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Abstract Glacier shrinkage and melting of snow

patches caused by the current phase of warming is

having a profound impact on lake ecosystems located

in glacierized environments at high altitude and/or

latitude because it alters the hydrology and the

physico-chemistry of the river discharges and catch-

ment runoff. These changes, in turn, have a major

impact on the biota of these lakes. In this study, we

combined geochemical and diatom analyses of a

sediment core retrieved from Lake Kanas (N.W.

China) to assess how climate change has affected this

ecosystem over the past * 100 years. Our results

show that the aquatic ecosystem of Lake Kanas was

sensitive to changes in the regional climate over that

period of time. The lake has been affected by change in

hydrology (e.g. influx of glacier meltwater, variations

in precipitation) and change in hydrodynamics (water

column stability). The variations in abundance and

composition of the diatom assemblages observed in

the sedimentary record have been subtle and are

complex to interpret. The principal changes in the

diatom community were: (1) a rise in diatom accu-

mulation rates starting in the AD 1970s that is coeval

with changes observed in temperate lakes of the

Northern Hemisphere and (2) an increase in species

diversity and assemblage turnover and a faster rate-of-

change since * AD 2000. The diatom community is

expected to change further with the projected melting

of the Kanas glacier throughout the twenty-first

century.

Keywords Cyclotella sensu lato � Climate

warming � Glacier meltwater � Xinjiang � XRF

Introduction

Air temperatures in temperate latitudes of the North-

ern Hemisphere have increased over the last century,

with an amplification of this warming trend over the

past 30–40 years that is unprecedented in the

last * 1300 years (Jansen et al. 2007). Climate
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warming has a significant impact on the function and

biodiversity of the natural ecosystems, including

lakes, which represent an important component of

the global ecosystem. Lakes are effective sentinels for

environmental change because they integrate biogeo-

chemical inputs from aquatic and terrestrial land-

scapes. As a result, lake sedimentary records provide

important information about past environmental con-

ditions in the lakes themselves and their surrounding

catchment (Adrian et al. 2009; Mills et al. 2017).

Among lakes, those that are fed by glacier or snow

meltwaters and located at high elevation in alpine

regions or at high latitudes in Polar Regions, are

among the most vulnerable to climate change. This is

due to the interconnections between atmospheric

forcing, snowpacks/glacier mass-balance, stream

flow, water quality and hydrogeomorphology (Milner

et al. 2009). More specifically, variations in the

quantity and quality of glacier and snowpack meltwa-

ters strongly impact the hydrology, the chemistry and

water transparency of lakes in alpine and arctic

regions. These changes have obvious repercussions

on the aquatic biota of these lakes, including on

primary producers that are particularly sensitive to

variations in light conditions and in the concentration

of nutrients, i.e. mainly nitrogen and phosphorus

(Slemmons et al. 2015).

Diatoms, which are important primary producers in

lakes, are often used as proxies in paleoclimatic

reconstructions because of their sensitivity to changes

in their aquatic environment and the characteristics of

their siliceous frustules that allow their identification

to the species level and also promote their preservation

in the sediment record of lakes (Battarbee et al. 2001).

Diatoms are particularly useful proxy indicators in

alpine and/or subarctic regions as some terrestrial-

based paleoecological techniques reach their method-

ological limits at sites beyond the tree line (Lotter et al.

2010). Although the responses of diatoms to climate

change is often complex, it has been demonstrated that

shifts in diatom assemblage composition, when con-

sidered carefully, represent a powerful signal for

climate-related regime shifts (Rühland et al. 2015).

Paleolimnological studies that focused on meltwa-

ter fed lakes have revealed that in the recent past

abrupt changes occurred in the diatom communities of

these lakes. However, the effects on the sedimentary

diatom assemblages can be very variables. For exam-

ple, Sienkiewicz et al. (2017) found in the sedimentary

record of Revvatnet Lake (Svalbard) that the abun-

dance of diatoms typical of rivers and streams

increased in frequency at the end of the Little Ice

Age due to an increase in running waters caused by the

melting of nearby glaciers associated with higher

temperature while planktonic diatoms almost com-

pletely disappeared. Similarly, Vorobyeva et al.

(2015) who analyzed the diatom records of several

proglacial lakes in East Siberia (Russia), found a

strong decline in the abundance of diatoms when the

glaciers in the catchment of these lakes actively

melted after the Little Ice Age and they associated

these changes with the high supply of clastic material

with meltwater that increased water turbidity, which is

detrimental to both planktonic and benthic diatoms.

Slemmons et al. (2015, 2017a, b) also found pro-

nounced shifts in diatom assemblages in the glacier-

fed lakes of the Rocky Mountains (USA), but there the

changes were expressed by the increase in the

percentages of planktonic species indicative of mod-

erate nitrogen enrichment that started about 100 years

ago. These authors interpreted these diatom shifts as

the results the rapid melting of the glaciers combined

with the increase in atmospheric nitrogen deposition

(due to human activities). In Bunny Lake in East

Greenland, Slemmons et al. (2017a) also inferred that

glacially derived nitrogen subsidies caused the shifts

observed in the diatom record, although in that lake,

fluctuations in water level also had an impact on the

diatom assemblages.

Lake Kanas (48�110–49�110N, 86�230–88�050E,

1370 m a.s.l.) has great potential for studying the

way aquatic ecosystems respond to climate change as

it is fed by a river with glacier meltwater inputs and it

is located in the Altai Mountains (also spelled Altay), a

region that has been so far little affected by human

activities. There are, however, few studies about lakes

in the Altai Mountains (Rudaya et al. 2009; Li et al.

2017) and in particular about Lake Kanas to build

upon. In this study, we investigate how Lake Kanas is

responding to the recent climate change by analyzing

the diatom assemblage and geochemical record of a

short sediment core that spans the last * 100 years.

Study site

Lake Kanas (latitude 48�110–49�110N, longitude

86�230–88�050E, altitude 1370 m a.s.l.) is a lake

surrounded by the boreal coniferous forests of the
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Altai Mountains (Fig. 1). It is a large and deep lake

with a surface area of 45.73 km2, about 24 km long

and 2 km wide and its maximum and mean water

depths are 197 m and * 100 m, respectively (Wu

et al. 2014). It is located at the junction between the

Burqin and Habahe counties, in the most northern part

of Xinjiang Province and is 60 km away from Khüiten

Peak (altitude 4374 m), the highest peak of the Altai

Mountains (Gao 1986). The lake basin was excavated

by ancient glaciers and dammed by the glacier end

moraine. It formed during Marine Isotope Stage 6 with

the outermost moraine dated at 167 ± 16 ka (Zhao

et al. 2013).

There are 210 active modern glaciers in the Kanas

River valley. These glaciers occupy a total area of

about 210 km2 and represent an ice volume of

13.34 km3. Among these glaciers, the most

notable is the Kanas glacier with a length of more

than 5 km. In 1980, the Kanas glacier was about

10.8 km long, had an area of about 30 km2 and an ice

volume of 3.92 km3, and had its terminus at 2416 m

a.s.l. (Liu et al. 1982). In 2009, Zhao et al. (2013)

observed that the terminus of the Kanas glacier was at

2460 m a.s.l., i.e. more than 40 m higher by compar-

ison with the 1980 position, as a result of about 800 m

of glacier retreat.

The Kanas River flows into the lake from the

northeast to the southwest (Fig. 1). The lake surface

water is slightly alkaline (pH 7.23), weakly mineral-

ized (conductivity = 46 lS cm-1) and dominated by

calcium-carbonates with the following sequence of

dominant cations Ca2?[Na?[Mg2?[K? and

anions HCO3
-[Cl-[[SO4

2-[NO3
- (Zhu

et al. 2013). The lake volume and surface area of this

open system have been stable in the recent past (Wu

et al. 2014).

Historically Lake Kanas has been barely influenced

by anthropogenic disturbances. However, in recent

years the number of tourists visiting the area has

increased rapidly: from * 9000 visitors per year in

1997 when the area became opened to tourism to * 1

million tourists in 2013, with 5000 tourists a day

during the peak of the tourism season in the summer

months (Han et al. 2011; Yang et al. 2014; Shi and Shi

2016). The impact of tourism is however limited to the

southern part of the lake. Core KNS14B was retrieved

from the upper reaches of the lake, near the west shore

and the estuary, from a position that can considered as

unaffected by direct human impact.

Present climate conditions are determined by the

Westerlies which brings water vapor and precipitation

in summer. In winter this area is influenced by the

Asian anticyclone that causes cold but sunny condi-

tions. The polar air from the north penetrates along the

valley of the Erqis River (Bai 2012). The temperature

and precipitation recorded from AD 1958–2014 at the

Fig. 1 Geographical location of Lake Kanas: a Regional setting, b location in NW China, c simplified lake bathymetry and position of

the coring site

J Paleolimnol (2018) 59:461–477 463

123



Habahe meteorological station, the nearest to Lake

Kanas, are shown in Fig. 2. The average annual

temperature is 5.5 �C while the average annual

precipitation is 160 mm. Maximum rainfalls occur in

July (21.7 mm) and November (21.5 mm) while the

minimum precipitation is in February (2.8 mm).

Monthly mean temperature varies from 22.1 (July)

to -14.9 �C (January).

Materials and methods

Sediment sampling and chronology development

In September 2014, a sediment core was retrieved

from a water depth of about 15 m near the northern

shore of the lake, closed to the estuary of the River

Kanas (48�53034.0100N, 87�7050.4700E) using a

Uwitec� modified piston corer (Fig. 1c). The core,

KNS14B, was 51 cm long and sliced in the field at

1 cm interval. Fifty samples from core KNS14B were

analyzed for 210Pb and 137Cs at the c Radiation

Laboratory of the Institute of Geology and Geo-

physics, Chinese Academy of Sciences, Beijing. The

chronology was established based on the constant rate

of supply (CRS) model (Appleby and Oldfield 1978).

Error in the sediment chronologies was determined

from the uncertainty in the 210Pb gamma counts as

described in Appleby (2001).

Geochemical analysis

The grain size and total organic carbon (TOC) of the

sediments were measured in the Key Laboratory of

Western China’s Environmental Systems, Ministry of

Education (MOE) in Lanzhou University. Variations

in grain size may be related to changes in inputs from

the river, runoff from the lake catchment and the

hydrodynamic of the lake. The grain size was

measured with a Mastersizer 2000 laser granularity

analyzer (Malvern Instruments Ltd, UK). Details of

the analytical method are given in Peng et al. (2005).

TOC, that relates to the content in organic matter of the

sediment and may indicate changes in biological

productivity, was measured using a TOC Analyzer

(Analytik Jena AG, Germany). Details of the method

are given in Liu et al. (1996) and Bao (2000).

Variations in the concentrations of geochemical

elements down-core can indicate changes in inputs

from the river and/or the catchment but also changes in

lake productivity and hydrodynamics. The elemental

composition of KNS14B core was investigated by

X-ray fluorescence spectrometry (XRF-SR) for the

quantitative analysis of 36 trace elements and major

constituents. All collected samples were dried by air

and pulverized into powder. A volume of 5 g of

powdered material was pressed into a bead, 4–6 mm

thick and 30 mm in diameter, under 30 t m-2 of

pressure. Elemental concentrations ranging from

0.1 ppm to 100% can be measured by the spectrom-

eter. The measuring errors for reported elements
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are\ 10%. These analyses were carried out at the

MOE Key Laboratory of Western China’s Environ-

mental System in Lanzhou University. The coeffi-

cients of correlation (r) were computed between

down-core variations in these elements in order to

identify significant geochemical associations (Beau-

doin et al. 2016).

Diatom analysis and taxonomy

All 51 samples from core KNS14B were analyzed for

diatoms. Diatom samples were prepared in test tubes

from approximately 0.05 g of freeze-dried sediment

using hot H2O2 to remove organic matter (Renberg

1990). Diatom concentrations (valves per g of dry

matter) were calculated by the addition of divinyl-

benzene microspheres (Battarbee and Kneen 1982).

Diatom fluxes (in valves cm-2 yr-1) were then

calculated by multiplying the diatom concentration

by the dry bulk density (in g cm-3) and the sediment

accumulation rate (in cm yr-1). Subsamples of the

homogenized suspension were diluted by adding

distilled water and left to settle onto glass coverslips

until dry (Gao et al. 2016). The coverslips were fixed

onto glass slides with Naphrax�. For all samples at

least 300 valves were counted under a Leica DM6000

light microscope using oil immersion phase-contrast

at 10009 magnification. Diatom identification and

taxonomy were mainly based on Krammer and Lange-

Bertalot (1986, 1988, 1991a, b) and Hofmann et al.

(2011). We also used other taxonomic publications to

aid with the identification of difficult groups of

diatoms, like Kling and Håkansson (1988) for Cy-

clotella gordonensis H.J. Kling & Håkansson (re-

cently renamed Pantocsekiella gordonensis (H.J.

Kling & Håkansson) K.T. Kiss & Ács). Light micro-

scope and scanning electron microscope photographs

of P. gordonensis are shown in the appendix.

Numerical analyses on diatom data

Diatom assemblage zones (DAZ) were delimited by

optimal partitioning (Birks and Gordon 1985) based

on the diatom percentage data using the unpublished

program ZONE (version 1.2) (Lotter and Juggins,

pers. commun.).

The planktonic:benthic ratio (P:B ratio) was calcu-

lated for each core depth based on the habitat of the

species as indicated in the main flora used for diatom

identification (Krammer and Lange-Bertalot

1986, 1988, 1991a, b; Hofmann et al. 2011). Varia-

tions in the P:B ratio are interpreted as reflecting

alterations in the lake habitat conditions.

To estimate the down-core diatom compositional

turnover or beta-diversity, of the core diatom assem-

blages, relative abundances were analyzed using

detrended canonical correspondence analysis (DCCA)

constrained to time. The larger the beta-diversity value

obtained over the interval under consideration, the

greater the assemblage turnover. Beta-diversity is

estimated in units of standard deviations (SD), which

correspond with units of compositional turnover

(Birks 2007; Hobbs et al. 2010). The DCCA analysis

was performed using the program CANOCO 5 (ter

Braak and Šmilauer 2012) and the protocol included

square-root transformation of the diatom relative

abundance data, no down-weighting of rare species,

detrending by segments and non-linear rescaling

(Smol et al. 2005; Hobbs et al. 2010). In addition, to

estimate the rate at which compositional change is

occurring we determine the rate-of-change. This was

done by calculating the down-core diatom species

turnover as the Bray–Curtis distance between adjacent

samples, and the down-core rate of change as this

measure divided by the time interval between samples

(Juggins et al. 2013). The rate-of-change is therefore

measured in yr-1.

Although biodiversity assessments would ideally

require complete samplings (i.e. an inventory of all the

species present in a sample), only partial samplings are

ordinarily achieved when species abundances distri-

butions are highly heterogeneous within a community

which is often the case with micro-organisms such as

diatoms (Béguinot 2015a). In this study, we used Jack-

2, a nonparametric estimator of species richness

(Béguinot 2015a, b) defined according to the follow-

ing formula (Eqs. 1–4):

RðNÞ ¼ S 1 � k00=N=� k000
�
N2

� �
ð1Þ

S ¼ Roþ 2 f1ðNÞ � f2ðNÞ ð2Þ

k00 ¼
3 f1ðNÞ �2 f2ðNÞ
� �

N0

R0 þ2 f1ðNÞ � f2ðNÞ
ð3Þ

k000 ¼
f1ðNÞ � f2ðNÞ
� �

N2
0

R0 þ2 f1ðNÞ � f2ðNÞ
ð4Þ
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Here, f1(N) and f2(N) are the numbers of singletons

(i.e. the species for which only one individual was

counted) and doubletons (i.e. the species for which

two individuals were counted) among the

R(N) recorded species within a sample of size N

(Béguinot 2015b). N0 is the number of counted valves

and S represents the expected total richness (Béguinot

2015a). R0 is the number of recorded species, which

for this study corresponds with a valve count of 300.

Results

Chronology of the sequence

Unsupported 210Pb activity (210Pbex), which was

calculated by substracting supported 210Pb (as 226Ra)

activity from the total 210Pb activity, declines

irregularly with depth (Fig. 3). Equilibrium between

the total 210Pb activity and the supported 210Pb is

reached at the level 32–33 cm. Small irregularities in
210Pbex below this depth are probably not significant as

they are in the same order of magnitude as the

uncertainties in the measured activities. The maxi-

mum for 210Pbex is 64.4 ± 6.3 Bq kg-1 measured in

the uppermost sample (0–1 cm).

The chronological error increased from 0.2 years at

the top to 25.6 years at 33 cm, where sediments are

dated to AD 1914 by this method. The 137Cs activity

reaches a maximum value of 23.4 ± 0.6 Bq kg-1 in

the core sample 21–22 cm. This corresponds to the

large fallout from the atmospheric testing of nuclear

weapons in AD 1963. It is in good agreement with the

CRS model that dates this layer as AD 1962.8 ± 3.9.

There are considerable changes in sediment accumu-

lation rates in the upper part of the core so it was not
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appropriate to extrapolate the 210Pb chronology into

the deeper part of the core using the average sediment

accumulation rate (Appleby 2000).

Geochemical analyses

The median grain size varies from 12 to 20 lm with a

mean value of * 16 lm for the whole profile. Grain

size is dominated by coarse silt ([ 16 lm) below

29 cm while the percentages of fine silt (\ 4 lm)

increase in the upper part of the sequence. TOC of core

KNS14B varied from 0.3 to 0.7% (mean value of

0.45%). Its value is mostly stable from the bottom

(51 cm) to * 20 cm. From that point, TOC fluctuates

reaching its minimum value for the whole sequence at

10 cm before rising sharply up to the top of the

sequence. The variations of TOC and median grain

size are shown in Fig. 4.

Among the elements derived by XRF analysis, only

those that exhibit trends considered to be significant

variations in elemental composition of the sediment

core are mentioned in this paper (Fig. 4, Table 1).

Variations in the core of Rb, Rb/Sr ratio and K2O, that

are generally associated with feldspars and clay

minerals follow those of the fine particle (\ 4 lm)

as shown by their strong positive correlations (r[ 0.8,

p\ 0.01, a\ 0.001). By contrast Zr, which is

associated with weathering-resistant, coarse mineral

particles such as zircon (ZrO2) and the Zr/Rb ratio are

strongly and positively correlated with coarse particles

(r[ 0.8, p\ 0.01, a = 0.001). K2O and to a lesser

extend Fe2O3 and Ti are strongly negatively corrected

with the Zr/Rb ratio. CaO and Sr are positively

correlated with each other (r[ 0.7, p\ 0.01,

a = 0.001). A peak in Cu is observed in the AD

1970s, between 17-19 cm core depth, and matches

with high TOC content. The curve for the Mn content

is marked by a modest increase at * 19 cm and a

sharp rise in the uppermost sample.

Diatom analysis

In total, 300 species of diatoms were identified in the

51 samples. Only 25 species reached relative percent-

ages[ 2% and appeared in more than 3 samples

(Fig. 5). A list of these diatoms with their taxonomic

authorities and habitat preference is given in Elec-

tronic Supplementary Material. The species that

fulfilled these criteria include seven species of plank-

tonic diatoms such as P. gordonensis, which is largely

dominant throughout the sequence, Aulacoseira ambi-

gua (Grunow) Simonsen, Discostella stelligeroides

(Hustedt) Houk & Klee, Asterionella edlundii Stoer-

mer & Pappas, Fragilaria gracilis Østrup, Fragilaria
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tenera (W. Smith) Lange-Bertalot and Fragilaria

saxoplanctonica Lange-Bertalot & Ulrich and 18

species of benthic diatoms including Achnanthidium

minutissimum (Kützing) Czarnecki (which is the

dominant benthic species). The sequence was divided

into 5 DAZ using optimal partitioning on the percent-

age data (Fig. 5).

The species turnover, as expressed by the difference

between the minimum and maximum sample scores

on DCCA axis-1 is 2.98 standard deviation units. The

uppermost sample has the lowest score for the whole

sequence (Fig. 6). The rate-of-change is low through-

out DAZ 1 and 2 during which it remains mostly below

0.1 yr-1 and increases from the top of DAZ 2

from * AD 1995. The maximum value for rate-of-

change is for the sample 2–3 cm (AD 2007–2008)

with 0.32 yr-1 (Fig. 6). Diatom flux peaks at the level

5–6 cm (AD 2003–2004) with a value of * 75 9 106

valves cm-2 yr-1 (Fig. 6). Species diversity (observed

and expected) is highest in the uppermost sample

(Fig. 6).

DAZ 1: 51–20.5 cm, before * AD 1916–

1969 From the start of the record to * AD 1969

diatom assemblages change little in composition and

are largely dominated by the planktonic species P.

gordonensis. The most abundant benthic species are A.

minutissimum, Staurosirella pinnata (Ehrenberg) D.

M. Williams & Round, Encyonema silesiacum

(Bleisch) D. G. Mann, Gomphoneis pseudookunoi

Tuji and Diatoma mesodon (Ehrenberg) Kützing.

Diatom flux is low throughout the zone but diatom

diversity is variable (29\ S\ 73, mean = 48).

DAZ 2: 10.5–20.5 cm, AD 1969–1998 This zone is

characterized by an increased in the percentages of P.

gordonensis and a decrease in benthic diatoms.

Compared with the previous zone, the diatom flux

and planktonic:benthic ratio increase. Diatom diver-

sity is generally higher than in the previous zone

(38\ S\ 62, mean = 53).

DAZ 3: 6.5–10.5 cm, AD 1998–2003 The rate-of-

change increases markedly at the transition between

this zone and the previous one. There is a drop in the

percentages of P. gordonensis but those of other

planktonic species such A. ambigua, D. stelligeroides

and F. gracilis increase. The diatom flux and plank-

tonic:benthic ratio decrease. Diatom diversity increase

further (47\ S\ 68, mean = 56).

DAZ 4: 3.5–6.5 cm, AD 2003–2007 The percent-

ages of P. gordonensis and that of other planktonic
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species increase sharply as well as the diatom flux and

the planktonic:benthic ratio. The decrease in benthic is

associated with a decrease in diatom diversity

(41\ S\ 48, mean = 44).

DAZ 5: 0–3.5 cm, AD 2007–2014 This zone is

characterized by a sharp drop in the planktonic:benthic

ratio and the diatom flux. Besides P. gordonensis,

planktonic Fragilaria species such as F. gracilis, F.

tenera and F. saxoplanctonica and A. ambigua are also

abundant. The uppermost sample is characterized by a

sharp increase in species diversity (S = 100).

Discussion

Interpretation of geochemical proxy

Due to the coring location, near the shore and the

estuary of the Kanas River, we can assume that the

grain size characteristics of core KNS14B are influ-

enced by inputs from the river, runoff from the lake

catchment and the hydrodynamic of the lake. As

discussed by Liu et al. (2014), variations in the lake

sediment record in grain size and in some elements can

be used to indicate glacial erosion and the downstream

transport of particles and therefore reflect glacier

activity. In particular, abrasion by glaciers is known to
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Fig. 6 Comparison between selected proxy data derived from

Lake Kanas core KNS14B, the meteorological data from

Habahe station and other records of recent climate change,

plotted against time. From left to right: Globally averaged

combined land and ocean surface temperature anomaly (IPCC

2014); mean annual temperature from Habahe Station (devia-

tion from the mean 1957–2014); June temperature for the Altai

reconstructed from tree-ring data (Shang et al. 2010); Summer

temperature and annual precipitation from Habahe station

(deviation from the mean 1957–2014); and proxy data from

core KNS14B including: sedimentation rate, 226Ra activity, Rb/

Sr ratio, Titanium content, grain-size, diatom fluxes (total

diatoms = bars, P. gordonensis = plain line, A. minutissi-

mum = dashed line), relative percentages of P. gordonensis

and planktonic Fragilaria, planktonic:benthic ratio, rate-of-

change, detrended DCCA scores on axis-1 (the dotted line

indicates the mean for the sequence), species richness

(black = observed number of planktonic spp, grey = obs.

number of benthic spp, white = expected richness, the dotted

line indicates the mean observed richness for the sequence).

Note that for the core data the width of the bars corresponds with

the time interval covered by each sample
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produce large quantity of silt-sized particles in periods

of glacier advances. The Zr/Rb ratio traces grain size

changes with high Zr/Rb ratios indicating coarse-

grained and inversely, low Zr/Rb ratios indicating

fine-grained material. In the context of Lake Kanas,

high Zr/Rb ratios reflect glacier advance.

Sr is normally associated with autochthonous

precipitation of carbonates in lake, itself associated

with summer thermal stratification. In a glaciolacus-

trine context such as Lake Kanas, however, seasonal

melting of the glacier caused by high air temperature

result in high input of glacier meltwater, which is

unfavorable to the precipitation of carbonates and

therefore cause low content of Sr. Sr content is

therefore a mixed signal, driven by the opposite effects

of summer stratification and meltwater input. In the

lower part of the core, the Rb/Sr ratio mainly depends

on the amount of Rb (r[ 0.9, p\ 0.01, a = 0.001,

Table 1). In such conditions, high values of the Rb/Sr

ratio indicate glacier retreat (Liu et al. 2014).

Ti is typical of clastic material primarily trans-

ported as suspended particulates (Stepanova et al.

2015) that can be considered as indicator of detrital

sediment input and of a water body strongly influenced

by river runoff (Biskaborn et al. 2012). K2O and Fe2O3

on the other hand are considered as highly mobile and

closely associated with the intensity of weathering

(Stepanova et al. 2015). Mn is also a highly mobile

element but additionally it is susceptible to reduction

and mobilization in sediments (Engstrom et al. 1985;

Kauppila et al. 2012). Cu is autochthonous in origin

and high content of this element indicates high lake

productivity due to an increase in the rate of supply of

nutrients into the lake from the catchment area at a

high soil water saturation (Fedotov et al. 2015).

Lake Kanas recent paleoenvironmental changes

Zone 1 (from before * AD 1916–1969). The geo-

chemical data for the lowermost zone 1 in core

KNS14B suggest 3 periods of glacier advance that are

characterized by high values for the coarse grain-size

and Zr/Rb ratio. On the other hand, there is also a

noticeable * 10-year interval centered around AD

1940 in which the median grain size markedly

decreased while the Rb/Sr ratio and K2O content

increase (Figs. 4, 6). These data indicate higher clay

content and increased river input, possibly associated

with glacier meltwater. This is consistent with the

record of the globally averaged combined land and

ocean surface temperature anomaly (IPCC 2014) that

shows that the AD 1940s were a warm interval

(Fig. 6). During the same interval in the diatom record

there is an increase in the planktonic:benthic ratio

associated with low values for the observed and

expected species richness. The diatom response to this

climate shift is rather muted, and the lack of large

change in the composition of diatom assemblages in

zone 1 suggests that no ecological threshold was

crossed during the time interval covered by this zone.

The large dominance of the planktonic freshwater

diatom P. gordonensis in Lake Kanas is in accordance

with what is known about the ecology and distribution

of this species that was described from deep olig-

otrophic lakes in Canada (Kling and Håkansson 1988)

and has also been found in similar settings in Europe

(Wunsam et al. 1995; Hausmann and Lotter 2001) and

the Far-East (Genkal and Lepskaya 2014). The most

abundant benthic diatom, A. minutissimum, is one of

the most frequently occurring freshwater diatom

species all over the world with a broad ecological

spectrum (Krammer and Lange-Bertalot 1991b). Its

continuous large abundance in the assemblages of the

core reflects the fact that the core was retrieved near

the shore, at only 15 m water depth.

In the Habahe meteorological record the interval

from AD 1958 to 1969, that corresponds with the

uppermost part of DAZ 1 (Fig. 6), was characterized

by colder and drier conditions compared to the average

values obtained for the whole period covered by the

meteorological record (i.e. AD 1958–2013). In agree-

ment with drier conditions, the geochemical data in

this interval is characterized by very low content of Ti

and Fe2O3 (Fig. 4), which are detrital indicators

associated with river input (Biskaborn et al. 2012).

Yet, for that interval too, there was no obvious

response in the diatom assemblage.

Zone 2 (AD 1969–1998). At the start of this zone,

the simultaneous increases in diatom flux, in the

abundance of planktonic diatoms and in the TOC

content suggest a more productive aquatic system

(Figs. 4, 6). Simultaneously, in the geochemical data

(Fig. 4) we observed increases in Cu, Mn and Fe,

elements that are indicators of bio-productivity and

diagenesis (Fedotov et al. 2015; Stepanova et al.

2015). The rise in Mn in particular may have come

from reduced sediments on the slope of the lake basin

(where the core was taken) associated with summer
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stratification and increased redox cycling across the

sediment-water interface (Engstrom et al. 1985).

The transition between the zones 1 and 2 is also

marked by a sharp increase in the Rb/Sr ratio and in the

content of K2O and Ti (Fig. 4). This geochemical data

suggest an increase in the influx of fine particles by

meltwater input. The local meteorological data indi-

cate that this period was generally less cold than the

previous one, while precipitation was generally higher

albeit variable (Fig. 6). In summary, warmer temper-

ature may have promoted more stable thermal strat-

ification for the whole euphotic zone, conditions that

promote the growth of planktonic species such as P.

gordonensis (Tolotti et al. 2007), while at the same

time causing melting of the Kanas glacier. These

observations match with the findings of Wei et al.

(2015) who estimated the changes in glacier volume in

the Chinese Altai using geodetic methods. In partic-

ular, their results indicate a glacier mass loss of

0.43 ± 0.02 m a-1 water equivalent during the inter-

val 1959–1999. Interestingly, the changes that

occurred in Lake Kanas in the AD 1970s are coeval

with the onset of biological responses to warming

reported in temperate lakes throughout the Northern

Hemisphere (Rühland et al. 2008, 2015).

This warming trends is however interrupted in the

mid-1980s, which are characterized in the Habahe

meteorological record by 4 years colder than average

(Fig. 6). This cold spell is clearly marked in the tree-

ring record for the Chinese Altai (Shang et al. 2010). It

is well expressed in the geochemical record of Lake

Kanas by an increase in the percentage of coarse

particles, a decrease in the Rb/Sr ratio and a sharp rise

in the Zr/Rb ratio (Figs. 4, 6). In the diatom record,

only a slight decrease in the percentages of P.

gordonensis occurred in that interval (Figs. 5, 6).

Zone 3 (AD 1998–2003). The sedimentation rate

increases steadily from the start of this zone which is

also marked by high Ti content (an indicator of clastic

material) and a sharp rise in the concentration of 226Ra

(Fig. 6). High 226Ra is also an indicator of enhanced

delivery of bedrock material (Brenner et al. 1994).

High concentrations in radium are also found in the

very fine powdered abrasion material from glaciers

(Kies et al. 2011). These geochemical proxies may

suggest a steady influx into the lake of glacier

meltwater. Yet, the Rb/Sr ratio decrease in this zone

while we would expect an increase with the melting of

glaciers in agreement with what we observed in DAZ 2

and what we know from the literature (Liu et al. 2014;

Vorobyeva et al. 2015). An alternative explanation is

that the influx of clastic material was not only caused

by glacier meltwater but also by increased precipita-

tion. The significant increase in Fe2O3 (Fig. 4) would

suggest increased weathering. The meteorological

data indeed show that this interval had high precip-

itation and high summer temperature (Fig. 6). Simul-

taneously, in the diatom assemblages there is a drop in

the percentages and flux of P. gordonensis but other

planktonic species such A. ambigua, D. stelligeroides

and F. gracilis increase (Fig. 5) and there is an

increase in species diversity, rate-of-change and

turnover (as shown by DCCA axis-1 scores, Fig. 6).

The slight decrease in diatom flux (Fig. 6) may reflect

the ‘‘dilution’’ of diatom concentration in the sediment

caused by the increased sedimentation rate rather than

a decrease in diatom primary production.

Zone 4 (AD 2003–2007). The diatom assemblages

of this short interval are characterized by the highest

percentages and fluxes of planktonic species observed

in the whole sequences with increased abundance of P.

gordonensis and planktonic Fragilaria such as F.

gracilis, F. tenera and F. saxoplanctonica (Fig. 5). In

lakes of the Italian Alps, increased abundances of

planktonic Fragilaria spp. has been found to be

positively correlated with the relative thermal stability

of the euphotic zone, an increase in total water inflow

and lake water level and with nutrient concentrations

(especially NO3–N) (Tolotti et al. 2007). Planktonic

Fragilaria species have also been linked to nitrogen

enrichment from glacial meltwater in various remote

lakes (Slemmons et al. 2015, 2017a). The meteoro-

logical data, which indicate continuing high summer

temperature and high precipitation for this zone

(Fig. 6), suggest that conditions similar to the ones

observed by Tolotti et al. (2007) prevailed in Lake

Kanas during that interval. It is interesting to note that

the mass loss of the Kanas glacier continued and even

accelerated during that interval according to Wei et al.

(2015), reaching - 0.54 ± 0.13 m a-1 water equiv-

alent during the period 1999–2008. This is not clearly

reflected in the geochemical record of Lake Kanas that

shows only small variations in grain-size and the Rb/

Sr ratio (Figs. 4, 6).

Zone 5 (AD 2007–2014). The diatom record is

marked by the sharp decline in the abundance of P.

gordonensis and to a lesser extent that of the plank-

tonic Fragilaria spp. while the relative percentages of
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benthic species increased (Fig. 5). The flux data

however, indicate that the productions of both plank-

tonic and benthic diatoms actually declined (Fig. 6).

In that interval meteorological data indicate that

summer temperature generally remained high and that

precipitation increased further (Fig. 6). It is therefore

unlikely that the decline in diatoms was caused

directly by a return to cold conditions that would have

limited diatom production. Large amounts of sus-

pended minerogenic particles (= glacier flour) associ-

ated with glacier meltwater would be detrimental to

algal production due to its very low temperature and

turbidity that affects light conditions. This is however

unlikely to have occurred in Lake Kanas, because like

in the previous zone, the geochemical evidence do not

indicate a large influx of clastic material into the lake,

while the sedimentation rate and sediment accumula-

tion rate are even decreasing.

An alternative explanation for the diatom decline is

a change in lake water chemistry, and in particular

nutrient concentrations such as silica. A strong decline

in the abundance of diatoms was also observed by

Vorobyeva et al. (2015) who studied the impact of

climate warming on proglacial lakes in East Siberia.

These authors linked that decline to the large supply of

dilute freshwater from the increased melting of snow

patches and seasonal snow cover. Snow meltwater is

very nutrient-poor and much less chemically enriched

than glacier meltwater (Brown 2002). The significant

increase in January precipitation (= snowfall) detected

in the Southern Altai Mountain (Yang et al. 2017),

while summer temperatures remained high, supports

the hypothesis of increasing influx of snowmelt water

to the lake.

Although the flux of diatoms decreased in DAZ 1,

diversity of benthic species increase markedly, espe-

cially in the uppermost sample in which the expected

species richness reaches its maximum for the whole

profile (Fig. 6). Simultaneously, the uppermost sam-

ple is characterized by an abrupt change in DCCA

axis-1 score that drops to 0 compare to an average

score of 1.72 for the whole sequence (Fig. 6). Such big

change in turnover value is considered as very

significant in diatom ecology (Smol et al. 2005; Hobbs

et al. 2010). Such increase in diversity may be a

response to the warming trends as increased temper-

ature leads to a longer growing season and more

diverse micro-habitats in the lake. These changes

provide more ecological niches for diatoms in both

temporal (seasonal) and spatial terms and so cause an

overall increase in species diversity.

Finally, the high TOC and Mn content recorded in

the uppermost sample (Fig. 4) do not signal that the

lake has become eutrophic but most likely, reflect the

fact that biochemical decomposition and diagenesis

had not yet fully taken place and that Mn content has

been affected by redox changes and enriched in the

surface sediments. Similar peaks in Mn content at the

sediment-water interface have been reported in previ-

ous studies. These peaks are due to the diffusion

upwards from the deeper sediment of Mn(II) and its re-

oxidation to Mn(IV) at the active redox interface where

it can precipitate as rhodochrosite (MnCO3) and

accumulate (Schaller et al. 1997; Torres et al. 2014).

Comparison with other diatom-based

paleolimnological studies from China

To our knowledge there are only two diatom-based

paleolimnological records that span the past 100 years

from sites that are located at relatively short distance

from Lake Kanas. The closest one was studied by

Rudaya et al. (2009) who presented pollen and diatom

analyses from Hoton-Nur Lake, also located in the

Altai Mountains but in NW Mongolia. This study

spans the whole Holocene and the resolution for the

upper part of the sequence is much lower (one sample

for every * 500 years in the upper part of their

sequence) than the one achieved here for Lake Kanas.

The only element of comparison with the sequence

from Lake Kanas, is the absence of diagnostic

anthropogenic indicators in the Hoton-Nur diatom

records which indicates that human disturbance of

soils and vegetation cover was not significant in that

region. The second study is that on Bosten Lake by

Zhang et al. (2010). Again, the time resolution of the

diatom record from that study is much lower for the

last 100 years than the one achieved for Lake Kanas.

In addition, Bosten Lake is located in the arid area of

Xinjiang and is very different from Lake Kanas as it is

a large shallow lake (mean water depth of 8 m) that is

sensitive to change in temperature-controlled evapo-

ration. Consequently, the diatom record in Bosten

Lake reflects change in lake water salinity. Neverthe-

less a climate signal was deduced from this record as

the large increase in the percentages of brackish

diatoms that characterizes the uppermost section of the
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record was interpreted as indicating warmer

conditions.

From other regions of China in general, there are

few diatom-based paleolimnological studies that span

the same time interval and with a comparable

sampling resolution as our study on Lake Kanas.

One of them is the study by Liu et al. (2017) from Lake

Gonghai that is located on the loess plateau in northern

central China. The diatom record for this lake shows

that in the 1960s took place a nearly complete shift in

species dominance from large celled and heavier

Lindavia taxa to the abrupt arrival and dominance of

more buoyant Cyclotella ocellata and Fragilaria

tenera. This shift among diatom taxa with similar

nutrient optima, but different ecophysiological traits,

was interpreted as indicative of the rise in mean air

temperatures and concomitant increases in the lake

water column thermal stability and attendant changes

in resource availability.

The diatom sequences from lakes Erlongwan

(Wang et al. 2012) and Xiaolongwan (Panizzo et al.

2013), two volcanic lakes located in NE China, also

show increases in small planktonic diatoms (Dis-

costella spp.) that are consistent with increased

temperatures leading to strong thermal stratification

of the water column.

Finally, the diatom sedimentary sequence from

Lake Chenghai in Yunnan, SW China, also displays

large shifts in assemblage for the recent past that may

be related to solar forcing (Li et al. 2015). However,

Wang et al. (2016) who studied the diatom assem-

blages from Lugu Lake, another lake on the Yunnan

Plateau, found opposite species shifts compared to that

observed in Lake Chenghai and therefore cautioned

against generalizing among lake sites in relation to

climate forcing. In addition, the diatom record in Lugu

Lake is in part affected by a rise in nutrient supply

associated with anthropogenic activities.

Conclusions

The diatom and geochemical data presented here for

Lake Kanas core KNS14B provide a detailed record of

climatic and environmental change during the

last * 100 years and reveals the water ecosystem

response to the regional climate change. The aquatic

ecosystem of Lake Kanas appears sensitive to the

climate change with little direct human impact.

Regional warming is the main force that drives the

ecological change of Lake Kanas. Its impact on the

ecosystem is complex, however, as it affects not only

the hydrology but also the lake hydrodynamic. The

lake hydrology is mainly affected through the melting

of the Kanas glacier and of snow patches on the lake

catchment, while the effects of climate change on key

limnological processes such as the duration of ice-

cover and the intensity of mixing and thermal

stratification of the water column impact the lake

hydrodynamic. In addition to the complexity of Lake

Kanas glaciolacustrine setting, planktonic diatoms

such as P. gordonensis, the dominant species in Lake

Kanas, do not respond directly to climate but to

proximal growing conditions (a combination of nutri-

ents, light, temperature, mixing regimes), which can

appear or disappear under different combinations of

factors forcing the lake system (Catalan et al. 2013).

Nonetheless, the increase flux of P. gordonensis

observed in Lake Kanas around AD 1970 matches

with the average timing of ecological change observed

in temperate lakes of the Northern Hemisphere in

general (Rühland et al. 2008) and in some Chinese

lakes in particular (Wang et al. 2012; Panizzo et al.

2013; Liu et al. 2017). Geochemical data showed some

corresponding changes. Over the last * 20 years, the

diatom community has changed further, although in a

subtle way. The assemblages have remained domi-

nated by P. gordonensis and A. minutissimum but

species diversity and assemblage turnover has

increased while the rate-of-change accelerated. Plank-

tonic Fragilaria spp. have also become more abundant

and suggest that the thermal stability of the euphotic

zone was strengthened and/or that the delivery of

nutrients such as nitrogen has increased (Tolotti et al.

2007; Holm et al. 2012; Slemmons et al. 2017a, b;

Wolfe et al. 2013; Johnson et al. 2017).

Considering that the Altai Mountains are projected

to experience significant warming throughout the

century and that the Altai glaciers are predicted to

continuously lose mass throughout the twenty-first

century with large variations in meltwater discharge

(Zhang et al. 2016) we should expect larger change in

Lake Kanas ecosystem, and in particular its diatom

community.
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