of the investigated effects. Controlling for dyadic effects, triadic closure, and preferential 
attachment the preference for having indirect ties is increased in magnitude. Consequently, 
preferential attachment does not explain actors’ preference for having indirect ties. Con-
versely, dyadic effects, triadic closure, and the preference for having indirect ties changes 

5 Referred to as “Dyadic mechanisms” in the sequel.
6 Referred to as “Endogenous dynamics” in the sequel.
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the sign of preferential attachment. Thus, given the actor’s preference for local closure and 
their preference for being indirectly tied to many, actors actively avoid having ties to high-
degree nodes [the coefficient is negative with probability 1 and the 95% and 99% posterior 
probability intervals are (− 1.41, − 0.85) and (− 1.53, − 0.78) respectively].

Goodness‑of‑Fit

The relatively high turn-over of actors in the network warrants a careful examination of 
the fit of the model. Here we focus on the transition from wave three to wave four, as this 
is the transition with the smallest overlap between observed actors. Figure 5 provides five 
illustrative examples of how goodness of fit is appraised by comparing observed networks 
(where ties are imputed from the conditional posterior distribution in the course of estima-
tion) with networks simulated from the fitted model.

 Figure 6 shows a reasonable overlap in the goodness-of-fit for the degree distribution 
for model 5. There is considerable uncertainty for degrees in the middle range (the bulge 
roughly in the range 20–40) of the predictive distribution. For model 6 (plot not included 
here), when dummies for the case selection are included, the uncertainty in the middle 
range of degrees decreases and the overlap of the predictive distribution increases.

Central to the interaction between indirect ties and preferential attachment in the model 
is the distribution of distances. The GOF for the geodesic distances (see Fig. 7) suggest a 
good fit of the model. The GOF distribution for the triad census (not reported here) also 
suggests good fit.

Sensitivity to Foci

Given the nature of the selection of actors based on two cases, there are two actors that 
have a special status in the network. In studies of egonets it is know that analysing egonets 
as if they were networks obtained from a network census biases and sometimes make your 
analysis meaningless (McCarty 2002; McCarty and Wutich 2005; Crossley et  al. 2015). 
Here the central individuals in the cases are also central in the generated network at wave 
4 but they are not, like egos in egonets, connected to everyone. Nevertheless, given their 
status in the investigations, the robustness of results to the positions of these individuals 
need to be appraised. Model 6 adds two dummies for actors 33 and 66 to control for the 
possibility of ties to these actors being contingent on the case selection. Some of the other 
affects are attenuated by the inclusion of these effects and the preference for having ties to 
these two actors is strong.

Discussion

Overall, there was a relatively high degree of stability in the network across time. For con-
secutive waves, transition 1–2 had 50% of actors in consecutive waves, and transition 2–3 
had 53% of actors in consecutive waves. In transition 3–4, a relatively smaller proportion 
(17%) of actors were seen in consecutive waves. This final transition represented a shift to 
large scale, profit motivated methamphetamine production and trafficking, including the 
addition of a large number of actors. A large number of actors enter the network at wave 4, 
primarily being added to the periphery of the network. The highly central actors (or hubs) 
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tend to be seen in both waves 3 and 4, or in wave 3 only suggesting that central actors are 
already in place by wave 3 and 4, and that new actors are added to the periphery only.

The results provide partial support for our hypotheses.  It is clear that clustering is 
explained by a combination of triadic closure and preference for indirect ties, confirming 

Fig. 5  Illustrative realisations 
from goodness-of-fit distribu-
tions. Model-based imputed 
networks at wave 4 (left panels) 
and corresponding simulated 
networks from the posterior pre-
dictive distribution (right panels)
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hypotheses one and two. While the actors prefer to close open two-paths to form triangles, 
there is also a preference for acting via proxies, having ties to actors who are themselves 
highly connected. Since we include both the distance two effect and the preferential attach-
ment effect and only the former is positive, this indicates a preference for having indirect 
ties to many. The negative preferential attachment effect also gives us more confidence in 
the presence of triadic closure as it acts as a control for the presence of open two-paths.

Fig. 6  Goodness-of-fit for the 
degree distribution. Approximate 
99% prediction intervals for the 
complementary cumulative dis-
tribution functions (the median 
for the imputed distribution in 
red) (Color figure online)

degree
0 20 40 70

Replicate Network
Obs imputed

1 2 3 4 5 Inf
distance

Replicate Network
Obs imputed

Fig. 7  Goodness-of-fit for the distribution of geodesic distances. 95% prediction intervals for the comple-
mentary cumulative distribution functions



253J Quant Criminol (2019) 35:237–258 

1 3

Our results support hypothesis three, confirming that actors will form ties with those 
who play different roles in the drug trade. Part of this result may be accounted for by miss-
ing actors in subsequent time periods, but the consistent negative role homophily result 
from model one and model five suggests that there is a clear tendency for individuals to 
connect with those who have different roles rather than to connect with those who play the 
same role.

Taken together, these results paint an interesting picture of how a drug trafficking net-
work balances efficiency with security. Over time, the network sought to increase profits 
and maximize efficiency. The literature on the security/efficiency trade-off for illicit net-
works is contradictory when it comes to which structural characteristics represent each of 
these concepts—some suggest that centralization (presence of hubs and decreased density) 
reflects more efficient and less secure networks (Bright and Delaney 2013; Calderoni et al. 
2014; Mainas 2012; Malm and Bichler 2011; Morselli et al. 2007) while others promote 
the opposite view (Duijn et  al. 2014; Morselli 2010; Morselli and Petit 2007; Tenti and 
Morselli 2014). The current study shows that this trade-off should not simply be measured 
in terms of centralization, but rather the type of connections that promote network centrali-
zation. The preference for indirect connections may be interpreted as a Yogi Berra effect 
(Hedström and Swedberg 1998) where an actor ‘is so popular that no one has ties to them’, 
but the combination of effects implies a more complex situation where actors are seeking 
to maximize efficiency, while still maintaining secrecy. Three main processes appear to 
account for the pattern of results: (1) being tied to actors who are tied to actors you are tied 
to creates clusters or groups; (2) actors pursue a strategy of keeping the network connected 
by minimising the number of ties outside of their local clusters; and (3) brokers emerge as 
contacts between otherwise disconnected local clusters.

Results suggest that there is no justification for assuming that preferential attachment 
operates in drug trafficking networks, particularly when the formation of ties are related 
to considerable costs (e.g., of discovery, arrest, prosecution). Although preferential attach-
ment may account for the growth of evolution of other social networks, the specific effi-
ciency-security trade-off characteristics of drug trafficking networks brings into play alter-
nate social processes that facilitate actor connectivity. The analysis revealed that actors 
appear to eschew direct connections with high degree actors and prefer indirect connec-
tions to enhance security, triadic connections to enhance trust, and connections with actors 
who play a different role to their own, to enhance network efficiency.

Limitations

There are number of limitations that need to be taken into account when interpreting our 
results. First, in general, due to the undirected nature of ties, we cannot strictly infer the 
presence of preferential attachment. That is, we cannot determine whether less popular 
nodes prefer to attach to popular nodes or whether popular nodes like to attach themselves 
to each other. Here the effect is negative suggesting either negative cumulative advantage 
(popular nodes like to attach themselves to less popular nodes) or an overall preference 
against having ties to high-degree nodes. For the decision rule used here (model type = 3), 
dissolving a tie does not require confirmation by the alter; however, we cannot infer the 
exact mechanisms here in actor-oriented terms as either side of the dyad may initiate the 
change.

Second, there is always the risk that interpretations are affected by missing data. Fig-
ure 4 provides an illustration of how missingness is reflected in the pair-wise analysis pro-
cedure. The figure gives a clear picture of the effect of missing actors over time in the 
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sense that it is obvious that actors that are not necessarily peripheral immediately before/
after they disappear/appear. Furthermore, it would seem likely that some of the missing-
ness may be conceived of as actors entering and then leaving the network. This changing 
composition may or may not be endogenous to the network dynamics. The rich forms of 
missing data that the network displays points to some issues that are common to the study 
of covert networks. At the very least, the temporal dimension has allowed us to make a 
slightly more principled analysis of the drug trafficking network in the face of missing data. 
Criminal justice data may include unintentional errors (e.g., transcription errors) and inten-
tional misinformation (e.g., false names). Criminal justice data sets may suffer from miss-
ing information including missing actors or information about actors, and missing links 
between actors. Criminal justice data may incorporate biases due to the focus of the police 
investigation into members of the drug trafficking network. When some actors (but not 
others) are the focus of the investigation, more information will naturally be collected on 
these actors, including more information about connectivity to others in the network. This 
can translate into artificially inflated centrality scores.7 Nonetheless, the data we collected 
included information relating to the police investigation of the entire network, included a 
range of sources (e.g., witness statements, judges’ comments, police interviews), and con-
tained detailed information on the majority of network participants, which mitigates (but 
not eliminate) this data limitation.

Finally, the generalisability of the results is, at best, limited. The dataset relates to an 
Australian drug trafficking group that manufactured and distributed methamphetamine. 
Further research is needed to determine the extent to which our findings will generalise 
to networks that traffic other drugs (e.g., marijuana), other illicit commodities (e.g., stolen 
motor vehicles), and ideologically based networks (e.g., terrorist networks).

Implications for Policy/Practice

The results have important implications for law enforcement policy and practice. First, 
actors tend to connect with others who are in key roles along the supply chain. Target-
ing some key connections in drug trafficking networks (e.g., between supply of precursor 
chemicals and clandestine laboratories) is likely to not only disrupt the operation of illicit 
networks but also to dismantle the network. Second, indirect connections are a key social 
structure within drug trafficking networks. Targeting brokers may be an effective strategy 
to dismantle such networks at all stages of network development (see Bright et al. 2017). 
Third, trust is important for the resilience of drug trafficking networks. Law enforcement 
interventions should target trust within such networks (e.g., undermining trust through 
informants) or remove actors based on trust relationships (e.g., triadic structures). Fourth, 
the results underscore the importance of the collection of intelligence on connectivity of 
the network and on the individual characteristics (e.g., roles) of individual actors. Social 
network analysis should be used by intelligence agencies and law enforcement agencies to 
facilitate intelligence collection and to guide prevention and intervention strategies.

7 The results of Model 5 remain largely unchanged when an effect is added for the ‘popularity’ of the focal 
actors, suggesting that the other effects are robust to the centrality of the individuals whose cases-filed data 
were extracted from.
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Conclusions

In this article we reported the results of an analysis of a drug trafficking network that incor-
porated a temporal dimension. We showed that:

(1) the network was not formed as a result of preferential attachment. Indeed, results reveal 
that other social processes are at play, probably strongly influenced by the illicit nature 
of the activities of the network and the threat of detection and incapacitation.

(2) the presence of high degree nodes is an artefact of a mechanism of indirect tie for-
mation; a type of social structure used to increase security (with associated costs in 
efficiency).

(3) actors’ interactions are based primarily on enhancing security and trust. There is a clear 
tendency toward transitive closure and brokerage (indirect connections).
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