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Abstract
Objectives The crime and place literature lacks a standard methodology for measuring

and reporting crime concentration. We suggest that crime concentration be reported with

the Lorenz curve and summarized with the Gini coefficient, and we propose generalized

versions of the Lorenz curve and the Gini coefficient to correct for bias when crime data

are sparse (i.e., fewer crimes than places).

Methods The proposed generalizations are based on the principle that the observed crime

concentration should not be compared with perfect equality, but with maximal equality

given the data. The generalizations asymptotically approach the original Lorenz curve and

the original Gini coefficient as the number of crimes approaches the number of spatial

units.

Results Using geocoded crime data on two types of crime in the city of The Hague, we

show the differences between the original Lorenz curve and Gini coefficient and the

generalized versions. We demonstrate that the generalizations provide a better represen-

tation of crime concentration in situations of sparse crime data, and that they improve

comparisons of crime concentration if they are sparse.

Conclusions Researchers are advised to use the generalized versions of the Lorenz curve

and the Gini coefficient when reporting and summarizing crime concentration at places.

When places outnumber crimes, the generalized versions better represent the underlying

processes of crime concentration than the original versions. The generalized Lorenz curve,

the Gini coefficient and its variance are easy to compute.
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Introduction

A defining feature of the criminology of place is its focus on the analysis of crime

measured at micro-geographic units. Recently, Weisburd introduced the ‘law of crime

concentration at place’. It states that ‘‘for a defined measure of crime at a specific

microgeographic unit, the concentration of crime will fall within a narrow bandwidth of

percentages for a defined cumulative proportion of crime.’’ (Weisburd 2015: 138). The

formulation of the law is an important milestone in the evolution of the crime and place

literature. It represents a strong claim regarding the ubiquity of crime concentration at

places. To underline this, Weisburd (2015: 151) writes ‘‘The data suggest that the law of

crime concentration is a ‘‘general proposition of universal validity’’ (Sutherland 1947: 23),

analogous to physical laws observed in the natural sciences’’.

Although crime concentration is one of the few stylized facts generally accepted in the

criminology of place, the field has not yet developed common standards for reporting and

summarizing crime concentrations. The law of crime concentration at place does not

prescribe how crime concentration should be measured, although its wording suggests that

it is best captured by relating cumulative percentages of places to cumulative percentages

of crimes.

Indeed, most studies of crime concentration at places report their results using cumu-

lative percentage statements of the form ‘‘Y percent of crime occurs in the X percent most

targeted places’’. However, there appears to be no accepted standard for choosing par-

ticular reference values of either X or Y, other than a slight tendency to fixate the value of

Y at round numbers (different values of X and Y are chosen by, for example, Braga et al.

2010; Curman et al. 2015; Sherman et al. 1989; Weisburd 2015; Weisburd and Amram

2014). The lack of a common yardstick complicates comparisons between studies, and thus

hampers testing the law of crime concentration. The literature on crime concentration at

places also lacks a single measure of concentration to quantify the overall amount of

concentration. Such a summary measure would be useful to test the law of crime con-

centration by comparing levels of crime concentration across areas, periods or crime types.

The first aim of this article is to argue why the Lorenz curve is an excellent candidate for

a detailed and exhaustive description of crime concentration at places, and why the Gini

coefficient is an excellent summary measure. The Lorenz curve is a graph that was orig-

inally designed to visualize income inequality, but has much broader applications. The

Gini coefficient is closely related to the Lorenz curve, and summarizes the level of con-

centration in a single number between 0 and 1, the former representing a completely equal

distribution of crimes across places, and the latter representing maximal concentration of

all crimes in a single place. Both the Lorenz and the Gini are described in the next section.

However, as we will demonstrate, the Lorenz curve and the Gini coefficient overesti-

mate the level of crime concentration if there are fewer crimes than places, a situation that

is common in studies that use street segments or census blocks as the spatial unit of

analysis (e.g., Andresen and Malleson 2011), and very common in studies that use indi-

vidual addresses (e.g., Sherman et al. 1989). Because these micro-geographic units are

small and crimes are relatively rare, crime data tend to be relatively sparse: the total

number of crimes is usually smaller than the total number of micro-geographic units. As
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crime is a discrete variable (a single crime cannot be divided over two places), in sparse

data situations an equal distribution of crime across places is not possible. Drawing the

Lorenz curve and calculating the Gini coefficient without accounting for this structural

constraint hinders comparisons of crime concentration between cities, between crime types

and between periods. As a consequence, it could incorrectly falsify or corroborate the law

of crime concentration at places. If the Lorenz curve and the Gini coefficient are to be the

preferred tools for describing and summarizing crime concentration at places, this bias

must be addressed and corrected.

The second aim of this article is to provide such a correction. We propose a generalized

way to display the Lorenz curve, and a generalization of the Gini coefficient. The gen-

eralized Lorenz curve and the generalized Gini coefficient asymptotically approach the

traditional Lorenz curve and Gini coefficient when the number of crimes approaches and

finally overtakes the number of places. The outcomes of the generalized Lorenz and Gini

are thus comparable across areas, periods and crime types irrespective of whether the

sample includes fewer or more crimes than units of analysis. To facilitate statistical tests,

we also discuss a method of estimating the variance of the generalized Gini coefficient.

Although the article that inspired our work (Weisburd 2015) was not saddled with the

issue raised here—all study regions in the analysis had much more crimes than street

segments during the periods covered—future tests of the law of crime concentration at

places are likely to include situations where crime data are sparse, as many studies start to

focus on small spatial units of analysis, short time intervals, and specific crime types.

Indeed, a number of key results in the literature on the criminology of place are based on

sparse crime data. Braga et al. (2010) analyze the concentration of 7359 firearm incidents

on 28,530 street units over a 29-year period. The authors point out that ‘‘The fact that each

year, on average, there are fewer than 254 ABDW-Firearm incidents among nearly 28,530

street units suggests that even a purely random distribution might produce the observed

clustering’’(p. 42). Andresen and Malleson (2011) investigate 3 years of crime data for

seven different crime types, analyzing the stability of the spatial patterns for 110 census

tracts, 1011 dissemination areas, and 11,730 street segments. They report fewer assaults (in

1996 and 2001), theft (in 2001), robbery, sexual assault, and theft of vehicle (all years) than

the total number of street segments. As a final example, Andresen et al. (2016) analyze

eight crime types (assault, burglary, other, robbery, theft from vehicle, theft, theft of

vehicle) over a 16-year period. Except for theft, theft from vehicle, and burglary in the

early waves of data, the number of spatial units (n = 18,445) outnumber the number of

crime incidents.

The issues we raise about concentration measures are not unique to the crime and place

literature. They also apply to research on crime and victimization of individuals. In

developmental and life-course criminology, it has been found that a relatively large share

of crime is committed by a relative small share of individuals, and the phenomenon has

been presented with Lorenz curves (Fox and Tracy 1988; van de Weijer et al. 2014). In line

with a suggestion made by Fox and Tracy (1988), authors in these fields have generally

selected from the data only those individuals that had offended at least once, and calculated

the Lorenz curve and the Gini coefficient for this subsample. In victimology, concentration

of victimization refers to the finding that a relatively large share of crime is committed

against a relative small share of individuals. Tseloni and Pease (2005) demonstrated

concentration of victimization amongst respondents in the British Crime Survey with

Lorenz curves. They presented Lorenz curves for all respondents and also, analogously to

what Fox and Tracy did for offending, for victims only. Thus, in both fields the Lorenz

curve and the Gini coefficient have not only been used, but have also been adjusted to
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satisfy certain research requirements. We suggest that the generalizations of the Lorenz

curve and the Gini curve that we propose in this paper, could also be fruitfully applied in

research on concentration in offending and victimization.

A concise roadmap closes this introduction. In the first section we briefly recapitulate

the Lorenz curve and the Gini coefficient. The subsequent section demonstrates the lim-

itations of the Lorenz and the Gini in situations where places outnumber crimes. The

section that follows proposes the generalized Lorenz curve and Gini coefficient. The one

that follows addresses statistical inference of the Gini, focusing on the estimation of its

variance. Next, we demonstrate the virtues of the generalized methods on real empirical

data of crime in street segments of the city of The Hague, the Netherlands. The final

section summarizes what has been learned.

Lorenz Curve and Gini Coefficient

The Lorenz curve is a function that links the cumulative distribution of a variable (e.g.

crime) to the cumulative distribution of observational units (e.g. places). The Lorenz curve

has traditionally been used to visualize inequality in income distributions, but it has also

been used in various other disciplines to visualize inequality or concentration (e.g.,

Damgaard and Weiner 2000). It can be used as a measure of concentration (or inequality)

for any variable measured at ratio or interval level, in any sample or population.

Applied to the distribution of crimes across places, the Lorenz curve plots cumulative

percentages of crime on the vertical axis against cumulative percentages of places on the

horizontal axis, with the places ordered by number of crimes.1 Thus, each and every point

on the curve corresponds to a statement like ‘‘Y percent of crimes occur in the X percent

most targeted places’’. In other words, the Lorenz curve includes in a single graph all

cumulative percentage statements that can be made about a given crime distribution! By

presenting the Lorenz curve there is no longer any need to decide on a cutoff value for X or

for Y, as all are included.

Quite surprisingly, amongst the dozens of studies that address crime concentration at

places, to our knowledge only a few papers (Bowers 2014; Davies and Johnson 2015;

Johnson 2010; Johnson and Bowers 2010; Steenbeek and Weisburd 2015) have used the

Lorenz curve and the Gini coefficient.

For purposes of exposition, the Lorenz curve is best explained by presenting a simple,

easily verifiable example with a small number of places. In Table 1 we present a fictitious

distribution of 100 crimes across 10 places. The leftmost column lists the alphanumeric

labels of the 10 places, while the second column lists the number of crimes in each place.

The places are organized in descending order with respect to their number of crimes,

starting with place G (22 events), followed by place A (18 events), place D (17 events) and

so on, until place B (1 event) at the bottom.

The next two columns display cumulative percentages. The third column is the

cumulative percentage of places: place G forms 10 percent of the places, places G and A

together form 20 percent, places G, A and D together are 30 percent, and so on. The fourth

column lists the cumulative percentages of crimes. A has 22 percent of crime, G and A

1 In this paper, without loss of generality we order the units reversely, from high to low. This implies the
Lorenz curve is completely located above rather than below the 45� reference line. The only reason for the
reversal is that the resulting curve directly corresponds to statements like ‘‘Y percent of crimes occur in the X
percent most targeted places’’.
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together have 40 percent of crime, and G, A and D together have 57 percent of crime. All

10 places together have a total of 100 percent of crime. The three rightmost columns are

explained below and in Appendix 2 (‘‘Expression of Adjusted Gini in Terms of Observed

Cases’’).

Figure 1 shows a Lorenz curve that plots the cumulative percentage of crimes against

the cumulative percentage of places (i.e., the fourth against the third column of Table 1).

Table 1 Fictitious (cumulative) distribution of crime across places, rank order and intermediate quantities
in Gini coefficient calculation

Place
label

Number of
crimes

Cumulative
percentage of places

Cumulative
percentage of crimes

Proportion of
crime yi

Ranking
(by yi) i

i 9 yi

G 22 10 22 0.22 10 2.20

A 18 20 40 0.18 9 1.62

D 17 30 57 0.17 8 1.36

J 12 40 69 0.12 7 0.84

C 11 50 80 0.11 6 0.66

E 8 60 88 0.08 5 0.40

J 6 70 94 0.06 4 0.24

F 3 80 97 0.03 3 0.09

H 2 90 99 0.02 2 0.04

B 1 100 100 0.01 1 0.01

R 100 7.46

Fig. 1 Lorenz curve based on data in Table 1
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The graph also includes a straight diagonal line with slope 1. This line represents perfect

equality, a situation in which the distribution of crime cannot be made more equal by

redistributing crimes from one place to another. If all places would have the same number

of crimes (in the example each place would have exactly 10 crimes), the Lorenz curve

would coincide with the line of perfect equality.

The Gini coefficient is a single number that quantifies the amount of concentration in a

distribution. It was developed more than a century ago by Corrado Gini (1912) as a

measure of income inequality.2 The Gini coefficient can be geometrically defined as the

ratio of the area between the Lorenz curve and the line of perfect equality, and the area

above the line of perfect equality. In Fig. 1, we denote the area between the Lorenz curve

and the line of perfect equality by A and the area above the Lorenz curve by B, so the Gini

coefficient equals A/(A ? B). Theoretically, the Gini coefficient ranges between 0 and 1. If

the Gini equals 0, the Lorenz curve coincides with the line of perfect equality, and crime

concentration is minimal. If the Gini coefficient equals 1, crime is maximally concentrated

and all crimes occur in a single place.3

The number of equivalent expressions for the Gini coefficient is remarkable large

(Yitzhaki and Schechtman 2013). The most intuitive expression is the relative mean dif-

ference, which is the average of absolute differences in crimes between all possible pairs of

places, divided by the mean number of crimes per place. For computational purposes, the

following formula is more efficient:

G ¼ 1

n

� �
2
Xn
i¼1

iyi � n� 1

 !
ð1Þ

where G is the Gini coefficient, n is the total number of places, yi is the proportion of

crimes occurring in place i, and i the rank order of the place when places are ordered by the

number of crimes y. Using the calculation results in three rightmost columns of Table 1, it

is easily verified that

G ¼ 1

10

� �
2 7:46ð Þ � 10� 1ð Þ ¼ :392 ð2Þ

Limitation of Lorenz and Gini in Sparse Data Situations

In situations where the variable that is being studied is discrete and the total number of

events is smaller than the number of units of analysis (e.g. if the total number of crimes is

smaller than the number of places), the interpretation of the Lorenz curve and the Gini

2 The Gini coefficient satisfies four preferred properties of inequality measures, namely anonymity (the
identities of the places are irrelevant), scale independence (the overall level of crime is irrelevant), popu-
lation independence (the total number of places is irrelevant) and the transfer principle (moving a crime
from a higher-crime place to a lower-crime place reduces concentration). A major advantage of the Gini is
its relation to the Lorenz curve, which makes it easier to interpret.
3 If the number of units is small, the Gini coefficient is biased because it is constrained to be lower than 1, a
situation that can be corrected by multiplying the Gini coefficient by n/(n-1), where n is the number of units
in the sample (Deltas 2003). In this example, if all 100 crimes were concentrated in one of the 10 places, the
biased value of the Gini coefficient would be .90, which would be corrected to 1 by multiplication with 10/9.
In this article we will ignore this small-sample correction, as we are addressing situations in which this bias
is negligible because the number of places is large.
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coefficient are problematic. The reason for this is that both the interpretation of the Lorenz

curve and the calculation of the Gini coefficient depend on the line of perfect equality.

However, if places outnumber crimes, perfect equality is not logically possible. Because

crimes are discrete and a single crime cannot be divided between places, some places

necessarily have no crime, and thus less crime than other places. As a result, the boundary

condition of maximal equality is no longer represented by a line with slope 1, but by a line

with a steeper slope, which we denote as the line of maximal equality.

The two panels in Fig. 2 illustrate the issue. The left panel represents a situation in

which there are n = 10 places and c = 10 crimes, and where G = 0. In other words, 10

crimes are equally distributed across 10 places, each of which has a single crime. The

Lorenz curve coincides with the line of perfect equality.

Now imagine that we remove at random every other crime from the data. The result is

the situation depicted in the right panel of Fig. 2, where n = 10 places and c = 5. Because

5 crimes cannot be distributed equally over 10 places, half the places have 1 crime and the

other half have no crimes. The resulting Gini coefficient equals .50. This outcome is

problematic, because without any change in an underlying distributional mechanism (we

have merely taken out half the crimes at random), the concentration of crime at place has

substantially increased.

Note that the change affects both the Gini coefficient (which changes from 0 to .50) and

the presentation of the Lorenz curve and the cumulative percentage statements it repre-

sents. For example, in the left panel of Fig. 2 ‘‘40 percent of crime occurs in 40 percent of

places’’ whereas in the right panel of Fig. 2 ‘‘80 percent of crime occurs in 40 percent of

places’’. The latter statement might better be replaced by: ‘‘40 percent of crime occurs in

40 percent of the places where crime could occur.’’ This limitation was already identified

in the article that launched the criminology of place (Sherman et al., 1989), in which the

authors analyzed calls for service originating from individual addresses in Minneapolis.

They demonstrated a strong concentration of calls for service from particular addresses:

‘‘Taken separately, each of the predatory crimes shows even greater geographic

concentration than all calls for service: all 4166 robbery calls were located at only

2.2 % (against a possible 3.6 %) of all places, all 3908 auto thefts at 2.7 % (against a

possible 3.4 %), and all 1729 rape/CSCs at just 1.2 % (against a possible 1.5 %) of

the places in the city.’’ (Sherman et al. 1989: 39).

Note that the authors compare the observed levels of concentration (e.g. 100 percent of

robbery calls originated from 2.2 percent of the addresses) with the level of concentration

that would be observed if crime were maximally dispersed: if each call came from a

different address, 100 percent of robbery calls would have originated from 3.6 percent of

the addresses.4 In other words: the 3.6 percent puts the 2.2 percent in another perspective

that makes it much less spectacular.

Although the Lorenz curves, cumulative percentage statements, and Gini coefficients in

Fig. 2 correctly describe the observed amounts of concentration in both samples (crime is

more concentrated in the right panel than in the left panel) the interpretation in terms of an

underlying stochastic process is problematic: the higher concentration of crime in the right

panel is an artifact of the sparsity and discreteness of the data, i.e. of n[ c and yi [ N.

4 The authors did not make this calculation completely explicit. They estimated the total number of places
in the city at 115,000 (p. 37), so that the 4166 robberies could have occurred at no more than 100 9 (4166/
115,000) = 3.6 percent of the places.
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Generalized Lorenz Visualization and Gini Calculation

To address the shortcomings discussed in the previous section, we generalize the Gini

coefficient and the visualization of the Lorenz curve. Our solution does not change the

Lorenz curve itself, but replaces the line of perfect equality with a line of maximal

equality. The rationale is that this line is a reference line and should represent the boundary

condition of maximal equality. It should therefore only have a slope of 1 if the total number

of crimes c is larger than or equal to the total number of places n. In all other cases its slope

should be n
c
, the ratio of the number of places (n) and the number of crimes (c). In other

words, the slope of the line of maximal equality should be

n

min c; nð Þ ¼ max
n

c
; 1

� �
ð3Þ

The simple example provided in Fig. 3 will help us explain the required generalizations.

The figure is based on a situation where there are 10 places: one place has 3 crimes, two

other places have 1 crime, and the other five places have 0 crimes. The Lorenz curve (solid

line) does not behave differently from the previous figures: it plots the cumulative per-

centage of crimes for each cumulative percentage of places ordered by crime frequency.

What is different is the line of maximal equality (dotted line), which starts in the origin but

now has a slope of n
c
¼ 10

5
¼ 2. This visualization improves on the original visualization in

which only the Lorenz curve and the line of perfect equality (dashed line) are presented,

because the original visualization hides the fact that the boundary condition is at the line of

maximal quality (dotted) and not at the line of perfect equality (dashed). If the number of

crimes c\ n, the generalized line of maximal equality lies completely above the line of

perfect equality. When c� n, the two coincide. Thus, the Lorenz curve itself does not

change in case of sparse data. The innovation is the line of maximal equality.

The generalized Gini we propose takes into account that a Gini value of 0, perfect

equality, cannot be attained if c\ n. In order to correct for this property, the generalized

Gini uses the line of maximal equality. The generalized Gini is defined analogously to the

original Gini, but with reference to the line of maximal equality rather than the line of

Fig. 2 Lorenz curves (left: 10 places, 10 crimes, G = 0, right: 10 places, 5 crimes, G = .5)
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perfect equality. Thus, whereas the original Gini coefficient in Fig. 3 equals (A ? D)/

(A ? D ? E), when c\ n, the generalized Gini equals D/(D ? E).5

The generalized Gini coefficient can be expressed as a function of c, n, and the original

Gini coefficient G as follows (proof in Appendix 1, ‘‘Expression of Adjusted Gini in Terms

of Original Gini’’).

G0 ¼ max
n

c
; 1

� �
G� 1ð Þ þ 1 ð4Þ

To facilitate implementation in software, the generalized Gini coefficient can also be

expressed in terms of individual observations, without reference to the original Gini

coefficient, as follows (proof in Appendix 2, ‘‘Expression of Adjusted Gini in terms of

observed cases’’).

G0 ¼ max
1

c
;
1

n

� �
2
Xn
i¼1

iyið Þ � n� 1

 !
�max

n

c
; 1

� �
þ 1 ð5Þ

In all situations where c\ n, the generalized Gini coefficient makes a downward

correction to the original Gini. For example, in Fig. 3 the original Gini coefficient equals

.78, but the generalized Gini only .58. If c C n, the generalized Gini coefficient G’ equals

the original Gini coefficient G.

Fig. 3 Generalized Lorenz curve, 10 places, 3 ? 1 ? 1 crimes, G = .78, G’ = .58

5 Fox and Tracy (1988) propose and alternative summary measure a that is similar to our adjusted Gini
measure. Rather than use c/n to define the point where the line of maximal equality reaches Y = 1, they use
q/n to define that point, where q is the number individuals committing 1 or more offenses. We prefer our
own measure because it does not exclude places with zero crimes automatically. Our measure only excludes
places with zero crimes if they are imposed by sparse crime data.
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The use of a simulated reference curve (Davies and Johnson 2015; Johnson 2010;

Johnson and Bowers 2010) provides another solution to the issue of sparse crime data.

Johnson and his coauthors repeatedly (99 times) assigned c crimes to n places at random6

and calculated a Lorenz curve on these simulated data. They subsequently used the means

across all runs of the simulation to calculate the reference curve for the real data. Clearly,

when there are more places than crimes, in each run of the simulation the resulting Lorenz

curve must necessarily lie above the line of perfect equality, and so must the average curve.

In other words, because the simulation method is based on permutations of the observed

(sparse) data, the reference curve it creates automatically accounts for the structural

impossibility of perfect equality in the distribution of crime. The same holds for their Gini

coefficient, as it is defined as the area between the observed Lorenz curve and the average

reference line across all simulation runs.

While simulation is a powerful and flexible method to generate counterfactual distri-

butions, we believe our analytical solution is to be preferred not only because it is easier to

implement, but also because it is a simple generalization of ideas, methods and techniques

that have proven their value for more than a century.

Statistical Inference: Testing the Law of Crime Concentration

Almost all research on crime concentration uses population data rather than samples. They

include all street segments, all addresses, or all restaurants in a given catchment area.

Sample and population coincide and, strictly speaking, statistical inference is not neces-

sary. In these cases, testing the law of crime concentration boils down to comparing

absolute levels of concentration qualitatively (as in Weisburd 2015).

In other situations researchers may have a sample from a larger population, and need

inferential statistics. Langel and Tillé (2013) provide a useful overview of variance esti-

mation and statistical tests of the Gini coefficient. In situations where sampling structures

are simple (e.g. plain random sampling), the jackknife re-sampling approach (Efron and

Stein 1981) seems to best fulfill the need of most studies of crime concentration. The

jackknife variance estimator of the Gini coefficient is

Var Gð Þ ¼ n� 1

n

� �Xn
k¼1

G n; kð Þ � �G nð Þð Þ2 ð6Þ

where G is the Gini coefficient, n is the total number of places, G n; kð Þ is the Gini

coefficient calculated on the (n-1) places after removing the kth place, and �G nð Þ is mean of

all G n; kð Þ, k ¼ 1; 2; . . .; n (Ogwang 2000). By replacing G by G’ in the above equation, we

obtain the jackknife estimator of the variance of the generalized Gini coefficient.

Illustration Using Sparse Crime Data

This section demonstrates the use of the generalized Lorenz curves and Gini coefficients

using police recorded crimes in the city of The Hague, the Netherlands. Each crime is

provided with coordinates of its location (see Steenbeek and Weisburd 2015 for details).

6 The issue they solve is actually slightly more complex because they randomly assign burglaries to
residential units and subsequently aggregate the results to street segments.
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For the purposes of this study these crime locations are assigned to the nearest street

segment. The Hague consists of 14,375 street segments. They have a mean length of about

94 meters (310 feet) and a standard deviation of 108 meters (353 feet).

The data indeed show that situations of sparse crime data—in which the number of

spatial units is greater than the number of crimes—are common. In the period 2007–2009,

the police registered 1388 auto thefts, 430 sexual offenses, 1881 street robberies, 7135

assaults and 37,121 cases of break and enter. Break and enter combines all attempted or

completed thefts committed by breaking into and entering a closed structure without

permission and with the intent to steal or commit another crime. It includes residential

burglary, commercial burglary, and theft from caravans, ships or automobiles.

As the purpose of the present study is to demonstrate that the generalized Gini coef-

ficient provides a better estimate of the crime concentrations in situations of sparse crime

data, we purposefully selected a crime type where c[ n (break and enter) and compare it

to one where c\ n (assault). Three years of data (2007–2009) were summed in order to

have enough cases per crime type to make for an interesting example.7

We first present descriptive statistics on the percentage of street segments that accounts

for 50 percent of all crime. For both types of crime, a very small percentage of street

segments account for the bulk of the crime: choosing Y = 50, about 8.84 percent of the

street segments account for half of all break and enter cases, and about 4.70 percent of the

street segments account for half of all assaults. Choosing X = 10, another way to sum-

marize the crime concentration is by stating that for break and enter and assault, the

percentage of crimes committed in the 10 percent most victimized street segments, is 53

and 73 percent, respectively. Obviously, both crime types are highly concentrated in a

small number of places.

The Lorenz curve is an improvement over such cumulative percentage statements, as no

arbitrary cut-off percentages need be chosen. Figure 4 shows the two Lorenz curves and

their corresponding Gini coefficients. The figure shows that assault is highly concentrated,

but that break and enter is concentrated as well—both curves are located far above the line

of maximal equality (the diagonal). The difference in concentration is reflected in their

Gini coefficients of 0.73 for break and enter, and 0.86 for assault. The two Lorenz curves

do not cross, implying that for every X percent of spatial units, assault is more concentrated

than break and enter, a fact that cannot be gleaned from the descriptive cumulative per-

centages alone.

We next turn to the generalized Lorenz curve and generalized Gini coefficient for both

crime types, presented in Fig. 5. For break and enter, the number of crimes (c = 37,121) is

much larger than the number of street segments (n = 14,375). Therefore the line of

maximal equality and the Gini coefficient for break and enter do not differ from the line of

perfect equality and Gini coefficient: 0.73. However, the number of assaults (n = 7135) is

smaller than the number of street segments and therefore the generalized Gini coefficient

differs from the original. Figure 5 shows the generalized lines of maximal equality and the

original (G) and generalized (G’) Gini coefficients for break and enter and for assault.

While all assaults over the 2007–2009 period in The Hague are concentrated in only 23

percent of all street segments, this is against a possible 50 percent of all street segments.

This limit is reflected in the generalized line of maximal equality and the generalized Gini

coefficient of

7 If we had only selected a single year, even the number of break and enter incidents would have been
smaller than the number of street segments, i.e. lower than 14,375.
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G0 ¼ max
n

c
; 1

� �
G� 1ð Þ þ 1 ¼ 14; 375

7; 135

� �
0:86� 1ð Þ þ 1 ¼ 0:72 ð7Þ

Thus, the generalized Gini coefficients of break and enter and of assault are approxi-

mately equal (.73 vs. .72), whereas the unadjusted coefficients are markedly different (.73

vs. .86 respectively) In summary, a traditional unadjusted comparison of break and enter

and assault concentrations would have let us to believe that assault is more concentrated

than break and enter, as implied by Fig. 4 and by .86 being larger than .73. However,

Fig. 4 Lorenz curves for burglary and assault, The Hague, 2007–2009

Fig. 5 Original and generalized Lorenz curves and Gini coefficients for break and enter and assault, The
Hague, 2007–2009
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although assault is more concentrated than break and enter, the possible range of con-

centration for assault is much smaller. The rareness of the crime makes assault seem to be

more concentrated than it actually is. Adjusting for this structural constraint, the gener-

alized Gini coefficients show that the concentrations of assault and break and enter are

actually remarkably similar.

Discussion

This article suggested that proper tests of the law of crime concentration require standards

for measuring and reporting crime concentration. The Lorenz curve and the Gini coeffi-

cient were introduced as likely candidates. We explained why situations where places

outnumber crimes can lead to flawed tests of the law of crime concentration, not only when

the Lorenz and the Gini are used, but also when concentration is described conventionally,

using cumulative percentage statements of the form ‘‘Y percent of crime takes place in the

X percent most targeted places’’. We demonstrated how the issue can be solved trans-

parently and elegantly by not changing the Lorenz curve itself but only its reference, and

by using the generalized Gini coefficient. Our empirical demonstration suggested that in

the calculation and the comparison of crime concentration measures, the generalized

Lorenz curve and Gini coefficient serve two important functions. First, they add nuance to

the significance of observed levels of concentration, which in case of sparse data must

necessarily be high. Second, they provide better opportunities to compare crime concen-

trations over different crime types, periods and areas.

A minor caveat of the generalized Lorenz curve is, that it loses most of its function as a

visualization tool in situations where c is much smaller than n. If, for example, n = 20c,

the line of maximal equality reaches its 100 percent ceiling already at 5 percent. If this is

the case (see, for example, the crime concentration percentages of specific crime types in

Sherman et al. 1989) the area between the Lorenz curve and the line of maximal equality

becomes very thin and will be difficult to see. The generalized Gini coefficient, however,

remains useful as an overall quantification measure. A possible solution to such situations

could be to simply rescale the x-axis, so that the maximum equals c/n rather than 1. This

solution makes it easier to derive percentage statements from the graph, but makes com-

parisons difficult because they require common scales on the axes.

The measures of crime concentration at places that we propose in this article are

primarily meant to facilitate testing Weisburd’s law of crime concentration at places. They

may also help practitioners better understand crime concentrations: when there are more

places than crimes, the adjusted Lorenz curve and Gini coefficient help to separate the

volume of crime from the relative concentration of crime across units. However, we realize

that practitioners usually are interested in the volume of crime: ‘hotspots’ guide police

resource allocation as it helps them allocate manpower to where and when it is needed

most. In operational decisions, plain numbers of crimes potentially prevented or solved are

more informative and more useful than relative measures, because the latter standardize on

potential targets and thus hide differences in the volume of crime.

In conclusion, we suggest that using the generalized Lorenz visualization and Gini

calculation could prevent the law of crime concentration from being incorrectly falsified or

corroborated. To emphasize this point, we suggest the law could be reformulated as

follows:
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For a defined measure of crime at a specific micro-geographic unit, the observed

concentration of crime, relative to its concentration under maximally possible dis-

persion, will fall within a narrow bandwidth of percentages for a defined cumulative

percentage of crime.
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Appendices

Appendix 1: Expression of Adjusted Gini in Terms of Original Gini

We prove Eq. (4), stating that that, for c[ 0 and n[ 0, the Gini coefficient G0 can be

written as a function of the original Gini coefficient G, the number of places n, and the

number of crimes c, as follows

G0 ¼ max
n

c
; 1

� �
G� 1ð Þ þ 1

Both G and G0 are defined as ratios of the areas A, D and E in Fig. 3.

G ¼ Aþ D

Aþ Dþ E
ð8Þ

G0 ¼ D

Dþ E
ð9Þ

Because the 45� diagonal line of maximal equality has slope 1,

Aþ Dþ E ¼ 1

2
ð10Þ

Substituting the left-hand side of (10) in (8) and rearranging terms yields

D ¼ 1

2
G� A ð11Þ

Areas D and E together form a right-angled triangle with height 1 and base c=n, so that

Dþ E ¼ c

2n
ð12Þ

Substituting (12) in the numerator and (11) in the denominator of (9) yields

G0 ¼
1
2
G� A
c=2n

ð13Þ

Substitution of (12) in (10) yields
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A ¼ 1

2
� c

2n
ð14Þ

Finally, substituting (14) in (13) and rearranging terms yields

G0 ¼ n

c
G� 1ð Þ þ 1 ð15Þ

Note that Eq. (15) holds if 0\c\n, while G0 ¼ G if c� n. Therefore, in the general

case we have

G0 ¼ max
n

c
; 1

� �
G� 1ð Þ þ 1 ð16Þ

This completes the proof.

Appendix 2: Expression of Adjusted Gini in Terms of Observed Cases

We prove Eq. (5), stating that, for c[ 0 and n[ 0, the adjusted Gini coefficient can be

expressed as

G0 ¼ max
1

c
;
1

n

� �
2
Xn
i¼1

iyið Þ � n� 1

 !
�max

n

c
; 1

� �
þ 1

where yi is the proportion of all crime occurring in place i. The proof is partial, as we do

not derive the equation from the geometry in Fig. 3, but start by quoting a common

expression for the original Gini coefficient (e.g., Damgaard and Weiner 2000)

G ¼
Pn

i¼1 2i� n� 1ð Þxi
n2l

ð17Þ

in which; i = rank order index of the place when sorted in decreasing order with respect to

y; xi = number of crimes in the ith place; l = the mean number of crimes across all n

places, i.e.

l ¼ 1

n

Xn
i¼1

xi ð18Þ

Substitution of (18) in (17) yields

G ¼
Pn

i¼1 2i� n� 1ð Þxi
n2 1

n

Pn
i¼1 xi

ð19Þ

We define yi as the proportion of crime occurring in place i:

yi �
xi

n

xi ¼ nyi ð20Þ

Substitution of (20) into (19) leads to

G ¼ 1

n

� �Xn
i¼1

2i� n� 1ð Þyi ð21Þ
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Rearrangement of terms yields:

G ¼ 1

n

� �
2
Xn
i¼1

iyið Þ � n� 1

 !
ð22Þ

In Appendix 1 it was proven in Eq. (16) that

G0 ¼ max
n

c
; 1

� �
G� 1ð Þ þ 1 ð16Þ

Substituting (22) into (16) yields

G0 ¼ max
n

c
; 1

� � 1

n

� �
2
Xn
i¼1

iyið Þ � n� 1

 !
� 1

 !
þ 1 ð23Þ

Rearrangement of terms leads to

G0 ¼ max
n

c
; 1

� � 1

n

� �
2
Xn
i¼1

iyið Þ � n� 1

 ! !
�max

n

c
; 1

� �
þ 1 ð24Þ

G0 ¼ max
1

c
;
1

n

� �
2
Xn
i¼1

iyið Þ � n� 1

 !
�max

n

c
; 1

� �
þ 1 ð25Þ

This completes the proof.
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