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Abstract Diatom assemblages in recent versus pre-

industrial sediments were examined in 40 relatively

undisturbed lakes from the Experimental Lakes Area

(ELA). The ELA region of northwestern Ontario

receives low amounts of acidic deposition and the

lakes have been minimally disturbed by watershed

development or other human activities. Conse-

quently, this region represents an important location

to detect possible changes in lakes due to climate

change. In over half of the lakes, planktonic taxa

(especially Discostella stelligera) increased between

10 and 40% since pre-industrial times. Changes in

diatom assemblages are consistent with taxa that

would benefit from enhanced stratification and a

longer ice-free season. We hypothesized that there

should be a relationship between stratification and

measured chemical and physical characteristics of the

study lakes. Multiple correlation analysis was under-

taken to see the relationship between planktonic taxa

and D. stelligera since pre-industrial times and the

physical and chemical characteristics of the study

lakes. Lake depth was consistently identified as an

important variable. The timing of the increase in

planktonic taxa within cores from these lakes will be

needed to rule out other possible regional changes

that may also be occurring in the ELA region.

Keywords Diatoms � Climate � Lake � Experimental

Lakes Area � Paleolimnology � Reference lakes

Introduction

Changes in climatic conditions can have important

and complex effects on lacustrine ecosystems (Smol

and Cumming 2000). Climate is an important factor

driving changes in physico-chemical properties of

lake water such as water temperature and transpar-

ency (Blenkner et al. 2007), pH, nutrient cycling,

which in turn may affect lake biota (Schindler et al.

1990; Snucins and Gunn 2000; Winder and Schindler

2004). For example, shifts in diatom species have

been attributed to recent climatic warming in arctic

(Smol and Douglas 2007), subarctic (Sorvari et al.

2002; Rühland et al. 2003), alpine (Karst-Riddoch
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et al. 2005), and temperate regions (Harris et al. 2006;

Rühland et al. 2008). The lake-specific response of

ecosystems to climatic forcing, including the degree

of ecological change that occurs, is complex and may

be modulated by differences in seasonality and/or

related changes in thermal structure and mixing

regimes (Gerten and Adrian 2001). Furthermore,

changes related to human disturbance, such as

alterations to lake-water pH and nutrient concentra-

tions complicate our ability to isolate the relative

importance of individual stressors on lake ecology.

In part, the complication of having to disentangle

multiple environmental stressors may be overcome

by studying comparatively undisturbed lakes in

relatively remote regions (Rühland et al. 2008). For

example, reference lakes in the Experimental Lakes

Area (ELA) of northwestern Ontario, Canada have

received minimal impact from human activities

(Findlay and Shearer 1992). Most of these lakes are

oligotrophic and circumneutral, and their physical,

chemical, and biological processes, including nutrient

cycling and primary production are very sensitive to

climatic change (Xenopoulos and Schindler 2001).

For example, the ELA reference lakes experienced an

increase in lake temperature during the warmer and

drier decades of the late-1970s and 1980s (Schindler

et al. 1996; Fee et al. 1996; Xenopoulos and

Schindler 2001). Warmer and drier conditions can

result in limnological changes that include: enhanced

water clarity, deeper thermoclines (Schindler et al.

1990, 1996), increased lake stability (Findlay et al.

2001; Winder and Schindler 2004), and changes in

nutrient levels (Magnuson et al. 1997) and hypolim-

netic dissolved oxygen concentrations (Blumberg and

Di Toro 1990). Moreover, measurable changes

occurred in lake biota at ELA, including an increase

in algal biomass and number of phytoplankton

species, with greater abundances of dinoflagellates

and large chrysophytes (Findlay et al. 2001).

Sedimentary diatom assemblages from climate-

sensitive lakes can provide an extended temporal

record of environmental conditions, including

changes related to variations in climate (Smol and

Cumming 2000). Variations in temperature and

precipitation may result in changes in lake depth,

mixing regimes, salinity and nutrients, which can

influence the specific composition and abundance of

diatom assemblages (Bradbury et al. 2002; Fritz et al.

2010). Indeed, changes in diatom assemblages have

been attributed to recent climatic warming in

subarctic and alpine lakes (Sorvari et al. 2002;

Rühland et al. 2003; Karst-Riddoch et al. 2005),

and temperate regions (Forrest et al. 2002; Harris

et al. 2006). In relatively undisturbed lakes, increases

of at least 5% in planktonic Cyclotella taxa were

present in 84 of 105 lakes, concurrent with declines

in thickly silicified Aulacoseira and/or benthic

Fragilaria taxa (Rühland et al. 2008).

An examination of diatom assemblages in recent

versus pre-European settlement times from sediment

cores (known as the ‘top–bottom paleolimnological

approach’; Cumming et al. 1992) can provide a rapid

assessment of regional environmental change in

aquatic ecosystems (Smol 2008). Diatoms present in

the uppermost lake sediments (top sample,

0–0.25–cm of sediment cores) represent present-day

conditions, while diatoms preserved in deeper sedi-

ments (generally [ 20 cm in Canadian Shield lakes)

represent pre-industrial times, and can be considered

to be a measure of natural lake conditions (Cumming

et al. 1992; Rühland et al. 2003; Smol 2008).

The primary goal of this study is to determine if

and how the relative abundance of diatom species

have changed from pre-industrial to modern times in

relatively undisturbed lakes from the ELA. In most

temperate freshwater ecosystems, climate-related

changes may be masked by direct anthropogenic

stressors, such as eutrophication and acidic deposi-

tion. Lakes located in remote regions, such as the

ELA from northern Ontario, have been minimally

impacted by such anthropogenic stressors (Findlay

and Shearer 1992) and can be considered ‘‘reference

sites’’ (Schindler et al. 1996; Findlay et al. 2001).

Such lakes should be useful in simplifying the

number of anthropogenic stressors impacting lakes,

and maximize the importance of climate and/or other

potential regional stressors on diatom communities.

We hypothesize that ‘reference’ lakes from the ELA

should display changes in diatom assemblages that

are similar to those observed in the meta-analysis of

relatively undisturbed sites examined by Rühland

et al. (2008) (i.e., an increase in planktonic diatoms,

particularly small Cyclotella species). Although

Rühland et al. (2008) examined dated cores from

105 ‘relatively’ undisturbed lakes, small to medium-

sized lakes from north-western Ontario and the ELA

were poorly represented. A secondary goal of this

paper was to determine if the physio-chemical
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characteristics of ELA lakes can be used to predict

change in diatom assemblages since pre-industrial

times. If recent warming is an important causal

mechanism for the observed changes in diatom

assemblages, we hypothesize that deeper lakes (i.e.,

lakes that are more prone to exhibit thermal strati-

fication), should display a stronger impact from

recent increases in temperature (sensu Gerten and

Adrian 2001), as these lakes should show larger

changes in heat storage capacity, water column

stability, and variation in the strength and period of

mixing with climatic warming in comparison to

shallower lakes.

Study area and sampling

The 40 study lakes are located within the Experi-

mental Lakes Area (ELA), northwestern Ontario

(Fig. 1). The area is situated on the Canadian Shield

with the bedrock constituted from Precambrian

granites and gneisses (Findlay and Shearer 1992).

The lakes ranged from 2 to 30 m in maximum depth

and their watersheds consist of thin, poorly developed

soils that are dominated by Picea mariana (black

spruce) and Pinus banksiana (jack pine) forests.

Duplicate sediment cores were sampled from all 40

lakes in June, 2006. Sediment cores were retrieved

from the deepest basin of the lakes using a Glew

corer (internal diameter 7.62 cm) ensuring that the

sediment–water interface was preserved (Glew et al.

2001). Sediment samples from the top (0–0.25 cm,

representing sediments recently accumulated or mod-

ern samples) and from the bottom of each core

(20–20.25 cm, representing pre-industrial sediments)

were analyzed to allow comparisons between modern

and pre-industrial diatom species composition. The

advantage of the so called ‘top–bottom’ approach is

that it allows the investigator to quickly determine if
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Fig. 1 Map showing the

location of the ELA study

lakes (study lakes are in

bold)
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consistent ecological changes have occurred across a

region, which would be worthy of more detailed

analyses. However, because the ‘top’ and ‘bottom’

sediment intervals vary slightly in the amount of time

they represent (e.g., the ‘bottom’ sample will typi-

cally represent more time than a similarly sized

interval from the top), it is possible that a change

could emerge that is due to temporal differences

between ‘top’ and ‘bottom’ samples. However, in

practice, results from the ‘top–bottom’ approach have

been verified by complete core analyses (Cumming

et al. 1992, 1994; Ginn et al. 2007a, b). Although the

specific dates of individual bottom sediment samples

from the 40 lakes were not dated, full-core 210Pb

profiles from 17 lakes from ELA show that supported
210Pb activity is reached at core depths of *20 cm

(mean and median = 20 cm; SD = 6; n = 17)

(Cumming et al. Department of Biology, Queen’s

University, Kingston, ON, unpublished data). Based

on these results and the relatively high unsupported
210Pb in these cores, we are confident that a depth of

20 cm represents pre-industrial conditions in the

majority of the study lakes. As mentioned above,

the length of time represented by a sediment interval

can also be important. Based on cores collected to

date from northwestern Ontario, typically the 0.25-

cm interval would represent between 1 and 2 years,

whereas a sample between 20 and 20.25 cm would

represent between 1 and 5 years. These results are

similar to 210Pb dating results from many published

studies of cores taken from lakes on the southern

Canadian Shield (Mills et al. 2009) and in north-

western Ontario (Paterson et al. 2002), including

Lake 239 from the Experimental Lakes Area (Laird

and Cumming 2008).

Methods

Water chemistry

Water samples were collected from 35 of the 40 study

lakes and analyzed at the Ontario Ministry of the

Environment’s Dorset Environmental Science Centre

using standard MOE protocols (Ontario Ministry of

the Environment 1983). The five lakes not sampled

for water chemistry are sampled regularly by ELA

staff as reference lakes, and consequently spot

samples from these systems were deemed

unnecessary at the time. Chemical analyses included

concentrations of chloride, sulphate, sodium, potas-

sium, magnesium, calcium, NH4/NH3, NO2/NO3,

total Kjeldahl nitrogen (TKN), total phosphorus

(TP), dissolved organic carbon (DOC), reactive

silicate (SiO3), specific conductivity, and true colour.

Lake-water pH was measured in the field using a

Fisher-Accumet pH meter (model 925). Of the study

lakes, ELA lakes 110, 114, and 226 have been

experimentally manipulated. In 1993, northern pike

were introduced to Lake 110. Lake 114 was manip-

ulated for epilimnetic acidification (1979–1986),

including the addition of aluminum in 1984. Exper-

iments conducted in Lake 226 include epilimnetic

fertilization from 1973 to 1980, epilimnetic addition

of radioisotope tracers (1977–1978; 1989) and metals

(1987), and the lowering of water levels from 1995 to

1997. The watersheds of the study lakes have been

minimally impacted by recent human disturbances,

but in the past (between 1970 and 1980), some of the

watersheds were partially logged (ELA lakes: 114,

115, 149, 164, 165, 373, 377, 378, 626, 627, 629, and

938), and some have experienced fires. Low-impact

bait fishing and angling has likely occurred in many

of the study lakes, as these activities are restricted but

not monitored closely.

Diatom preparation and enumeration

Slides for diatom analysis were prepared using

standard techniques (Cumming et al. 1992) for the

top (0–0.25 cm) and the 20–20.25-cm sediment

intervals. A small amount of wet sediment was

suspended in a 50:50 (molar) mixture of sulfuric and

nitric acid in a 20-ml glass vial for 24 h prior to being

submersed in a 70�C water bath for approximately

5 h. The remaining sedimentary material was settled

for a period of 24 h, at which time the acid above the

sample was removed. The sample was rinsed with

distilled water and allowed to settle once again for

24 h. The rinsing with distilled water was repeated

approximately 8 times until the sample was neutral

(litmus test). The samples were settled onto cover-

slips in a series of four 100% dilutions, which when

dry, were mounted onto glass slides using Naphrax�,

a high-resolution mounting medium. For each sam-

ple, at least 400 diatom valves were enumerated with

a Leica DMRB microscope equipped with DIC optics

at 10009 magnification (Numerical Aperature of oil
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objective and condenser top lens = 1.3 and 1.4,

respectively). The diatom taxonomy was based on the

references of Krammer and Lange-Bertalot (1986,

1988, 1991a, b), Camburn and Charles (2000),

Cumming et al. (1995) and Tanaka (2007). Resting

cysts of diatoms were not often encountered and

consequently not enumerated.

Statistical analyses

To determine the main directions of variation in the

water chemistry and physical variables within the

ELA study sites, a principal component analysis

(PCA), using inter-sample distances on a correlation

matrix of log-transformed values, was run using the

computer program CANOCO v. 4.5 (ter Braak and

Šmilauer 1998).

Diatom species counts for the ‘top’ and ‘bottom’

samples were converted to relative abundance mea-

sures for each lake, and changes in the relative

abundance of diatom taxa that achieved[5% relative

abundance were examined. To summarize the main

direction of variation in the diatom assemblages of

the study lakes, a correspondence analysis (CA) with

downweighting of rare taxa was performed using

CANOCO v. 4.5 for each of the modern and

preindustrial diatom assemblages. For summary pur-

poses, diatom taxa were also grouped into functional

groups (planktonic, tychoplanktonic and benthic

taxa) based on the literature (Krammer and Lange-

Bertalot 1986, 1988, 1991a, b). To assess if signif-

icant differences in dominant diatom taxa and

functional groups existed between all modern versus

all pre-industrial samples, ANOVAs and paired

t-tests were used.

Multiple correlations with Bonferoni correction

were performed to assess if: (1) changes in planktonic

diatom species; and (2) changes in the dominant

species D. stelligera could be related to the measured

limnological variables, or the environmental PCA

axis scores of the environmental data. As mentioned

previously, the goal of these analyses was to deter-

mine if biological changes were related to a unique

combination of limnological variables, that could

then give insight into possible mechanism for the

observed changes (i.e., are the changes larger in lakes

that would be more susceptible to lake stratification).

Six lakes were eliminated from the PCA and

correlation analyses. These lakes included lakes that

lacked adequate information on maximum depth

(Lake 224, Lake 631 and Lake 651), and/or lakes

that were experimentally manipulated (Lake 110,

Lake 114, and Lake 226). Experimentally manipu-

lated lakes were also excluded from ANOVAs,

because diatom species may reflect changes related

to lake recovery after manipulation rather than to

natural conditions. ANOVAs, t-tests, and multiple

correlations were performed using the program JMP

v. 7.0 (SAS Institute Inc.).

Results

Physical and chemical characteristics of

study lakes

The study lakes from north-western Ontario (Fig. 1)

can be broadly characterized as small (mean depth =

9.3 m; median depth = 8 m; range = 2–30 m),

low-conductivity (mean specific conductivity =

18.5 lS/cm; median = 16.4 lS/cm; range = 11–42

lS/cm), low-alkalinity (mean = 5 mg/L, median = 4.5

mg/L; range = 1.5–11.3 mg/L), acidic-to-circumneu-

tral (mean pH = 6.7; median pH = 6.7; range =

5.4–7.2) oligotrophic (mean total phosphorus = 6.9

lg/L; median = 5.1 lg/L, range = *1–21 lg/L)

lakes with moderate to high concentrations of DOC

(mean DOC = 7.3 mg/L; median DOC = 6.9 mg/L;

DOC range = 3–15 mg/L) (Table 1). A PCA of the

water chemistry was used to identify the largest

limnological gradients in this dataset. The first two

axes explained 78% of the variance in the study lakes,

with lake-water pH and DOC being the most important

variables contributing to the first axis. Lake depth,

nutrients (TP and TKN), and specific conductivity

contributed equally to define the first and second axes

(Fig. 2). Generally, higher-pH lakes (e.g., lakes 435,

373 and 163) had lower concentrations of DOC,

whereas lower-DOC lakes were more acidic (e.g.,

lakes 661, 470, 115, 131; Fig. 3). Similarly, nutrients

were inversely correlated to lake depth (Fig. 2).

Diatom assemblages

From the 40 study lakes, 271 diatom species were

identified from both ‘top’ and ‘bottom’ sediment

samples. Most of the species were rare and consisted

of less than 1% of the total relative abundance of
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diatom species. Diatom taxa with relative abundance

[5% in either a ‘top’ or ‘bottom’ sample are ordered

in Fig. 3 according to the ‘present-day’ (top) species

and lake scores in a CA analysis. A clear pattern is

displayed with planktonic and tychoplanktonic taxa

on the left-hand side of the figure (e.g., Urosolenia

eriensis (Smith) Round et Crawford ex Round,

Crawford et Mann, Cyclotella ocellata Pantocsek,

Synedra delicatissima Smith, Aulacosiera taxa, Dis-

costella stelligera (Hustedt) Houk et Klee, Tabellaria

floculosa (Roth) Kützing, and Fragilaria tenera

(Smith) Lange-Bertalot) and benthic taxa on the

right-hand side (e.g., taxa from the genera Achnan-

thidium, Brachysira, Cymbella, Eunotia, Navicula,

Nitzschia, Pinnularia, Staurosira) (Fig. 3). The

planktonic D. stelligera complex (including

D. glomerata (Bachmann) Houk et Klee, D. stelligera,

and D. pseudostelligera (Hustedt) Houk et Klee) was

the most abundant taxonomic group, with relative

abundances up to 70% in modern sediments and up to

60% in pre-industrial sediments (Fig. 3). The next

most abundant taxon, was the tychoplanktonic spe-

cies Aulacoseira ambigua (Grunow) Simonsen with

abundances of *30% in lakes 164 and 257, in both

modern and pre-industrial sediments. Aulacoseira

subarctica (Müller) Haworth was less abundant
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reaching a maximum abundance of 33% in Lake 240.

In the remaining lakes, species of Aulacoseira

(including A. ambigua, A. subarctica, and the

A. distans (Ehrenberg) Simonsen complex) were

present at relative abundances of less than 10%.

The uppermost sediments of Lake 110 were domi-

nated by U. eriensis (65%) which only reached a

maximum of 5% in six other lakes.

The lakes towards the bottom of the figure are

dominated by benthic taxa, with smaller abundances

of D. stelligera (Fig. 3). In lakes 938, 115, 661, 131,

470, D. stelligera complex was absent or very rare.

Diatoms from these lakes were represented by diverse

assemblages with benthic species of Achnanthoids,

Brachysira brebissonii Ross, B. vitrea (Grunow)

Ross, Navicula mandumensis Jørgensen, N. leptostri-

ata Jørgensen, Nitzschia perminuta Grunow, Cym-

bella spp., Eunotia spp., occasionally Stauroforma

exiguiformis (Lange-Bertalot) Flower, Jones et

Round, and small abundances of the A. distans

complex and T. flocculosa (Fig. 3).

Changes in modern versus pre-industrial diatom

assemblages

Over half of the lakes displayed increases in the

relative abundance of planktonic taxa since pre-

industrial times (Fig. 4). In sixteen lakes the increase

in planktonic species (including Discostella spp.,

Cyclotella spp., Tabellaria spp., Eunotia zasuminen-

sis (Cabejszekowna) Körner, Asterionella formosa

Hassal, Fragilaria nanana Lange-Bertalot, F. tenera,

S. delicatissima var. angustissima Grunow, and U.

eriensis) was between 10 and 40% in modern versus

pre-industrial sediments (Fig. 3). A change of less

than 5% relative abundance of planktonic species is

displayed by the rest of the lakes with the exception

of Lake 373 which had a decrease in planktonic taxa
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of[10%. Based on a pairwise t-tests with Bonferroni

correction, the average change in relative abundances

of D. stelligera between pre-industrial and modern

times was statistically significant (p \ 0.05). In other

lakes, changes in diatoms species displayed different

patterns. For example, in Lake 110, the dominant

diatom taxa changed from D. stelligera complex in

pre-industrial times to a modern assemblage domi-

nated by U. eriensis (Fig. 3).

Tychoplanktonic Aulacoseira spp. (A. ambigua,

A. subarctica, A. distans complex, A. perglabra

floriniae (Camburn) Haworth, A. italica (Ehrenberg)

Simonsen, A. lacustris (Grunow) Krammer, A. lirata

(Ehrenberg) Ross, A. nygaardii Camburn) are less

abundant in present-day sediments by 0.3–19% than

in pre-industrial sediments with the exception of

lakes 257, 240, 651, 384, 938 where abundances

increased by more than 5% (Fig. 4). In terms of

planktonic diatom species, the highest increase in

relative abundance in modern sediments is recorded

by the D. stelligera complex while many benthic

species, such as Achnanthidium minutissimum

(Kützing) Czarnecki, Brachysira neoexilis Lange-

Bertalot, Staurosirella pinnata (Ehrenberg) Williams

et Round decreased in relative abundance in com-

parison to pre-industrial sediments (Fig. 3).

In general, the benthic diatom species occurred at

higher relative abundances in pre-industrial sedi-

ments relative to modern samples. Based on a

pairwise t-tests with Bonferroni correction, the aver-

age decrease in relative abundances in A. minutiss-

imum, S. pinnata, and S. exiguformis between pre-

industrial and modern times were statistically signif-

icant (p \ 0.05). However, in a small number of

samples, benthic species increased in modern sedi-

ments (e.g., Staurosira construens var. venter

(Ehrenberg) Hamilton in Lake 150, and S. exiguifor-

mis in lakes 115, 127, 436, 383, 470).

Patterns in limnological characteristics

and relationships to changes in diatom species

Multiple correlations were performed to assess if the

amount of change in planktonic, benthic and tycho-

planktonic groups between the top and bottom

samples, could be significantly related to measured

environmental variables (i.e., coring depth, pH, TKN,

TP, SiO3, DOC, true colour). The change in plank-

tonic species was positively correlated to lake depth

(R = 0.44; p = 0.01). Conversely, the change in

benthic species was correlated negatively to lake

depth (R = 0.45; p = 0.008) and positively to lake

silica concentration, but with very low correlation

coefficient and marginally significant. No significant

correlation was found between the amount of change

of tychoplanktonic species and the measured envi-

ronmental variables.

Multiple correlations were also used to investigate

if the amount of change of dominant diatom species

(D. stelligera, Aulacoseira spp., Tabellaria spp.,

A. formosa and sum of small S. pinnata and

S. construens var. venter) could be related to

measured environmental variables. The strongest

correlation was found between the percent change
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of D. stelligera and lake depth (R = 0.4; p = 0.01),

and true colour (R = -0.5; p = 0.003). The percent

change of A. formosa was correlated to lake depth

(R = -0.3; p = 0.05) while Tabellaria spp. and

S. pinnata and S. construens var. venter were both

correlated to TKN (R = -0.5; p = 0.005; and

R = 0.48; p = 0.005, respectively). Multiple corre-

lations performed between the amount of change of

select diatom species and the PCA axis-one scores,

revealed that PCA axis-one site scores is significantly

correlated with the change in D. stelligera (R = 0.4;

p = 0.01) and Tabellaria spp., (R = -0.35;

p = 0.04).

Discussion

Variations in diatom composition and abundance

from lacustrine ecosystems have consistently been

shown to be strongly related to changes in water

physico-chemical properties, such as pH, nutrient

concentration, transparency, and lake stratification

(Smol and Cumming 2000). Changes in diatom

species composition in time and space have been

attributed to natural (e.g., geological factors, climate,

fire) and anthropogenic factors (e.g., acidification,

nutrient enrichment, climate). In this study, we

choose a region and study lakes where the impacts

from direct watershed disturbance, and the impacts of

acidic deposition would be minimal, so that the

impact of other potential regional stressors could be

assessed. As detailed in the introduction, the ELA

lakes used in this study are located in an area that is

minimally impacted by human activities (e.g., no

agriculture or industrial activities, and limited for-

estry), and is a region that receives low amounts of

acidic deposition (Findlay and Shearer 1992).

The most apparent taxonomic shift that occurred in

the ELA study lakes is a significant increase of the

relative abundance of planktonic taxa in modern

sediments, especially the D. stelligera complex,

while the abundance of many benthic species, such

as A. minutissimum, S. pinnata, Brachysira spp.,

Navicula spp., Cymbella spp. sensu lato, Pinnularia

spp., have decreased since pre-industrial times

(Figs. 3, 4). Large increases in Cyclotella taxa have

been reported in lakes from arctic and temperate

regions (Rühland et al. 2008). For example, studies

across the Arctic have shown marked increases of the

small Cyclotella species in the recent lake sediments

(Sorvari et al. 2002; Rühland et al. 2003; Rühland

and Smol 2005; Rühland et al. 2008). Similar changes

have also been reported from temperate regions in

Ontario (Forrest et al. 2002) and eastern Canada

(Harris et al. 2006) and from high-elevation lakes

(Karst-Riddoch et al. 2005). The increase in the

relative abundances of the planktonic Discostella and

Cyclotella species, especially D. stelligera, has been

previously linked to a lengthening of the ice-free

season and enhanced lake stratification (Sorvari et al.

2002; Rühland et al. 2003), a phenomenon that can be

induced by increasing temperature (Smol et al. 2005;

Rühland et al. 2008). Increases in D. stelligera and

other planktonic diatom taxa since pre-industrial

times from the ELA may be an indication of changes

in the thermal characteristics of these lakes. Records

of temperature and precipitation are available from

the ELA meteorological station since 1970 and from

the nearby town of Kenora, Ontario since the

beginning of the 20th century (Fig. 5). A strong

correlation was found between data recorded at both

stations since 1970 (r = 0.98 for mean annual

temperature and r = 0.80 for annual precipitation),

indicating that the climate record from Kenora is

representative of climatic conditions at the ELA

(Moos et al. 2005). Mean annual temperatures

measured at Kenora display a steady and significant

increase of 0.01�C per year over the last century, with

a total increase of *2.5�C since 1899, and the largest

increases recorded in the winter months (Dec–Feb:

0.025�C year-1). Concurrently, records of the dura-

tion of the ice-free season from Lake 239 show an

increasing rate of *0.3 days year-1 since 1969

(Fig. 5). At ELA the duration of the ice-free season

has increased at Lake 239 by *2 weeks since 1969

(r = 0.35, p \ 0.05, Fig. 5), with both earlier ice-off

dates and later ice on.

Changes in seasonality are also now occurring in

larger lakes in north-western Ontario. In a nearby, but

much larger waterbody (Whitefish Bay of Lake of the

Woods), there has been a reported increase of ice-free

days (Rühland et al. 2008). Evidence of the effects of

climatic change on small lakes in the Northern

Hemisphere is clearly shown with ice-on and ice-off

data (Magnuson et al. 2000). The length of the ice-

free season is increasing in many small, mid-latitude

lakes, as well as some of the Great Lakes (Austin and

Colman 2007), due to later freezing and earlier

10 J Paleolimnol (2011) 46:1–15
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breakup dates. Changes in seasonality can have

significant impacts on the thermal regime of lakes.

In a number of the Great Lakes, summer stratification

has been increasing largely due to an earlier onset of

stratification (Austin and Colman 2007). Changes to

the thermal structure of a lake have implications for

many in-lake processes, including nutrient recycling,

primary production, and late-summer hypolimnetic

oxygen levels, which in turn have biological impacts

for many aquatic organisms.

Long-term monitoring of lakes from ELA has

documented limnological changes due to climate in

the 1980s. Prolonged dry periods combined with

generally higher temperatures in the late 1980s

resulted in a small decrease in lake depth, and

increased lake transparency and light transmission in

a number of ELA lakes (Schindler et al. 1996). The

rapid spring warming and decreases in DOC inputs

resulted in deeper thermoclines and increased thermal

stability in the ELA reference lakes (Schindler 2001).

Examination of algal communities from four oligo-

trophic lakes from the ELA between 1968 and 1998

revealed noticeable shifts in phytoplankton species

composition and abundance during drought periods,

including an increase in the biomass of diatoms

(Findlay et al. 2001), providing further evidence that

ELA lakes are climatically sensitive. Long-term

monitoring data from Lake Tahoe, USA, provide

additional evidence that climate warming may favour

smaller diatoms over larger forms during periods of

enhanced stratification (Winder et al. 2008). Winder

et al. (2008) argues that reduced vernal mixing and

increased thermal stability that occurs with climatic

warming may alter cell sinking velocities, and the

rate at which nutrients are redistributed in the water

column, ultimately favouring smaller taxa such as

small species of Cyclotella.

The results of the multiple correlation analysis are

also consistent with some of the variation in diatom

assemblages being related to a recent change in

climate. They suggest that lake depth is the most

important variable correlated with changes in plank-

tonic, benthic and D. stelligera between the ‘pre-

industrial’ and ‘modern’ sediment samples. Accord-

ing to our results, lake depth may be a strong

predictor explaining the increase of D. stelligera

among lakes. Shallow lakes generally displayed a

smaller increase in D. stelligera, and they exhibited

increases in the relative abundance of other plank-

tonic taxa (e.g. A. formosa, Lake 240) or benthic

species (e.g., Lake 127). The role of lake character-

istics in modulating a climate signal is also supported

by the correlation between PCA axis one scores of

the environmental data, representing environmental

gradients of pH, DOC, True Colour, and lake depth

(Fig. 2), and variation associated with changes in the

relative abundance of D. stelligera and Tabellaria

species. The multiple correlation results also show

that increases in A. formosa occurred more com-

monly in shallower lakes (\10 m maximum depth),

while deeper lakes recorded shifts towards increases

in D. stelligera complex. In general, shallower lakes

were more highly coloured and higher in nutrient

concentrations than the deeper, dimictic lakes. Thus,

it appears that the specific biological response to

climate warming varies among lakes, depending on
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lake morphometry and pre-existing water quality.

Changes in planktonic taxa were not just limited to

increases in D. stelligera. In Lake 110, D. stelligera

decreased dramatically in favour of an abrupt

increase of U. eriensis; however, dissolution of

U. eriensis, a lightly-silicified taxon, in deeper

sediments cannot be ruled out.

The modulation of lake response by lake mor-

phometry in response to climate warming has been

reported elsewhere (Adrian et al. 1999; Gerten and

Adrian 2001). Gerten and Adrian (2001) demon-

strated that the influence of climatic warming can

vary substantially among lake types and that water

temperature regimes are expected to show more

impact in deep, dimictic lakes. In contrast, shallow,

well-mixed lakes have a low heat-storage capacity

with relatively short-term effects on water tempera-

ture regimes, and implicitly with a reduced impact on

the plankton community (Adrian et al. 1999). Similar

findings have also been reported from arctic and

subarctic regions where deeper, stratified lakes dis-

played the highest increase in D. stelligera and

decrease of benthic species, whereas changes in

isothermal lakes were typically among benthic spe-

cies (Sorvari et al. 2002; Rühland et al. 2003; Smol

et al. 2005). Changes in diatom assemblages reported

at ELA suggest that deeper lakes may be the most

responsive to recent climatic warming, with a longer

growing season, increased water transparency, and

more persistent thermal stability. However, D. stel-

ligera and other planktonic species also increased in

some of our shallow study lakes (e.g., ELA lakes 114,

99, 132, 129). A possible explanation is that the

seasonal position of the thermocline is not only

dependent climate conditions, but also on other

variables such as lake area, fetch, and water clarity

(Fee et al. 1996; Mazumder et al. 1990; Xenopoulos

and Schindler 2001).

While lake depth is an important variable in

predicting differences in the response of diatoms to

climatic change across the landscape, it is unlikely

that the biological changes we observe within lakes

are a result of increasing lake depth since pre-

industrial times. For example, changes in lake level

have been shown to be minimal since the mid-to-late

1800s to present at the ELA (Laird and Cumming

2008). Furthermore, the frequency of drought, an

important determinant of changes in lake level, have

not increased significantly since AD 1783 in the

Winnipeg River Basin, according to reconstructions

from a network of 54 tree-ring sites (St. George et al.

2008). Finally, marked increases in Cyclotella sensu

lato species have been shown in a sediment core from

Lake of the Woods, a large international lake

*100 km from the ELA (Rühland et al. 2008),

during a period of minimal change in lake level

(1980-present) (Lake of the Woods Control Board,

http://www.lwcb.ca). Thus, the changes in diatom

species from the ELA study lakes are consistent with

recent warming, but the influence on individual lakes

is modulated by lake-specific factors.

Acidic deposition can be ruled out as a factor

responsible for the observed changes. As mentioned

earlier, the ELA region is also located in an area with

a low-deposition of sulphate. Although there are

significant changes in diatom species composition

over time, circumneutral taxa dominate both pre-

industrial and present-day assemblages. The primary

shift to planktonic taxa, such as D. stelligera (a

circumneutral taxon; Findlay and Shearer 1992), is

not consistent with biological changes resulting from

lake acidification (Battarbee et al. 2010).

The observed changes in diatom taxa since pre-

industrial times at ELA are also not consistent with

known watershed disturbances, including logging and

fires. Although some forest harvesting has occurred,

it has been of limited intensity. The observed changes

are also not consistent with increases in eutrophic

taxa, as might be expected with more severe or

sustained changes in land-use (Hall and Smol 2010).

The main, albeit small, watershed disturbance has

been some forest harvesting, but only from a small

subset of the study lakes. Previous studies have

shown that the impact from logging is minimal on

diatom species if forests are allowed to regenerate

(Laird and Cumming 2001; Laird et al. 2001), or may

be masked by regional changes in climate (Paterson

et al. 1998, 2000).

Long-term changes in nutrient deposition (e.g.,

nitrogen) warrant further examination, but are gener-

ally not consistent with the observed changes in

diatom assemblages in the study lakes. Several

studies have shown that increases in D. stelligera

abundances are not necessarily coeval with changes

in nutrient deposition (e.g., increasing N deposition),

or to changes in nutrient concentrations in lakes (Fritz

et al. 1993; Sorvari and Korhola 1998; Rühland et al.

2003, 2008; but see Wolfe et al. 2001, which shows

12 J Paleolimnol (2011) 46:1–15
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abrupt decrease in D. stelligera in the post-industrial

era). Rühland et al. (2008) examined the relationship

between long-term changes in diatom species and

inorganic N deposition in Lake of the Woods and

concluded that there was no significant relationship

between long-term diatom species changes and

inorganic N deposition. However, Rühland et al.

(2008) note that changes in inorganic N deposition

may be correlated to climatic changes, indirectly

through changes in precipitation. Thus, a synergistic

relationship between climate and nutrient dynamics

may exist in the ELA region, and may provide a

partial explanation of the observed biological

changes.

Changes in temperature and seasonality are likely

explanatory factors for the observed trends in diatom

taxa in the ELA region, recognizing that the ‘top’/

’bottom’ approach is limited, and does not allow for a

full assessment of causes of the observed species

changes. Future studies of dated sediment cores

should be applied to assess the timing of changes in

planktonic taxa, synchronicity of the changes among

lakes, and to more fully assess the biological changes

relative to measured changes in climate and other

regional stressors.

In conclusion, we believe that the changes we

observe in the modern diatom assemblages from the

ELA lakes, punctuated with an increase in the relative

abundance of D. stelligera complex in deeper lakes,

are consistent with enhanced summer stratification, a

longer ice-free season and increased thermal stability

in recent decades. The ELA lakes have been mini-

mally impacted from anthropogenic disturbances in

comparison to lakes in other regions of the Precam-

brian Shield (e.g., south-central Ontario; Yan et al.

2008), and thus we conclude that recent warming

provides the strongest explanation for the observed

species changes. The biological changes were greater

in deeper, thermally stratified, and nutrient poor

lakes, although a few of the shallower lakes also

showed similar changes.

Detailed paleolimnological studies are necessary

from the ELA region to further assess when plank-

tonic taxa increased, so that the relationship between

climate change and other potentially important

regional factors can be evaluated further.
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