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Abstract
New Sn-Ti microspheres were first successfully synthesized by a PVP-assisted sol-gel method in this paper, and their perfor-
mance in the B–V oxidation of cyclohexanone was investigated. The XRD, N2 sorption, SEM, Py-IR, UV–Vis, XPS, EDX, 
Elemental mapping and TEM characterization techniques were utilized to investigate their physical and chemical proper-
ties. Based on the proposal possible formation mechanism, in the MTS-x sample synthesis procedure, the introduction of 
PVP as a stabilizer and dispersant can coordinate the hydrolysis rate of two different precursors resulting in the hindrance 
of their agglomerations. And the HDA as a precipitation accelerator and morphology control agent can be beneficial to the 
formation of spheres by increasing the hydrogen-bonding interactions. The MTS-12 as well as the weight percent of tin to 
titanium species of 12 with specific regular microspheres has the highest cyclohexanone conversion of 97.8% and the high-
est ε-caprolactone selectivity of 98.2%, which is better than the bulk Sn-TiO2 catalyst even though that the weight percent 
of tin to titanium species was 18. The catalysts with higher accessible active sites and shorter diffusion channels would 
provide a valuable theoretic reference for the industrial process of the B–V oxidation of cyclohexanone for the preparation 
of caprolactone.
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1  Introduction

ε-Caprolactone is a new type of polyester monomer. Owing 
to the reason that its polyester has good biocompatibility 
and biodegradability, it is widely used in biomedical engi-
neering, degradable plastic and high value-added packaging 
materials [1–3]. Traditionally, ε-caprolactone is mainly pro-
duced by cyclohexanone Baeyer–Villiger (B–V) oxidation 

with organic peroxyacid as the oxidant [4]. But organic per-
oxyacid has tremendous hidden danger during transportation 
and storage, and a large amount of waste acid is generated 
during the reaction, which is easy to cause environmental 
pollution. Therefore, it is urgent to seek for other oxidants to 
replace them [2, 5]. At present, there are two main methods 
used to prepare ε-caprolactone [6, 7]. The first one is the 
hydrogen peroxide as the oxidant [8, 9]. The other is the 
benzaldehyde/O2 method, also known as the Mukaiyama 
method [10, 11]. The former has weak oxidation capacity 
when the hydrogen peroxide concentration is too low, and 
it is easy to explode when the concentration is high [12]. At 
the same time, water will be generated during the reaction 
resulting in the hydrolysis of ε-caprolactone, which is not 
conductive to industrial process [13]. The benzaldehyde/
O2 method will be quite attractive owing to the fact that it 
is well matched to both environmental and cost concerns 
[14–16]. Up to now, many materials such as hydrotalcite 
[17], zeolite (molecular sieve) [18], carbon materials [19], 
composite metal oxides [20] and mesoporous oxides [21] 
have been used as catalysts in the cyclohexanone B–V 
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oxidation reaction. It is an inspired catalyst preparation 
strategy to introduce Sn4+ into zeolite (molecular sieve) 
or mesoporous metal oxide to improve the Lewis acidity 
and activate the carbonyl group of cyclohexanone, thereby 
promoting the cyclohexanone B–V oxidation. For example, 
Sn-beta zeolite [22], Sn-MCM-41 [23], Sn-SBA-15 [24] and 
Sn-SBA-16 [25] have all been proved to be a good class of 
catalysts. In our previous reports, we successfully incorpo-
rated Sn4+ into Al2O3 and TiO2 framework by an evaporation 
induced self-assembly method (EISA) to form the specific 
mesoporous Sn-Al2O3 [26]and Sn-TiO2 [27, 28], and they 
showed good catalytic performance in the cyclohexanone 
B–V oxidation with molecular oxygen.

Spherical mesoporous materials (SMMs), especially TiO2 
microspheres, are of great interests owing to the unique and 
regular spherical shape, which showed the closed packing 
nature and lowest surface energy. The open mesopores and 
short channels of SMMs not only increase the density of 
high accessible active sites but also facilitate the mass dif-
fusion with short length [29]. Until now, many methods 
have been developed to prepare TiO2 microspheres, includ-
ing sol-gel method [30, 31], hydrothermal or solvothermal 
synthesis method [32, 33], templates method [34, 35] and 
spray method [36, 37]. Among them, the sol-gel method is 
a better method because of its simple preparation procedure 
and the characteristics of toward controlled synthesis [38]. 
However, only pure TiO2 microspheres can be prepared by 
traditional sol-gel method. Other species would difficultly 
be incorporated into the TiO2 microspheres because of the 
different atomic or ionic structural sizes and valence states, 
which would cause the various hydrolysis rates resulting in 
the destruction of the spherical shape during the preparation 
process. Therefore, some other specified substances would 
be introduced to make the same hydrolysis rate of different 
species. PVP (Polyvinylpyrrolidone) is widely used as an 
effective surfactant to control the morphology during the 
synthesized process [39]. In the preparation procedure, PVP 
can be physically adsorbed on the surface of the polymer 
as a stabilizer and dispersant to prevent the polymer from 
agglomerating with each other [40] because of the strong 
steric hindrance with the five membered ring side groups 
in its molecular structure. On the other hand, since both the 
similar ion radius and equal valence state of Sn4+ (0.069 nm) 
and Ti4+ (0.061 nm), tin species can be easily incorporated 
into the skeleton of TiO2 microspheres by a PVP-assisted 
sol-gel method. The Sn-doped TiO2 microspheres combining 
Lewis acidity resulting from the incorporation of tin species 
and the advantages of microspheres are expected to achieve 
the desired results in cyclohexanone B–V oxidation reaction, 
and no relative literatures on this work have been reported.

In this paper, a series of mesoporous MTS-x catalysts 
were synthesized by a PVP-assisted sol–gel method. The 
characterization of XRD, N2 sorption, SEM, Py-IR, UV–Vis, 

XPS, EDX, Elemental mapping and TEM were utilized to 
investigate their physical chemical properties. Furthermore, 
the catalytic performance was investigated in the cyclohex-
anone B–V oxidation, and the catalyst formation and cata-
lytic mechanisms were also clarified.

2 � Experimental

2.1 � Preparation of catalysts

All the chemicals were of analytical grade and were used 
without further purification. In a typical synthesis procedure 
[41], 1.5 g of hexadecylamine (HDA) was added to the reac-
tor with 200 mL of ethanol and 1.3 mL of H2O, and then 
vigorously stirred for 30 min to obtain a uniform solution A. 
Tetrabutyl titanate (3.4 mL) and tin tetrachloride (0, 0.035 g, 
0.105 g, 0.175 g, 0.245 g, 0.315 g) were dissolved in ethanol 
(10 mL) under stirring. Then 0.3 g of polyvinylpyrrolidone 
(PVP) was slowly added to obtain solution B. After that, 
solution B was quickly added to solution A, and the stirring 
speed was immediately turned down to 500 rpm for 5 min. 
After aging for 24 h, the white precipitate was harvested by 
centrifugation, and then washed three times with ethanol to 
remove residual HDA, and then dried at 80 °C for 12 h. For 
the heat treatment, the samples were annealed at 400 °C for 
3 h with a heating rate of 2 °C min−1. The as-prepared sam-
ples were abbreviated as MTS-x, in which MTS and x refer 
to mesoporous Sn–Ti microspheres and the weight percent 
of tin to titanium species, respectively.

2.2 � Characterization of catalysts

The XRD patterns of the catalysts were obtained on a Bruker 
D8 instrument with Ni-filtered Cu Kα radiation (λ = 0.154 
nm) and operated at 40 kV and 100 mA. The scanning range 
was from 10 to 80° for the wide-angle X-ray diffraction pat-
terns. UV–Vis DRS for the catalysts were measured on 
Lambda 950 spectrophotometer. The wavelength range was 
from 200 to 800 nm and the BaSO4 was as a reference com-
pound. The surface chemical composition was analyzed by 
XPS on the Thermo Scientific Escalab 250 Xi spectrometer 
with Al Kα X-ray source (1486 eV). FT-IR spectra of pyri-
dine (Py-IR) were obtained on the Thermo Nicolet Nexus 
spectrometer in KBr pellets. The catalysts was pretreated 
in 10-2 Pa at 573 K for 3 h and then cooled down to room 
temperature. After that, pyridine was adsorbed for 2 h and 
the temperature was raise to 473 K for 1 h to remove the 
physisorbed pyridine. N2 sorption isotherms were measured 
at 77 K using a BELSORP-MINI volumetric adsorption ana-
lyzer. The samples were degassed at 473 K for 3 h under 
vacuum before measurement. The BET method and BJH 
adsorption model were used for calculating surface area and 
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determining pore size distribution, respectively. The mor-
phology of the catalyst was observed by S4800 scanning 
electron microscope (SEM). The dispersion of elements on 
the surface of the material was detected by the energy scan-
ning electron microscope of Oxford INCA EDAX. The dis-
persion of the semi-quantitative elemental composition was 
measured by energy dispersive X-ray (EDX) spectrometer 
in the Oxford INCA EDAX Detecting Unit. The morphol-
ogy of the catalysts was visualized using JEOL JEM-2010 
EX transmission electron microscope (TEM) under 200 kV 
after the samples were dispersed in ethanol assisted by an 
ultrasonic technique.

2.3 � Catalytic test

The catalytic performance of the synthesized catalysts were 
investigated in the B–V oxidation of cyclohexanone by 
molecular oxygen, which was carried out in a three neck 
flat bottom flask equipped with a reflux condenser at atmos-
pheric pressure. In a typical process, 0.24 g catalyst and 2.4 
g benzaldehyde as pro-oxygenic agent were simultaneously 
added into the solution containing of 1 g cyclohexanone and 
30 g acetonitrile as solvent. The solution was raised up to 
343 K and molecular oxygen was introduced to the reac-
tion system at a rate of 10 mL/min. After that, it was kept 
for 5 h with continuous stirring. After that, the flask was 
cooled down to room temperature and the reaction mixture 
was analyzed on a SP-6890 gas chromatograph equipped 
with a SE-30 column (0.25 µm × 50 m) and a flame ioni-
zation detector (FID). The cyclohexanone conversion and 
ε-caprolactone selectivity were calculated when dodecane 
was the internal standard. The reuse ability of the catalyst 
was investigated by filtration without any treatment in the 
recycling tests.

3 � Results and discussion

3.1 � Catalyst characterization

Figure 1 shows SEM images of MTS-x catalysts. As shown 
in Fig. 1, compared to the sample d, sample g prepared 
without PVP showed irregular particles, indicating that 
the PVP is essential to the formation of microspheres. For 
sample a, few microspheres with partial surface defect 
were obtained. With the mass ratio of tin species to tita-
nium species increasing from 0 to 12, more and more regu-
lar microspheres with uniform size would be obviously 
observed, suggesting the incorporated tin species would 
not destroy the structures. However, when the mass ratio 
of tin species to titanium species further increased, the 
microspheres would be broken and they would be agglom-
erated, which may be owing to the and fact that excessive 
tin species broke the equilibrium of condensation between 
titanium and tin complexes, resulting in the destruction 
of spheres.

Figure 2 shows XRD patterns of MTS-x catalysts. It can 
be seen from Fig. 2 that the diffraction peaks of the cata-
lyst a~d were ascribed to anatase phase of TiO2 (JCPDS 
No. 21-1272) [42], where the peak intensities would be 
promoted with the increase of tin species. However, when 
the mass ratio of tin to titanium species was exceeded 
to 12, a characteristic diffraction peak of rutile phase at 
around 2θ = 27.4° can be obviously appeared [43], which 
may be attributed to the reason that crystal transformation 
during calcination would happen by the excessive amount 
of tin species resulting in the peak intensities decreasing 
[44]. No characteristic diffraction peaks of SnO2 or other 
SnxTiOy species in all catalysts were observed, which may 

Fig. 1   SEM images of MTS-x catalysts. (a) MTS-0, (b) MTS-2.4, (c) MTS-7.2, (d) MTS-12, (e) MTS-16.8, (f) MTS-21.6, (g) MTS-12 without 
PVP
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be due to the fact that tin species were highly dispersed 
or homogeneously incorporated into the framework of 
mesoporous TiO2 microspheres [45].

Figure 3 shows N2 sorption isotherms and pore size dis-
tribution curves of MTS-x catalysts. As can be seen form 
Fig. 3a that all the isotherms show type-IV adsorption-des-
orption isotherms along with a H2 hysteresis loop, which is 
due to the capillary condensation of N2 in the mesopores, 
indicating that all the catalysts are typical mesoporous 
structures [46]. At the same time, the hysteresis loop would 
be promoted with the tin species increasing, which may 
be owing to the reason that tin species can be success-
fully incorporated into the framework of mesoporous TiO2 
resulting in the increase of pore volume. It can be seen from 

Fig. 3b, only a sharp peak around 3.7 nm can be observed 
for all the catalysts, indicating their mesoporous size was 
uniform. Some physical properties were listed in Table 1. 
With the increase of tin species, the specific surface area and 
pore volume of the catalyst increased, which also indicated 
that tin species were successfully incorporated into TiO2 
microspheres [47]. However, compared to the MTS-0 sam-
ple, the pore size of tin-doped TiO2 microspheres was almost 
unchanged owing to the almost equal diameter between Sn4+ 
and Ti4+ probably. In addition, the mass ratio of tin to tita-
nium species for all the MTS-x samples is almost equal to 
the initial feed ratio, suggesting all the tin species can be 
incorporated into the framework.

Figure 4 shows Py-IR curves of MTS-x catalysts. The 
absorption peak at 1450 cm-1 corresponds to the interaction 
between the Lewis acid and pyridine molecule [48]. It can be 
obtained from Figure 4 that the Lewis acidity would be pro-
moted by the incorporation of tin species when the weight 
percentage of Sn/Ti was below 21.6, and it increased with 
the tin species loadings increasing, which would activate 
carbonyl groups in the molecular structure of cyclohexanone 
resulting in the improvement of catalytic performance. How-
ever, as the Sn/Ti weight percentage reached 21.6, the Lewis 
acidity of MTS-21.6 catalyst decreased sharply, which may 
be ascribed the MTS-21.6 catalyst had a large amount of 
rutile phase leading to reduction in the amount of tin incor-
porated into the framework [28].

Figure 5 shows UV–Vis DRS patterns of (a) MTS-0 and 
(b) MTS-12. It can be seen from the Fig. 5 that the absorp-
tion of both samples was below 400 nm. For MTS-12, a new 
peak centered 210 nm corresponding to the tetrahedral coor-
dinated tin species can be observed, further suggesting their 
successful incorporation [49]. Compared with MTS-12, the 
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maximum absorption peak of MTS-0 shifts slightly to the 
right, which probably owing to the decreased crystallinity 
based on the XRD patterns [50]. For MTS-12, there was no 
obvious peak at the 400 nm center band, indicating that no 
bulk SnO2 was obtained in the MTS-12 catalyst [49], which 
was consistent with XRD characterization.

Figure 6 shows XPS spectra of (a) MTS-0 and (b) MTS-
12 samples. It can be seen from Fig. 6a the strong peak at 
529.8 eV can be ascribed to Ti-O [51], and the tailing peak 
at 531.9 eV may be owing to the -OH group absorbed on 
the surface [52]. Figure 6b shows the XPS spectra of the Sn 
3d region. The peaks at 486.1 eV and 495.5 eV are ascribed 
to Sn 3d5/2 and Sn 3d3/2, which can be concluded that the 
Sn4+ species can be formed in the lattice [53]. Compared 
to MTS-0 sample, a positive shift of Ti 2p and O 1s energy 
peaks for the MTS-12 sample can be observed because of 
the interactions between Ti, O and Sn species resulting in 
the formation of Ti-O-Sn framework [54]. At the same time, 
the Ti 2p peaks with binding energy of 458.7 eV and 464.5 
eV, corresponding to Ti 2p3/2 and Ti 2p1/2, respectively, can 
be observed in Fig. 6c, further suggesting their successful 
tetrahedral coordination [55].

Figure 7a shows elemental mapping pictures of MTS-12 
sample. It can be seen from Fig. 7a that the X-ray signal 
distributions of Ti, Sn and O elements were all spherical 
indicating that all the three elements are homogenously dis-
persed in the sample, which can further demonstrated that tin 
species were successfully incorporated into the TiO2 micro-
spheres. Figure 7b and c shows TEM images of MTS-12 
sample. It can be seen that the microsphere diameter about 
450 nm and the lighter contrast along the edge compared 
to the center can be observed, suggesting the short-ranged 
pores would facilitate the diffusion of the substrates [56].

3.2 � Catalytic performances

The catalytic performances for the MTS-x catalysts in the 
B–V oxidation of cyclohexanone by molecular oxygen are 
listed Table 2. From entry 1, no cyclohexanone conversion 
was obtained suggesting that the benzaldehyde was indispen-
sable as an oxygen promoter. In Entry 2, the cyclohexanone 
conversion of 36.2% and the ε-caprolactone selectivity of 
81.9%, respectively, can be formed in the absence of catalyst. 
Cyclohexanone conversion was 80.2% and ε-caprolactone 
selectivity was 83.6% from Entry 3 when the MTS-0 as 
catalyst, which is much higher than our previous literatures 
[27, 28] owing to the superiority of the formation of micro-
spheres. At the same time, the cyclohexanone conversion 
and the ε-caprolactone selectivity would be improved with 
the weight percent of tin to titanium species increasing from 
0 to 12. And the highest cyclohexanone conversion of 97.8% 
and ε-caprolactone selectivity of 98.2% over MTS-12 cata-
lyst in Entry 6 can be reached, which is much higher than the 

Table 1   Physical properties for MTS-x catalysts

a Barrett-Joyner-Halenda method
b Brunner−Emmet−Teller specific areas
c P/P0 = 0.9
d EDX analysis

Catalysts Pore size/(nm)a SBET/(m2·g-1)b Pore 
volume/
(cm3·g-1)c

Sn/Tid

MTS-0 3.71 14.53 0.04 0.0
MTS-2.4 3.72 22.53 0.05 2.6
MTS-7.2 3.72 31.39 0.08 7.0
MTS-12 3.72 38.39 0.10 11.6
MTS-16.8 3.72 39.20 0.11 17.3
MTS-21.6 3.72 46.44 0.12 21.0
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catalytic performance of bulk 12Sn-TiO2 and 12Sn-TiO2-EN 
catalysts based on our previous reports [27, 28]. It can inter-
estingly found that although the tin species loading is lower 
than 18Sn-TiO2-EN catalyst, the catalytic performance over 
MTS-12 is much higher in Entry 9. It may be owing to the 
reason that the unique mesoporous microspheres not only 
increased the density of active sites, but also shortened the 
diffusion path of the substrates than bulk ones. In addition, 
although the highest Lewis acidity for MTS-16.8 catalyst 
was obtained, the catalytic performance would be dropped 
because of the microspheres aggregations probably. Further 
increasing the tin species loading, cyclohexanone conver-
sion and cyclohexanone conversion would further decreased 
owing to the formation of some rutile phase resulting in the 
microspheres destruction.

To test the heterogeneity of MTS-12 catalyst, leaching 
experiments were carried out according to previous reports 
[57, 58]. The catalyst was removed at 1 h under the optimal 
reaction condition by hot filtration. Then, the filtrate was 
applied for further reaction under the same reaction condi-
tion. The results of leaching experiment are shown in Fig-
ure 8. It can be seen that the conversion of cyclohexanone at 
1 h (before catalyst removal) was 65.4%. With the increas-
ing of reaction time, a slight enhancement in cyclohexanone 
conversion was observed, which may be attribute to the little 
leached tin species dispersed on the support surface through 
the hydrogen bonding rather than incorporated tin species 
in the matrix of mesoporous TiO2 microsphere. The chemi-
cal composition of the fresh and filtered catalysts was also 
analyzed by XRF techniques. Compared to the fresh cata-
lyst, the tin content for the filtered catalyst slightly decreased 

from 11.7 to 11.5 wt.%, which indicated that the tin species 
incorporated in the MTS-12 sample was stable and thereby 
resistant to leaching.

Figure  9 shows the catalytic stabilities for MTS-12 
catalyst in the B–V oxidation of cyclohexanone. As can 
be seen from Fig. 9, the cyclohexanone conversion and 
ε-caprolactone selectivity of MTS-12 catalyst slightly 
decreased with increase of the recycle number. The 
ε-caprolactone yield of MTS-12 catalyst dropped from 96.0 
% to 82.4% after repeated use for 5 times, which proved the 
good stability of the MTS catalyst.

In addition, the catalytic performance between MTS-
12 and other reported tin-based catalysts was compared, 
and the results were listed in Table 3. It can be seen that 

Table 2   Catalytic performances for MTS-x in the B-V oxidation of 
cyclohexanone

Reaction conditions: w (cyclohexanone) /w (catalyst) /w (acetonitrile) 
/w (benzaldehyde) = 1/0.24/30/2.4; reaction time: 5 h; reaction tem-
perature: 70 °C.
a In the absence of benzaldehyde
b w (cyclohexanone) /w (catalyst) /w (acetonitrile) /w (benzaldehyde) 
= 1/0.24/30/2.2; reaction time: 5 h; reaction temperature: 70 °C

Entry Catalysts Cyclohex-
anone conver-
sion/%

ε-Caprolactone 
selectivity/%

ε-Caprolactone 
yield/%

1a MTS-12 – – 0
2 None 36.2 81.9 29.6
3 MTS-0 80.2 83.6 67.1
4 MTS-2.4 83.8 87.4 73.2
5 MTS-7.2 90.1 92.5 83.3
6 MTS-12 97.8 98.2 96.0
7 MTS-16.8 93.6 94.7 88.6
8 MTS-21.6 89.9 88.1 79.2
9b MTS-12 95.2 96.2 91.6
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Fig. 8   Leaching experiment of MTS-12 catalyst in the B-V oxida-
tion of cyclohexanone with molecular oxygen. Reaction conditions: 
w (cyclohexanone)/w (catalyst)/w(acetonitrile)/w(benzaldehyde) = 
1/0.24/30/2.4; reaction time: 5 h; reaction temperature: 70 °C
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the MTS-12 catalyst showed almost the highest cyclohex-
anone conversion than other tin-based catalysts. Although 
ε-caprolactone selectivity was lower than that of FeTPPCl/
SnO2 and SnTPP/4A-MS with complicated preparation pro-
cedure, the ε-caprolactone yield is slightly higher, which 
further proved the remarkable catalytic performance and 
potential application of MTS-12 catalyst.

3.3 � Formation mechanism for MTS‑x samples

Figure 10 shows possible formation mechanism of MTS-x cata-
lysts. The key points for the synthesis procedure were the hydrol-
ysis and condensation of the two different precursors, where the 
PVP was as a stabilizer and dispersant to coordinate the hydroly-
sis rate and prevent the formation of their agglomerates. And 
then, HDA was introduced as a precipitation accelerator [38] 
and a morphology control agent by increasing the hydrogen-
bonding interactions [41] to promote the formation of spheres. 
After that, MTS-x catalysts with regular spheres can be obtained 
followed by self-organization and short range packing. The spe-
cific hydrolysis and condensation mechanisms are as follows:

 
3.3.1 � Step 1: Titanium precursor hydrolysis/condensation

Titanium complexes with some hydroxyl groups were 
formed by the hydrolysis of tetrabutyl titanate, and Ti-O-
Ti bonds would be further produced by the condensation 
between two or more of the titanium complexes [63, 64].
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Table 3   Performance of tin-based catalysts in the B-V oxidation of 
cyclohexanone with molecular oxygen

Catalysts Cyclohex-
anone conver-
sion/%

ε-Caprolactone 
selectivity/%

Reference

MTS-12 97.8 98.2 This work
Sn-Al-7 90.8 91.7 [26]
15Sn-TiO2 91.4 93.2 [27]
18Sn-TiO2-EN 94.1 95.2 [28]
Fe-Sn-O mixed oxides 90–99 – [59]
Mg-Sn-O mixed oxides 87.6 – [59]
FeTPPCl/SnO2 96.0 > 99 [60]
Co-Sn, Cu-Sn and 

Ni-Sn
78.5–83.1 85–89 [61]

SnTPP/4A-MS 83 > 99 [62]

Fig. 10   Preparation mechanism of MTS-x catalysts
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3.3.2 � Step 2: Tin precursor hydrolysis/condensation

The hydrolysis and condensation procedure of tin pre-
cursor is similar as the titanium precursor besides that the 
tin tetrachloride is firstly alcoholized by the reaction with 
ethanol.

3.3.3 � Step 3: Titanium and tin complexes condensation

At the same time, Ti-O-Sn bonds would be gradually 
formed by the condensation of titanium and tin complexes.

In order to promote the formation of the bonding net-
work, HDA was added in the preparation system to accel-
erate the hydrolysis and condensation rates [65] and the 
PVP was also introduced to modulate the formation pro-
cess of the microspheres.

3.4 � Reaction pathway for the MTS‑x catalysts

Figure 11 shows reaction pathway for the MTS-x cata-
lysts. Firstly, benzaldehyde decomposes into benzoyl and 

SnCl
4
+ C

2
H

5
OH → Sn

(

C
2
H

5
O
)

4
+ 4HCl

Sn
(

C
2
H

5
O
)

4
+ xH

2
O →

(

OC
2
H

5

)

4−x
− Sn − (OH)x + xC

2
H

5
OH

(

OC
2
H

5

)

4−x
(OH)x−1 − Sn − OH + HO − Sn −

(

OC
2
H

5

)

4−x
(OH)x →

(

OC
2
H

5

)

4−x
(OH)x−1 − Sn − O − Sn −

(

OC
2
H

5

)

4−x
(OH)x−1 + H

2
O

(

OC
2
H

5

)

4−x
(OH)x−1 − Sn − OH + C

2
H

5
O − Sn

(

OC
2
H

5

)

3−x
(OH)x →

(

OC
2
H

5

)

4−x
(OH)x−1 − Sn − O − Sn −

(

OC
2
H

5

)

3−x
(OH)x + C

2
H

5
OH

(

OC
4
H

9

)

4−x
(OH)x−1 − Ti − OH + HO − Sn −

(

OC
2
H

5

)

4−x
(OH)x−1 →

(

OC
4
H

9

)

4−x
(OH)x−1 − Ti − O − Sn −

(

OC
2
H

5

)

4−x
(OH)x−1 + H

2
O

(

OC
4
H

9

)

4−x
(OH)x−1 − Ti − OH + C

2
H

5
O − Sn −

(

OC
2
H

5

)

3−x
(OH)x →

(

OC
4
H

9

)

4−x
(OH)x−1 − Ti − O − Sn −

(

OC
2
H

5

)

3−x
(OH)x + C

2
H

5
OH

hydrogen radicals, and then the benzoperoxy acid was 
formed by the combination with molecular oxygen. The 
activated cyclohexanone with the Lewis acidities was 
attacked by the generated benzoperoxyacid as a nucleo-
phile to generate a "Criegee" intermediate. The product of 
ε-caprolactone was obtained by the B–V rearrangement of 
the "Criegee" intermediate, while the by-product of ben-
zoic acid was also formed. The higher density of active 
sites with Lewis acidities and shorter diffusion channels 
would act as the key reasons for the higher catalytic per-
formance of the MTS-x catalysts.

4 � Conclusions

In this paper, a series of mesoporous MTS-x catalyst with 
specific microspheres were first successfully synthesized by 
a PVP-assisted sol-gel method. The characterization results 
showed that the introduction of tin species into the frame-
work of TiO2 microspheres not only increased the pore vol-

ume and specific surface area, but also increased the strength 
of Lewis acidity. The PVP and HDA would act as differ-
ent roles in the formation of regular microspheres, which is 
essential to acquisition of the higher catalytic performance 
in the B–V oxidation of cyclohexanone with molecular oxy-
gen. When the weight percent of tin to titanium species was 

12, the MTS-12 catalyst would be the best candidate with 
no obvious loss of catalytic performance even after repeated 
use for 5 times.
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