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epidemics. Doxycycline hyclate, as a type of tetracycline 
antibiotics, can be used to treat COVID-19-related diseases 
[4]. However, these antibiotics cannot be fully absorbed by 
the human and animals, so that 65–80% of them would be 
excreted in the external water environment via them metab-
olism [5]. The residual antibiotics contribute to the release 
of antibiotic resistance genes (ARGs) into the environment, 
rendering conventional antibiotic treatments ineffective, 
making it difficult to control infection-causing bacteria [6]. 
Moreover, antibiotics presence in aquatic environment, 
even at trace levels, have been caused harmful impacts 
on ecological environment and human health. Therefore, 
these antibiotics are urgent to be efficiently eliminated from 
wastewater.

At present, several physical, chemical, and biologi-
cal methods, such as adsorption [7], membrane filtration 
[8], advanced oxidation processes (AOPs) [9] have been 
employed to treat antibiotics pollutant. These processes 
although have been widely used in the field of wastewater 
treatment, but involve high initial investments, operational 
costs, and secondary pollution. On the contrary, the adsorp-
tion is cost-effective, simple design, convenient operation, 

1  Introduction

Antibiotics are commonly used in human disease therapy 
and livestock breeding for antibacterial and bactericidal 
purpose [1]. A large amount of wastewater was gener-
ated in the process of production and practical application 
of antibiotics, resulting in the problem of water pollution, 
which had garnered significant attention from the interna-
tional scientific community [2]. Chemical property of these 
released antibiotics would make them hard to degrade and 
decomposed. Eventually, they may continuously accumu-
late in the human body along the food chain [3]. Especially 
in recent years, the usage of antibiotics witnessed a signifi-
cant increase due to the outbreak of COVID-19 and other 
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The nitrogen-doped activated carbon (NAC) with high specific area (3140.76 m2·g− 1) derived from pomelo peel was pre-
pared using hydrothermal carbonization, nitrogen doping and KOH activation method for the effective removal of Doxy-
cycline (DOX) from aqueous solution. NAC showed exceptional adsorption efficacy for DOX than non-doped activated 
carbon (AC), which was attributed to the rich N-containing functional groups on the NAC surface and well-developed pore 
structure. The adsorption equilibrium data of DOX on NAC was fitted well to the Sips isotherm model and the adsorption 
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adsorption process of DOX. The adsorption mechanisms of DOX onto NAC could be attributed to the hydrogen bonding, 
π-π electron donor-acceptor (EDA) interaction, hydrophobic effect and electrostatic interaction. Besides, the N-doping 
enhanced the adsorption performance of NAC. The maximum saturated adsorption capacity of NAC was 1559.35 mg·g− 1 
at 298 K, indicating that the NAC could be a promising adsorbent for removing Doxycycline from wastewater.
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reusable adsorbent and no hazardous by-products [10, 11]. 
The effectiveness of adsorption is contingent upon the 
choice of adsorbent materials. Biochar is one of adsorbent 
materials which has been developed and utilized owing to 
their abundant material source, low costs, high specific sur-
face area and pore structure [12–14].

In order to improve adsorption characteristic, the bio-
char adsorbents need to be modified with heteroatom dop-
ing method. Chemical modification, an effective mean, is 
able to elevate the surface chemical activity of biochars 
[15]. Reportedly, nitrogen doping modified biochar as the 
promising adsorbent material has received increasing atten-
tion [16]. The approaches of nitrogen-doped are mainly 
divided into post doped and in-situ doped, correspond-
ing to different feedstock sources and treatment processes 
[17]. The advantage of the post doped approach is that 
the nitrogen content of the final product can be controlled 
by adjusting the initial amount of the nitrogen-containing 
chemicals to meet actual requirement. The relatively high 
electron affinity of nitrogen atom can promote the adjacent 
carbon atoms in carbon material to have a higher positive 
charge density [18]. Moreover, N-containing groups could 
convert the structure of biochar for interaction with pollut-
ants. These findings revealed that nitrogen-doped activated 
carbon exhibits excellent electrochemical and adsorption 
properties [19]. Thus, the experiment in this article focused 
on comparing the surface functional groups and structural 
changes before and after nitrogen doping, providing a rea-
sonable explanation for the influence of nitrogen doping on 
the adsorption process.

In recent years, a variety of raw materials such as cotton 
stalks, sponge gourd and coconut shells, etc [20–22] have 
been used in the production of biochar. Pomelo peel is one 
of the typical agricultural residues. According to the data, 
an annual output of pomelo is nearly 4.5-5 million tons in 
China [23]. However, the pomelo peel is often directly dis-
carded as solid residue and not fully utilized. Pomelo peel 
contains a high carbon content which has great potential for 
preparing nitrogen-doped activated carbon. In this study, 
the novel nitrogen-doped activated carbon (NAC) and non-
doped activated carbon (AC) derived from pomelo peel 
were prepared. The activated carbons were characterized 
by various methods such as SEM, XPS, FTIR, Raman and 
BET analysis. The adsorption characteristics of Doxycy-
cline hyclate onto the nitrogen-doped activated carbon and 
non-doped activated carbon were thoroughly investigated to 
determine the effects of N source addition on its adsorption 
and the possible adsorption mechanism of Doxycycline on 
nitrogen-doped activated carbon was also clearly explained.

2  Materials and methods

2.1  Chemicals and reagents

All chemicals were of analytical standard and could be 
used directly without further purification. The Doxycy-
cline hyclate (C22H24N2O8·HCl 480.89  MW, DOX) was 
purchased from Macklin Biochemical Co, Ltd. Melamine 
(C3H6N6), KOH, HCl, NaOH, NaCl were obtained from 
Kermel Co, Ltd. Pomelo peel was provided by a local mar-
ket in Henan, China.

2.2  Preparation of materials

Pomelo peel was thoroughly cleaned with deionized (DI) 
water to remove surface impurities and then dried at 358 K. 
The pomelo peel was crushed to obtain uniform particles for 
the next step. The preparation method for nitrogen-doped 
activated carbon involved hydrothermal carbonization, 
nitrogen doping, and activation process. In this process, 
20 g of pomelo peel powder with 200 mL DI water was car-
bonized in a 250 mL stainless steel autoclave at 493 K for 
120 min [20]. The production was filtered, and then dried 
at 378 K for 480 min to get activated carbon precursor. The 
activated carbon precursor was mixed with melamine in 
a mass ratio of 1:1 and then heated in a Muffle furnace at 
773 K for 120 min to obtain N-doped sample. The activa-
tor KOH and N-doped sample in a mass ratio of 3:1 were 
activated in a tube furnace at 1023 K for 60 min in N2 atmo-
sphere [24]. The final product was cool to ambient tempera-
ture and washed with DI water until the pH reached neutral, 
and then dried at 358 K for 720 min. The nitrogen-doped 
activated carbon was denoted as NAC. The control group 
activated carbon (AC) was prepared by the above process 
without the addition of melamine. Figure  1 showed the 
schematic illustration of the preparation of NAC and AC.

2.3  Characterization of the materials

The specific surface area (SSA) and pore volume were cal-
culated by specific surface area analyzer (BET, JW-BK132F, 
China) through the N2 adsorption-desorption method. The 
morphologies and main elements of materials were deter-
mined by scanning electron microscopy (SEM, FEI Quanta 
200, U.S.A.) and elementary-analysis (EA, Thermo Sci-
entific Flash 2000, U.S.A.), respectively. Besides, FTIR 
(Fourier transform spectroscopy) spectrum was obtained by 
PerkinElmer Spectrum Two (PerkinElmer company, Mas-
sachusetts, UK.) to analyze functional groups of NAC and 
AC. The XPS (X-ray photoelectron spectroscopy) was mea-
sured by using AXIS Supra (Shimadzu company, Japan), 
which was used to recognize the activated carbons’ surface 
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groups of C, N, O and their chemical states. The Raman 
spectrum was obtained by a Raman spectrometer (Labram 
HR Evolution, Horiba, France) to analyze the activated car-
bons’ graphitization level.

2.4  pHpzc test of NAC

The point of zero charge (pHpzc) was determined by the salt 
addition method [25]. 0.02 g of NAC was added into 20 mL 
NaCl (0.1  mol·L-1) with pH ranging from 3.0 to 10. The 
pH was adjusted by 0.1 mol·L-1 HCl or 0.1 mol·L-1 NaOH 
solution. The final pH was measured after the suspension 
was shaken at 298 K for 360 min. The value of ΔpH was 
calculated from the formula:ΔpH = pHinitial- pHfinal. Plot 
with pHinitial as the x-axis and ΔpH as the y-axis. The pHpzc 
of NAC was obtained when ΔpH = 0.

2.5  Adsorption tests

The batch adsorption tests were conducted at different con-
centrations of DOX solution which varied from 50 to 600 
mg·L-1. A certain amount of NAC or AC was placed in 100 
mL Erlenmeyer flasks with 50 mL of DOX solution. These 
Erlenmeyer flasks were shaken at 150 rpm in oscillation box 
at different temperature for 1–720 min. The solution pH was 
adjusted by 0.1 mol·L-1 HCl or 0.1 mol·L-1 NaOH solution.

After adsorption, the activated carbons were separated 
from solution by 0.22  μm membrane. The residual DOX 
concentrations were measured by ultraviolet spectropho-
tometry (TU-1080, CN) at a maximum wavelength of 
275  nm. The adsorption capacity and removal efficiency 
were calculated by Eq. (1) and Eq. (2), respectively.

qt = V
(C0 − Ct)

m
� (1)

%R =
(C0 − Ct)

C0
× 100� (2)

qt (mg·g− 1) is adsorption capacity of DOX on NAC or AC 
at time t, V (L) is the volume of DOX solution, C0 and Ct 
(mg·L− 1) is initial concentration and concentration at time 
t of DOX, respectively. m (g) is the mass of NAC or AC.

2.6  Regeneration adsorption experiment

The NAC after the adsorption of DOX was regenerated by 
immersing in a certain volume of 0.1 mol·L− 1 NaOH solu-
tion at 298 K and the solution was shaken at 150 rpm for 
480 min. After that, the NAC was washed several times with 
DI water until neutral and then dried for the next adsorption 
process. The NAC was subjected to five adsorption-regen-
eration cycles.

Fig. 1  Schematic illustration of the preparation of NAC and AC
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and NAC after adsorption of DOX have decreased to 630.85 
m2·g− 1 and 481.99 m2·g− 1 (Fig. 2 (c)), and the pore size dis-
tributions have also changed significantly (Fig. 2 (d)). The 
specific surface area of NAC exhibited a larger decrease 
than AC after DOX adsorption. This change may be attrib-
uted to more DOX molecules adsorbing on the surface or 
inside of NAC during the adsorption process, which was 
consistent with the experimental results. These phenom-
ena also illustrated that nitrogen-doped process had greatly 
changed the surface pores of activated carbon. NAC has a 
larger of porous structure and provide more sites for DOX 
molecule diffusion and adsorption than AC.

According to the results of element analysis, the C, H and 
N contents of NAC are 75.67%, 1.14% and 3.52%, respec-
tively. Compared with AC, the contents of N and C for 
NAC increased significantly, while the H content decreased. 
These results indicated that external nitrogen source facili-
tated to form N-containing functional groups on the surface 
of NAC.

The morphologies of the pomelo peel after hydrother-
mal carbonization, AC and NAC were presented in Fig. 3. 

3  Results and discussion

3.1  Characteristic description

The BET analysis of N2 adsorption-desorption isotherms 
and the pore size distributions of NAC and AC before and 
after DOX adsorption were shown in Fig. 2. These isotherms 
were type IV adsorption isotherms according to IUPAC 
classification. The small delayed loops appeared mainly 
due to capillary condensation, which indicated the presence 
of micro and mesopores [26, 27]. Table 1 showed aperture 
parameters and main elemental content of the activated car-
bons. The SSAs of NAC and AC are 3140.76 m2·g− 1 and 
2243.08 m2·g− 1, respectively. The total volume (VTol) of 
NAC and AC are 1.770 cm3·g− 1 and 1.190 cm3·g− 1, respec-
tively. It can be speculated that NAC has larger mesopore 
and macropore volume from VTol and VMic. Moreover, 
the BJH average pore diameter (Dp) are calculated from 
Dp=4VTol/SSA. The increased SSA and more mesopores of 
NAC are conducive to provide the more adsorption sites of 
DOX molecules. However, the specific surface areas of AC 

Table 1  Aperture parameters and main elemental content of the NAC and AC
Samples Surface areas (m2·g− 1) Pore volume (cm3·g− 1) Average pore size (nm) Elemental analysis (wt %)

VTotal VMic C H N
AC 2243.08 1.190 0.817 3.12 71.34 1.85 0.77
NAC 3140.76 1.770 0.781 2.89 75.67 1.14 3.52

Fig. 2  N2 adsorption–desorp-
tion isotherms and the pore size 
distributions of NAC (a, c) and 
AC (b, d) before and after DOX 
adsorption
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Raman spectra (Fig. 4(b)) showed two intense peaks of 
activated carbons in the wavenumbers around 1350  cm− 1 
and 1580 cm− 1, which are commonly recorded as D band 
(disordered carbon) and G band (graphitic carbon), respec-
tively [36]. The ID/IG intensity ratio of NAC is 1.166, which 
is larger than AC, revealing that the integration of N-atom 
into the sp2 carbon network increased more defects of acti-
vated carbons [37, 38]. The surface of adsorbents might pro-
vide more active sites to promote the adsorption of DOX.

X-ray photoelectron spectroscopy (XPS) has been used 
to analysis proportion of functional group on the surface of 
materials. The XPS full spectrums of NAC before and after 
adsorption of DOX were shown in Fig. 5(a). The content of 
N element has significantly increased from 2.57 At% to 3.02 
At%, indicating that DOX has been successfully embedded 
in rough surface of NAC. The peaks of NAC and NAC-
DOX were fitted by the Avantage software. For the C1s 
spectra (Fig. 5(b)), the four fitting peaks with the binding 
energy at 284.82 eV, 286.11 eV, 287.50 eV, and 290.10 eV 
were confirmed to the C-C, C-O, C = N, and C = O, respec-
tively [39, 40]. There was apparent change from 290.10 eV 
to 289.76 eV in the peak location of C = O after adsorption 
as shown in Fig. 5(b), suggesting C = O might be the main 
contribution to adsorption DOX through hydrogen bonding 
interaction. Moreover, the peak intensity of C-C and C = N 
had changed after the adsorption of DOX, which proved the 
presence of π-π EDA interaction [41].

The N1s spectrum in Fig. 5(d) can be divided into three 
binding energies at 398.17 eV, 398.79 eV, 400.27 eV, which 
were consistent with pyridine N, pyrrole N, graphite N, 
respectively [42]. Melamine could decompose and form 
N-dopants, i.e., pyridinic N and pyrrole N below the tem-
perature of 873 K [28]. Graphite N has the largest propor-
tion in three nitrogen species of NAC, which could be the 
π-acceptor because of the strong electronegativity [43]. 

Figure  3(a) showed that a large number of non-uniform 
protrusions and few honeycomb-like concavities appeared 
on pomelo peel after hydrothermal carbonization surface, 
which was recognized as appearance of the out skin of pom-
elo peel. From Fig. 3(b), the uneven circle-hollows and deep 
holes on the AC surface was attributed to the activation of 
KOH. Besides, Fig. 3(c) showed that NAC had more well-
developed honeycombed pores compared with AC. During 
N-doped process, the gas released by melamine at high tem-
perature was favorable for enhancing pore structures [28]. 
Theoretically, high capacities of NAC could be partly attrib-
uted the fact that more adsorption sites were generated for 
adsorption of DOX due to more well-developed pores.

The characteristic functional groups of DOX, AC and 
NAC before and after adsorption of DOX were investigated 
using FTIR via the KBr pressed pellet method and the result 
was shown in Fig. 4(a). It was observed that the spectra of 
AC and NAC were very similar. A comparison between 
NAC and AC revealed that some peaks showed a slight shift 
in position and changed in the intensity after the doping of 
nitrogen. For DOX, the bands at 1676 cm− 1and 1460 cm− 1 
were considered as stretching vibration of C = O and C–C 
of benzene rings, respectively [29, 30]. For NAC, the 
broad band at 3421 cm− 1 was –OH vibration and adsorbed 
water [31]. The band around 2812  cm− 1 was assigned to 
aliphatic C-H vibrations [32]. The vibrational character-
istic of the C = N was presented at 1630  cm-1 [33]. The 
signal at 1604 cm-1 was mainly attributed to C = O or in-
plane bent vibration of N–H vibration [34]. The small band 
of 1340 cm− 1 reflected C-N stretching vibration [24]. For 
NAC/DOX, the peak of C = O or N-H had a blue shift from 
1604 cm− 1 to 1583 cm− 1and the appearance of new peaks at 
1676 cm− 1 and 1460 cm− 1 after DOX adsorption illustrated 
that C = O or N-H groups involved in DOX adsorption [35] 
and the NAC skeleton successfully adsorbed DOX.

Fig. 3  SEM images of pomelo peel after hydrothermal carbonization (a), AC (b) and NAC (c)
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Fig. 5  XPS survey spectra (a), XPS spectra of C1s (b, c), N1s (d, e), O1s (f, g) of NAC before and after adsorption DOX

 

Fig. 4  FT-IR spectra of DOX, NAC, NAC adsorbed DOX, AC (a), and Raman spectra of NAC and AC (b)
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of DOX on NAC and AC were 989.55 mg·g− 1 and 714.52 
mg·g− 1, respectively, indicating that the N element of NAC 
also played a role in adsorption process.

3.3  The effect of dosage on adsorption of DOX

The dosage of activated carbons is an important param-
eter affecting the adsorption characteristics. As shown in 
Fig.  6(b), the NAC dosage increased from 0.05  g·L− 1 to 
0.25 g·L− 1, the removal efficiency of DOX increased from 
39.09 to 99.48% and adsorption capacity per unit mass 
decreased from 1543.11 mg·g− 1 to 802.18 mg·g− 1. On the 
one hand, the increase in the removal efficiency of DOX was 
due to the increase in the total specific surface area and avail-
ability of more adsorption sites with rising the NAC dosage. 
On the other hand, there was adsorption competition among 
NAC and a certain amount DOX molecule in liquid phase 
are evenly adsorbed onto more adsorbents, which leads to a 
decrease in adsorption capacity per unit mass. The AC had 
the similar adsorbed process as graph shown. Considering 
qe and R %, 0.12  g·L− 1 was selected to be the adsorbent 
dosage in subsequent adsorption experiments.

3.4  The effect of pH on adsorption of DOX

Solution pH influences adsorption process by changing the 
surface net charge of NAC and existing species of DOX. 
The curve of equilibrium adsorption capacity versus pH 
was displayed in Fig.  7. As initial solution pH increased 
from 3.38 to 6, the values of qe for NAC had slight increas-
ing from 1269.2 mg·g− 1 to 1278.5 mg·g− 1. The adsorp-
tion capacity of NAC only had slight decreased when pH 
was within the range of 6–7, but decreased sharply under 

Pyridine N could further facilitated adsorption performance 
of activated carbon by hydrophobic effect between DOX 
and NAC [41]. The binding energies of all nitrogen species 
in Fig. 4(e) exhibited a shift after the adsorption of DOX, 
indicating their potential role as adsorption sites during the 
adsorption process.

As for O1s spectrum shown in Fig. 5(f), 532.88 eV and 
534.70  eV were represented for C = O, C-O-H, respec-
tively [44]. The peaks of C-O-H and C = O had a shift from 
532.88 eV, 534.70 eV of NAC to 532.70 eV and 533.85 eV 
of NAC after adsorption DOX (Fig. 5(g)), suggesting these 
groups were concerned with removing DOX. The result was 
consistent with the FTIR spectrum.

3.2  The effect of time on adsorption of DOX

The contact time is a crucial factor influencing adsorption of 
DOX on NAC. In the adsorption experiment, the dosage of 
activated carbons and concentration of DOX solution were 
0.2 g·L− 1 and 200 mg·L− 1, respectively. As shown in the 
Fig. 6(a). DOX was adsorbed rapidly in the first 150 min 
on both NAC and AC. The adsorption rate of DOX onto 
AC and NAC slowed down and gradually reached a state 
of dynamic equilibrium between the DOX desorption and 
adsorption with time increasing. There was a stronger driv-
ing force for mass transfer in the initial adsorption process 
due to a higher concentration of DOX. With the prolonged 
time, the adsorption rate becomes slower because more and 
more adsorption sites on the surface of activated carbons 
are occupied. The final equilibrium time of NAC and AC 
were at around 540 min and 480 min, respectively. Finally, 
540  min was seen as the adsorption equilibrium time for 
all other experiments. The equilibrium adsorption capacities 

Fig. 6  Effect of time on the adsorption of DOX onto NAC and AC (C0 = 200 mg·L− 1, adsorbents dosage = 0.2 g·L− 1, T = 298 K, pH = 3.38) (a) and 
effect of NAC and AC dosage on the adsorption of DOX (C0 = 200 mg·L− 1, contact time = 540 min, T = 298 K, pH = 3.38) (b)
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alkaline conditions. However, the adsorption capacity of AC 
always decreased from 793.50 mg·g− 1 to 306.12 mg·g− 1 
with the increase of pH. Moreover, it can be observed that 
NAC could retain a relatively higher adsorption capacity for 
DOX in the larger pH range than AC. The probable reason 
was that the new formed the N-containing functional groups 
played a role in adsorption process. In addition, NAC dem-
onstrated excellent adsorption capacity (1269.16 mg·g− 1) 
in the original solution of DOX. The pH of original DOX 
solution was near 3.38 and it was not adjusted in other 
experiments.

3.5  The effect of salt ionic on strength

The effect of salt ionic strength on adsorption for DOX was 
studied by 0–1 mol L− 1 NaCl solution at 298 K. As shown 
in Fig. 8, with the concentration of NaCl solution increased 
from 0 to 1.0 mol L− 1, the adsorption capacities of NAC 
and AC for DOX decreased from 1269.12 mg·g− 1 and 
793.50 mg·g− 1 to 879.97 mg·g− 1 and 596.04 mg·g− 1, the R 
% decreased from 76.80% and 47.72–52.80% and 35.76%, 
respectively. This trend is because salt ionic occupied the 
active sites on the surface of activated carbon, resultng in 
competitive adsorption with DOX molecules in the solu-
tion. However, at high Na+ concentrations, the removal effi-
ciency of NAC exceeds 52.80%. Besides, the impact of salt 
ionic on the on the adsorption of NAC is greater than that 
of AC.

3.6  Adsorption isotherms of NAC and AC

The isothermal adsorption models such as Langmuir, Freun-
dlich and Sips were used to analyze the adsorption equi-
librium data. Figure 9 showed the adsorption isotherms of 
DOX onto NAC and AC, and the fitting parameters cal-
culated according to equations (Eq. S1-S3) were listed in 
Table 2. 

From the Fig.  9(a), the adsorption capacities of DOX 
on NAC increased with increasing temperature. The 

Fig. 9  Nonlinear fitting of adsorp-
tion data of NAC (a) and AC (b) 
with isotherms models (adsor-
bents dosage = 0.12 g·L− 1, con-
tact time = 540 min, pH = 3.38)

 

Fig. 8  Effect of salt ionic strength on the adsorption of DOX (C0 = 200 
mg L− 1; adsorbents dosage = 0.12  g·L− 1; contact time = 540  min, 
pH = 3.38, T = 298 K)

 

Fig. 7  Effect of pH on the adsorption of DOX (C0 = 200 mg·L− 1, 
adsorbents dosage = 0.12 g·L− 1, contact time = 540 min, T = 298 K)
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than 2.60, indicating that the equilibrium data of DOX was 
well described by Sips model. The sorption for DOX on 
the NAC was mainly on heterogeneous surface. The val-
ues of qms and Ks all increased with increasing temperature. 
The saturated adsorption capacities of NAC were 1559.35 
mg·g− 1, 1635.61 mg·g− 1, and 1759.41 mg·g− 1 at 298, 308 
and 318 K, respectively.

Similarly, the isotherm fitting data (Table  2) of DOX 
adsorption on AC was more agree with Sips model due to 
higher R2 values (> 0.99) and the lower χ2 values (< 5.73). 
The saturated adsorption capacities of AC were 1080.05 
mg·g− 1 at 298 K, suggesting nitrogen doping significantly 
enhanced the adsorption ability of NAC for DOX. Table 3 
presented the maximum adsorption capacity of DOX on 
various materials. Comparing with other materials, the 
NAC used in this study had a relatively higher adsorption 
capacity, which might be caused by its high SSA and abun-
dant N, O-containing functional groups. The NAC could be 
considered as a potential adsorbent for the removal of anti-
biotic such as DOX from aqueous system.

3.7  Thermodynamic properties of NAC and AC

The values of ΔG°, ΔH°, and ΔS°.were calculated by equa-
tions (Eq. S5-S7) and the results were showed in Table 4. 
The values of thermodynamic parameters of NAC and AC 
have the same trend, which could be speculated that the 
adsorption process of NAC and AC for DOX was spon-
taneous, endothermic and randomness-increasing. NAC 
displayed the superior thermodynamic properties and 

determination coefficients (R2) of the Langmuir model were 
lower than 0.98 and the values of χ2 (Eq. S4) were rela-
tively higher at different temperatures, indicating Langmuir 
model was not suitable to describe the DOX adsorption 
process on NAC [45]. The KL increasing with temperature 
increase were illustrated the adsorption was more efficient 
at higher temperature [27]. The Freundlich model was used 
to describe the adsorption process of multilayer adsorption 
on heterogeneous surface, which is an empirical assump-
tion. The Freundlich model was also failed to describe the 
adsorption characteristics of DOX due to the lower R2 val-
ues (<0.91) and the higher χ2 values (>46.88).

The equation of Sips model was combined with Lang-
muir and Freundlich models [46]. It can simplify to Freun-
dlich model at low concentrations, while it is given to 
Langmuir isotherm at high adsorbate concentrations [47]. 
In this study, 1/M is the larger than 1 which reflects a more 
heterogeneous system. As shown in Table 2, the R2 values of 
the Sips model were higher than 0.99 and the χ2 were lower 

Table 2  Isotherm parameters of DOX adsorption onto NAC and AC
Parameters NAC AC

298 K 308 K 318 K 298 K 308 K 318 K
Langmuir qm 1482.56 1524.00 1575.07 1230.47 1282.94 1347.65

KL 0.272 0.278 0.279 0.01598 0.01604 0.01626
χ2 18.66 19.85 28.89 59.30 64.76 50.67
R2 0.9790 0.9727 0.9526 0.9687 0.9693 0.9724

Freundlich KF 653.01 669.95 686.00 162.26 166.33 174.19
1/n 0.1535 0.1547 0.1577 0.3198 0.3232 0.3245
χ2 56.11 57.09 46.88 263.90 279.00 310.63
R2 0.8638 0.8785 0.9042 0.8352 0.8396 0.8385

Sips qms 1559.35 1635.61 1759.41 1080.05 1121.21 1183.05
Ks 0.202 0.225 0. 233 0.0199 0.0202 0.0203
M 0.74 0.68 0.59 1.52 1.50 1.49
R2

χ2
0.9913 0.9969

2.52
0.9990
0.85

0.9916
5.72

0.9927
4.92

0.9966
4.502.60

Table 3  Comparison of adsorption capacity of doxycycline with dif-
ferent adsorbents
Materials Adsorption 

capacity 
(mg·g− 1 )

References

Magnetic cellulose nanocrystal (MCNC) 15.00  [48]
Iron loaded sludge biochar 128.98  [49]
Graphene-like layered molybdenum 
disulfide

556.00  [50]

Spent black tea leaves 36.81  [51]
Rice straw biochar 432.90  [52]
Pumpkin seed shell activated carbon 23.60  [7]
CoFe2O4/rice husk silica 
nanocomposite

835.47  [53]

NTiO2/NiSA-(Si-TETA)-Cu(II) 
nanocomposite

682.15  [54]

NAC 1559.35 This article
AC 1080.05 This article

Table 4  Thermodynamic parameters of NAC and AC
sample ΔG° (kJ·mol− 1) ΔH° (kJ·mol− 1) ΔS° (J·mol− 1)

298 K 308 K 318 K
NAC -9.06 -10.07 -11.37 25.31 115.31
AC -2.83 -3.24 -3.80 11.49 48.00
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process on heterogeneous solids [55]. The rate constant a 
(mg·g-1·min-1) of Elovich model increased with the increase 
of temperature, indicating the adsorption process of DOX 
on NAC was endothermic, which was consistent with the 
thermodynamic results.

The experiment data was further fitted by intra-particle 
diffusion model (Eq. S11) in Fig. 10(b). From the plot, the 
adsorption process could divided into the three straight lin-
ear sections: (1) DOX molecules in the solution diffused to 
the boundary layer on the surface of NAC, (2) DOX mol-
ecules diffused from the boundary layer on the surface of 
NAC to the interior of particles, and (3) the adsorption pro-
cess had been achieved the dynamic adsorption equilibrium. 
Moreover, all of the three curves did not pass through the 
origin, suggesting that DOX removal was controlled by 
multiple processes of the boundary diffusion and intra-par-
ticle diffusion [56].

3.9  Adsorption mechanism

The point of zero charge (pHpzc) was determined in order to 
further explore the surface properties of activated carbons. 
In Fig. 11(a), the corresponding pHpzc of NAC was approxi-
mately 6.94, indicating that the NAC surface net charge was 
positive when pH<6.94 and the surface charge was negative 
at pH>6.94 [57]. Three pKa values of DOX were 3.5, 7.9 and 
9.1 [50, 58, 59], the distribution curves and main molecular 
forms of DOX were exhibited in Fig. 11(b). At pH<2, the 
predominant form was the cationic species (DOX+), which 
gradually decreased as the pH increased. At pH 3.5, the pro-
portions of DOX+ and DOX± were equal. It existed primar-
ily as zwitterionic species (DOX±) at pH values between 3.5 
and 7.9. At pH>7.9, it presented mainly as anionic species 
(DOX−and DOX2−) because tricarbonyl system and phe-
nolic diketone moiety loss protons [60]. From the Fig.  7, 
the adsorption capacity of DOX increased slightly from 
1269.2 mg·g− 1 to 1278.5 mg·g− 1 with pH increased from 
3.38 to 6. Nevertheless, the adsorption capacity of DOX 
gradually reduced to 1268.0 mg·g− 1 within the pH range of 
6–7, but the adsorption capacity decreased sharply at pH>7. 

adsorption capacity compared to AC, which demonstrated 
N doping had a positive influence on the adsorption process.

3.8  Adsorption kinetic of NAC

Adsorption kinetics was used to understand the adsorption 
process better. In order to study the relationship between 
adsorption amount and contact time, the kinetic experimen-
tal data were fitted by pseudo-first-order, pseudo-second-
order, Elovich and inter-particle diffusion kinetic models 
(Eq. S8-S10). The regression curves of kinetic models were 
showed in Fig.  10 and the parameters of kinetics mod-
els were presented in Table 5. In Fig. 9(a), the adsorption 
capacity of DOX increased rapidly within 150  min and 
then increased slowly within the range of 150–540  min. 
Finally, the adsorption process of DOX reached dynamic 
equilibrium at 540 min. The correlation coefficient R2 of the 
Elovich model were all greater than 0.99, implying that the 
Elovich model fitted adsorption data for DOX well. Mean-
while, The Elovich model has commonly been seen as the 
semi-empirical equation which could describe adsorption 

Table 5  Kinetic parameters of DOX adsorption onto NAC
Parameters 298 K 308 K 318 K

Pseudo-first-order qe1 1153.19 1182.25 1213.46
k1 0.061 0.063 0.064
R2 0.7434 0.7330 0.7440

Pseudo-second-order qe2 1227.61 1258.15 1290.54
k2 × 105 6.51 6.59 6.66
R2 0.8513 0.8767 0.8999

Elovich a
b
R2

605.97
0.00603
0.9953

657.53
0.00592
0.9955

679.78
0.00578
0.9964

Intra-particle 
diffusion

kt1 93.35 97.16 100.54
C1 290.23 301.50 304.98
R 0.9921 0.9867 0.9999
kt2 30.39 30.89 31.49
C2 652.75 664.96 702.83
R 0.9900 0.9922 0.9318
kt3 3.05 3.48 3.81
C3 1176.48 1230.76 1253.03
R 0.9983 0.9949 0.9626

Fig. 10  Nonlinear fitting of 
adsorption data with the kinetic 
models of pseudo first-order, 
pseudo second-order, Elovich (a) 
and intra-particle diffusion model 
(C0 = 200 mg·L− 1, adsorbents 
dosage = 0.12 g·L− 1, pH = 3.38) 
(b)
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According to studies on pH, electrostatic interaction and 
hydrophobic interaction also be taken into consideration in 
the DOX adsorption. At pH 3.38-4, the qe increased slightly 
because the decrease in quantities of DOX+ led to weaken 
a part of electrostatic repulsion force between the positive 
charge of NAC and DOX+. Meanwhile, as pH increased 
from 4 to 6, the values of qe had a slight increase with the 
increase of pH, which is mainly attributed to the hydropho-
bic interactions. At pH 6–7, a slight decrease of qe due to 
the hydrophobic interactions weakened. When pH > 7, the 
electrostatic repulsion force between the negative charge of 
NAC and DOX−/DOX2− was gradually increased, which 
limited the adsorption for DOX. Meanwhile, the adsorp-
tion capacity of NAC decreases with pH increasing, which 
might be due to the reduction of hydrogen bond because of 
DOX ionization [62, 63].

The graphical illustration of adsorption mechanism of 
DOX onto NAC was shown in Fig. 11(c). In summary, the 
adsorption of DOX onto NAC could be achieved through 
the H-bonding, π-π EDA interaction, hydrophobic interac-
tion and electrostatic interaction.

NAC manifested a high adsorption capacity for DOX, and 
it was supposedly ascribed to the hydrogen bonding and 
π-π electron donor-acceptor (EDA) interaction between 
the NAC and DOX. FTIR revealed that substantial num-
ber of hydroxyl and carbonyl groups were on NAC, which 
could participate in the formation of hydrogen bonds to 
promote adsorption [61]. DOX adsorption occurred mainly 
via H-bonds between the C = O of the NAC and the -OH or 
N-H groups of DOX as well as via bonding between C = O 
of DOX and the -OH or N-H of NAC. As discussed above 
in the XPS analysis of the NAC, the binding energy shift 
of C = O and C-O-H also indicates that the adsorption of 
DOX is partly through the hydrogen bonds between the 
NAC and DOX. The Raman spectrum suggested the exis-
tence of numerous of aromatic rings related with electron 
deficiency on NAC, which could serve as π-electron accep-
tors [43]. Besides, the graphitic-N in NAC could function 
as a π-acceptor owing to the high electronegativity of N. 
Therefore, the DOX as π-donors could be adsorbed on NAC 
via the π-π EDA interaction.

Fig. 11  The point of zero charge (pHpzc) of NAC (a), existing species forms of DOX at different pH (b), graphical illustration of adsorption 
mechanism of NAC (c)
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agricultural waste was a promising adsorbent for application 
in the control of antibiotics pollution, which has important 
practical guidance significance in the field of wastewater 
treatment.
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