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Abstract Rapid urbanization and increased tourism

around Nainital Lake in the Kumaun Himalayan

region in north India has raised concerns about

sediment and water pollution. Lead-210 dated sedi-

ment cores from the lake represent *95 years of

accumulation and yield a mean sedimentation rate

of *4.7 mm year-1. Total organic carbon (TOC),

percent N and S and their atomic C/N and C/S ratios,

stable isotopes (d13C, d15N, and d34S), and specific

biomarkers (n-alkanes and pigments) were measured

in the core. Organic matter is primarily derived from

in-lake algal production and TOC flux varies from 1.0

to 3.5 g m-2 year-1. Sediments are anoxic (Eh -328

to -187 mV) and have low (0.10–0.30 g m-2

year-1) N, but high (0.37–1.0 g m-2 year-1) S flux.

Shifts in d13C, d15N, and d34S suggest in-lake

microbial processes dominated by denitrification

and sulfate reduction. The sediments are dominated

by short-chain hydrocarbons with low Carbon Pref-

erence Index values. The pigments indicate a gradual

shift to cyanobacterial domination of the phytoplank-

ton community in recent years. Despite an increase

in external input of nutrients, the trophic state of the

lake has remained largely unchanged, and the

perceived human-induced impacts are limited.

Keywords Lake sediments � Paleoproductivity �
Organic matter � Stable isotopes � Hydrocarbons �
Pigments

Introduction

Environmental changes leave distinct geochemical

signals in sediments, which can be used to infer

paleoecological and paleoenvironmental histories in

lacustrine environments (Schelske and Hodell 1991;

Bernasconi et al. 1997; Tenzer et al. 1999; Routh

et al. 2004). Organic matter (OM) characteristics,

trace elements, and stable C and N isotope compo-

sitions are widely used as indicators of watershed

disturbance and primary productivity changes (for

reviews see Meyers and Lallier-Vergès 1999; Boyle

2001; Meyers 2003). Although some of these paleo-

environmental proxies are relatively conservative,

others may be influenced by sediment–water interac-

tions, biological processes, and anthropogenic

activities. Nevertheless, these geochemical proxies

can provide reliable records of environmental change

in lakes over multi-million-year periods, even for
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sediments in which only a small fraction of OM is

preserved (Meyers 1994; Meyers et al. 1995).

Sediment OM in lacustrine environments provides

information about the origin of OM and the kinds of

biota that produce it. This information provides a

better understanding of various biogeochemical pro-

cesses, trophic state shifts, and natural and/or human-

induced effects in lacustrine environments (Meyers

1997; Tenzer et al. 1999; Meyers 2003; Das et al.

2008; Routh et al. 2008; Choudhary et al. 2008).

Notably, periods of high sedimentation rate and

greater primary productivity can preserve evidence of

processes that affect OM delivery and burial in

lacustrine sediments. Hence, lakes offer special

opportunities to study the response of sediment

geochemistry to environmental changes on short-

(annual to decadal), and even long-term (centennial

to millennial) time scales.

Lake Nainital, situated in the Kumaun Himalayan

region of northern India, has been affected by urban

development. In particular, water quality has deteri-

orated over the years (Ali et al. 1999; Gupta et al.

1999; Chakrapani 2002). We used various paleolim-

nological proxies to explore the recent history of

environmental changes in Lake Nainital. Our multi-

proxy approach included elemental ratios (C/N, C/S),

isotope signatures (C, N, and S), and specific bio-

markers (hydrocarbons and pigments), and was used

to characterize the OM in sediments. The results were

related to nutrient dynamics, paleoproductivity, and

probable anthropogenic effects. To the best of our

knowledge, this is one of the first such studies in a

Himalayan lake system. Hence, useful generalizations

can be drawn based on the sediment OM records.

Further, the study illustrates the potential of these

types of proxy-based analyses to reconstruct trophic

state changes in lakes in areas where hardly any water

column data are available. These concepts can be

extended to other lacustrine systems to understand

biogeochemical processes, particularly the effects of

human-induced activities in the catchment.

Study area

Nainital Lake (latitude 29�240N, longitude 79�280E)

is situated at the center of Nainital city in Uttarak-

hand state, India (Fig. 1). The crescent-shaped lake,

discovered in 1841 AD, is a warm monomictic,

hyper-eutrophic water body situated at an altitude of

1,937 m (Pant et al. 1980; Singh and Gopal 1999;

Gupta et al. 1999). The lake is 1.4 km long, 0.45 km

wide, 27.3 m deep, and 0.46 km2 in surface area. The

catchment area is 4.9 km2, of which 48.4% is covered

by forests (oak and cypress), 18.3% is barren, 19.3%

is human settlements, and 10.4% is water body. The

catchment is home to over 700 plant species and 200

species of birds (Singh et al. 2001). The lake is the

main source of water supply for the local population

(*40,000 inhabitants; Singh and Gopal 1999). The

average annual rainfall in the basin is 2,271 mm, and

summer and winter temperatures average around

25�C and 10�C, respectively (Pant et al. 1980). The

lake remains thermally stratified for 7–9 months of

the year (March–October; Kumar et al. 2001).

There are 24 open drains in the catchment area.

Nine of these drains are permanent (Das et al. 1995)

and carry domestic waste, including town sewage,

run-off water, and eroded sediments into the lake

(Pant et al. 1980). The lake is essentially a flow-

through system, with substantial groundwater inflow
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Fig. 1 Bathymetric map of Lake Nainital showing core

location (modified from Nainital Development Authority)
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and seepage. The hydrologic budget of the lake

shows that most of the lake water owes its origin to

surface run-off (25%), sub-surface inflow (43%), and

direct precipitation (15%) (Singh et al. 2001; Kumar

et al. 2001). The groundwater age is \14 years and

retention time is about 2 years (Kumar et al. 2001;

Nachiappan et al. 2002). Isotope studies reveal that

the slope of the d18O–dD water line in Nainital Lake

(7.1) is close to the LMWL (7.5), implying that

evaporation losses from the lake are insignificant

(Nachiappan et al. 2002).

The Lake Nainital basin is made up of folded and

faulted rocks of the Krol and Tal Formations (Valdiya

1988). The sub-rotational movements in the fault zone

were responsible for blocking the Gaula River in its

upper reaches, resulting in the formation of Nainital

Lake. The lake is divided into two sub-basins sepa-

rated by a 100-m wide, transverse underwater ridge,

which crops out at depths of 7–20 m. Northeastern

Sher-ka-dand-Naina ridge is made up almost exclu-

sively of the Lower Krol Formation and south-western

Deopatta–Ayarpatta ridge consists of the Middle and

Upper Krol and Tal Formations (Valdiya 1988). The

lithology consists of dolomites, argillaceous lime-

stone, marlites, gypsum, and black carbonaceous

slates, which are susceptible to extensive physical

and chemical weathering (Das et al. 1995; Chakrapani

2002). Because of high tectonic activity, the region is

prone to landslides (Valdiya 1988; Kumar et al. 2007).

Seven major landslides were reported within the last

century (Singh et al. 2001).

The idyllic setting of Lake Nainital attracts many

tourists (*300,000–400,000 people annually) during

summer (April–August). The population is spread

over a small area of 11–12 km2. Rapid urbanization

in the catchment has increased the construction of

buildings and roads, and human population has

doubled since the 1950s (Singh et al. 2001). This

has resulted in high input to the lake of heavy metals,

phosphate, and nitrate (Das et al. 1995; Ali et al.

1999; Chakrapani 2002). In fact, several planktonic

species commonly considered indicators of eutrophi-

cation are widely found in Lake Nainital, e.g.,

Microcystis, Anabaena, Chlamydomonas, and Clos-

tridium (Pant et al. 1980). Nutrients such as

phosphate, nitrate, and ammonium support luxuriant

phytoplankton and algal growth (2.4–37.6 9 106

cells l-1; Sharma et al. 1982; Ali et al. 1999).

Previous studies also suggest that recent fish kills are

a consequence of long-term anoxia and presence of

toxic pollutants in the lake (e.g., Ali et al. 1999;

Singh et al. 2001; Nagdali and Gupta 2002). How-

ever, these studies do not elucidate the actual

source(s) of OM (or pollutants) in the lake, their

effect on nutrient dynamics, or in productivity shifts

affecting the lake’s trophic state.

Methodology

Sediment cores were collected from the deepest part

of the lake in December 2004. A gravity corer was

used to obtain two relatively undisturbed sediment

cores, 55 mm in diameter and 40–45 cm long (NT 1

and NT 2; Fig. 1). Each core was sliced into 2-cm

sections in the field and Eh was measured immedi-

ately; the samples were packed into airtight plastic

bags and refrigerated. Loss-on-ignition (LOI) was

measured as described in Heiri et al. (2001). The bulk

density of sediments was measured by estimating the

water content (heating for 8 h at 105�C) and porosity.

Grain size was measured by sieving the sediments.

In one of the cores (NT 1), sedimentation rate was

estimated using 210Pb. The measurement of 210Pb was

based on the a-measurement of 210Po, which was

assumed to be in secular equilibrium with its parent.

The procedure involved adding 209Po as a tracer and

leaching the sediment sample with aqua regia (Kumar

et al. 2007). The residual solid was filtered and

treated with HCl. The Polonium nuclides (210Po and
209Po) were deposited on copper disks by adding

ascorbic acid in HCl solution prior to alpha counting.

The standard counting error was \10% in the upper

section of the core and slightly higher in the deeper

sections. The supported activity for 210Pb was

estimated from the asymptote, which was subtracted

from the total 210Pb activity to get the unsupported
210Pb activity, i.e. excess 210Pb (210Pbex). To correct

for the effect of sediment compaction, 210Pbex at each

depth was multiplied by the dry density.

In the second core (NT 2), sediments were

centrifuged at 10,000 rpm (3,023 g) for 30 min to

extract the pore-water. Dissolved organic carbon

(DOC) concentration was measured with a Shimadzu

TOC 5000 analyzer. Reproducibility of duplicate

analysis was within ±10%. The sediments were later

freeze-dried and used for characterizing the OM. The

C and N isotopic compositions of acid-treated
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samples were analyzed using a continuous flow

system consisting of a Carlo Erba elemental analyzer

coupled to a Finnigan MAT Delta Plus mass spec-

trometer. Data are reported in the conventional delta

(d) notation versus Vienna PeeDee Belemnite

(V-PDB) for C and atmospheric N2 for total N. The

precision for C and N isotope analyses was ±0.18%
and ±0.06%, respectively. The sulfur isotopes were

measured in the sulfate and sulfide fractions. Sulfate

was extracted by treating the samples with hot (90�C)

6 M HCl for 2 h; the residue was filtered and washed

with deionized water. Barium sulfate was then

precipitated after addition of 0.25 M BaCl2 to the

solution, and the precipitate was dried and weighed.

The remaining sulfide fraction was treated with

HNO3 and bromine, and the supernatant was oxidized

to form BaSO4. The S isotopes were analyzed by

combusting BaSO4 mixed with an equal amount of

V2O5 at 1,020�C in a Carlo Erba elemental analyzer

connected to a Finnigan MAT Delta Plus mass

spectrometer. The values were expressed in the

conventional d34S notation relative to the Vienna-

Canyon Diablo Troilite (V-CDT) standard; the pre-

cision was ±0.2%.

Approximately 1–2 g of freeze-dried sediment was

extracted with a mixture of CH2Cl2 and MeOH (9:1

v/v) on a Dionex Automated Solvent Extractor 300

(three extraction cycles at 1,500 psi and 100�C). The

total lipid extracts were reduced using a Büchli

rotovapor and injected in pulsed splitless mode into

an Agilent 6890 gas chromatograph with a DB5-MS

column (30 m 9 0.25 mm i.d. 9 0.25 lm film). The

oven temperature was held at 35�C for 6 min,

increased to 300�C at 5�C min-1, and held for

20 min. The chromatograph was interfaced with an

Agilent 5973 mass spectrometer operated at 70 eV in

full-scan mode (m/z 50–500 amu). External and

internal standards (S-4066 from CHIRON, Norway

and deuterated perylene from Cambridge Laboratory,

USA) were used for quantification.

Pigments were extracted for 2 min by ultra-

sonication in acetone (2 ml g-1 sediment), and stored

overnight. After filtration (0.02 lm), the samples

were injected into a HPLC consisting of a Waters

2690 separation module coupled to a photodiode UV/

VIS detector (set at 450 nm). The injector was

connected to a RP-18 LiChroCART column (5 lm

particle size, 250 mm 9 4.6 mm i.d.). The gradient

(1 ml min-1) program began with 100% mobile

phase A (80:20 MeOH:0.5 M ammonium acetate;

Westman et al. 2003). This was followed by 100%

mobile phase B (90:10 acetonitrile: water) for 4 min,

and 25% B and 75% C (100% ethyl acetate) for

28 min. The program was changed to 100% B for

5 min with a final ramping to 100% A for 4 min. The

pigment standards were obtained from DHI,

Denmark. Chlorophyll (Chl) was analyzed colorimet-

rically on a Hitachi U-1100 spectrometer following

the method by Dere et al. (1998; absorbance at 470,

645, and 662 nm). The pigment concentrations were

calculated according to (Lichtenthaler and Wellburn

1985):

Ca ¼ 11:75 A662 � 2:350 A645 ð1Þ
Cb ¼ 18:61 A645 � 3:960 A662 ð2Þ

Total carotene ¼ 1000 A470 � 2:270Ca

� 81:4Cb=227 ð3Þ

where Ca is Chl a and Cb is Chl b. Typical precision

of duplicate runs was B2%.

Results

The cores were dominated by \45-lm size clay ?

silt fractions. Porosity varied from 40 to 69% (Fig. 2).

The LOI content in samples ranged from 2.1 to 7.6%.

The results were similar in both cores and reproduc-

ibility of duplicate runs was ca. ± 3%.

Sedimentation rates

The total activity of 210Pb declined from a maximum

of 169 mbq g-1 near the surface to 59 mbq g-1 at

45 cm depth. The CRS (Constant Rate of Supply)

model was used to derive the sediment accumulation

rate. The model assumes a constant 210Pb flux, but

variable sedimentation rate (Appleby and Oldfield

1978). The sedimentation rate was 4.7 ± 0.04 mm

year-1, and the sediment accumulation rate was

56 ± 0.3 g m-2 year-1 (Fig. 3). Based on these

values, the deepest part of the core was dated to be

*1908 AD.

Paleoproductivity

The rate of primary paleoproductivity (PP; g C m-2

year-1) was originally calculated for marine sediments
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(Muller and Suess 1979), but later, the principle was

successfully applied to several freshwater lake systems

(e.g. Williams et al. 1993; Ishiwatari et al. 2005;

Das et al. 2008; Routh et al. 2008; Choudhary et al.

2008).

PP ¼ ð%TOC� DÞ=ð0:0030� S0:3Þ ð4Þ

where D is dry bulk density (g cm-3) and S is

sedimentation rate (cm kyr-1). PP was also calcu-

lated based on the distribution of hydrocarbons

(n-
P

C15,17,19) representing in-lake algal production.

Both profiles indicated a similar trend with the

maximum value occurring at 33 cm depth (Fig. 4).

Geochemical analyses

The sediments were anoxic and Eh varied between -

187 and -328 mV. Average DOC concentrations in

pore water were 36–131 mg l-1. TOC flux in sedi-

ments ranged between 1.0 and 3.5 g m-2 year-1 with

a minimum value at 37 cm (Fig. 4). The total N flux

was between 0.1 and 0.3 g m-2 year-1; the values

were maximum (0. 3 g cm-2 year-1) between 31 and

33 cm. The total S flux was high and ranged from

0.37 to 1.0 g m-2 year-1; the highest rate,

1.0 g m-2 year-1 S occurred at 29 cm. The atomic

C/N ratio in sediments ranged between 11 and 15,

and the atomic C/S ratio varied between 4.3 and 19

(Fig. 4).

The d13C of OM ranged from -26.5% to

-27.7%; the values were low around two depth

intervals in the sediment core, 31–37 cm and 21–

25 cm (Fig. 5). The d15N values varied between

3.1% and 9.2%. The d15N values increased up-core

to a maximum value of 9.2% at 35 cm. The d15N

values decreased, followed by another increase

Sediment accumulation rate 
(g m2 yr-1 )

Age (yrs)

D
ep

th
 (

cm
)

D
ep

th
 (

cm
)

D
ep

th
 (

cm
)

Activity (mbq g-1)

210Pbex

210Pb total

0

5

10

15

20

25

30

35

40

45

50

0 50 100
0

5

10

15

20

25

30

35

40

45

50

0 100 200
0

5

10

15

20

25

30

0 50 100

Fig. 2 Depth distribution

of 210Pb and mass

accumulation rate in

sediment core collected

from Lake Nainital. The

dates were calculated by

using 210Pb activity and

CRS model

0

5

10

15

20

25

30

35

40

45

50

0 5 10

LOI (%)

D
ep

th
 (

cm
)

0 50 100

Porosity (%)

NT 2
NT 1

NT 2
NT 1Depth (cm)

0%

20%

40%

60%

80%

100%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 

G
ra

in
 s

iz
e 

(%
)

>125 µm (%) 63-125 µm (%) 45-63 µm (%) <45 µm (%) 

Fig. 3 Grain size, LOI, and porosity in Lake Nanital sediments

J Paleolimnol (2009) 42:571–586 575

123



between 11 and 15 cm (up to 8.6%). The d34S in

sulfides (d34Sred) between 24 and 45 cm depth was

almost constant (*1.9%); negative d34S values

occurred at 23 cm (-0.9%) and 1 cm (-6.3%).

The average value of d34Sred between 21 and 3 cm

was *3.6%. The d34S in sulfates (d34Soxi) from 27 to

45 cm was between -0.01% and -0.9%. In con-

trast, the d34Soxi values above 26 cm ranged from

0.3% to 3.8%. In two samples, the amount of sulfate

extracted was too little to obtain reliable results.

The hydrocarbon concentrations in sediments were

normalized to TOC to compensate for depositional

variations, and to express the enrichment or depletion

of hydrocarbons relative to TOC (Fig. 6). Total

hydrocarbon concentrations varied from 1.8 to

5.9 lg mg-1 of TOC; the concentrations were high

in the 30–40 cm interval. The total concentration of

low, odd numbered n-alkanes (n-C15,17,19) exhibited

variations with depth. Higher concentrations, 0.66–

0.80 lg mg-1 of TOC, occurred between 25 and

35 cm and near the surface (0.49–0.53 lg mg-1 of

TOC).

The Carbon preference index (CPI; Allan and

Douglas 1977), which represents the predominance of

odd (C23–C33) over even (C24–C32) n-alkanes was

calculated and the values were marginally high (2–3)

between 25 and 35 cm, but gradually decreased up-

core. The Terrigenous Aquatic Ratio (TAR; Bour-

bonniere and Meyers 1996) takes into account the

n-alkane signature of vascular plants (n-C27,29,31) and

phytoplankton (n-C15,17,19); TAR ranged from 0.30 to

2.9 and showed a similar trend to CPI.
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The concentrations of most pigments increased up-

core (Fig. 7). The only exception was zeaxanthin,

which was high (0.39–2.3 mmol g-1) in bottom

sediments and decreased upwards. b,b-carotene was

present in high concentrations throughout the core

with concentrations varying between 0.24 and

5.8 mmol g-1. Echinenone, myxoxanthophyll, and

alloxanthin occurred in high concentrations, up to

5.1, 0.27, and 1.0 mmol g-1, respectively, in surface

sediments. Lutein was absent in most of the sediment

layers. However, lutein was high (0.09 mmol g-1) at

a depth of 29 cm. Lutein was also found between 9

and 13 cm and varied from 0.02 to 0.03 mmol g-1.

Chlorophyll a and b concentrations varied from

0.28 to 0.76 mmol g-1 and 0.02 to 0.17 mmol g-1,

respectively. The maximum Chl a concentration

(0.76 mmol g-1) occurred between 31 and 33 cm.

The CD:TC (chlorophyll derivative:total carotenoid)

ratio in the core varied between 0.04 and 0.48; high

(0.11–0.48) values occurred near the mid-section of

the core. Similarly, the ratio between b,b-carotene/

zeaxanthin varied between 0.11 and 3.4. The values

were high, 2.0 and 3.4, at 39 cm and 41 cm,

respectively.
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Discussion

Sediment chronology

Porosity and loss-on-ignition measurements in sedi-

ments from both cores in Lake Nainital are

comparable (Fig. 2). Hence, extrapolating ages from

the dated core to the core in which the paleolimno-

logical variables were measured, while not ideal, is

acceptable. Moreover, these undisturbed parallel

cores were collected within 1 m distance of one

another, during the same sampling trip. The average

sedimentation rate based on the 210Pb dates is

4.7 mm year-1, which is comparable to previous

estimates (e.g. Kumar et al. 1999, 2007). They

observed that sedimentation rate is lowest (4.8 ±

0.04 mm year-1) in the deepest part of the lake, but

increases progressively towards the shore (10.2 ±

0.04 mm year-1). This is due to landslides, surface

run-off, and external input from the catchment, the

effects of which are most apparent near the periphery

of the lake (Kumar et al. 2007).

Elemental concentrations

TOC flux in Nainital Lake varies with depth in the

sediment (1.0 to 3.5 g m-2 year-1), but is generally

low compared to eutrophic lakes (Brenner et al. 1999;

Punning and Tougu 2000; Vreča and Muri 2006;

Jinglu et al. 2007). It is unlikely that variation in TOC

can be due to differences in grain size since the

sediments are characterized by silt-to-clay size frac-

tions throughout the core (Fig. 3). The variation in

TOC could result from early stage diagenetic alter-

ation. Studies elsewhere suggest limited OM

degradation in deeper anoxic sediments (Hodell and

Schelske 1998; Harvey et al. 1995; Hedges et al.

1999; Meyers 2003). However, this is a contentious
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issue since recent studies indicate that OM degrada-

tion under anoxic conditions is equal to or sometimes

even greater than degradation under oxic conditions

(e.g. Pedersen and Calvert 1990; Hedges and Keil

1995; Bastviken 2004). In particular, the labile OM

fraction, which is presumably accessible to most

enzymes (regardless of the O2 concentration), is

depleted rapidly. Hence, OM type and changes in

delivery rate largely affect the distribution of TOC.

Deposition of N in the lake indicates an up-core

increase. Maximum N flux (0.30 g m-2 year-1)

occurs during the 1950s, coinciding with increase in

TOC flux (up to 3.5 g m-2 year-1). The increase in

N flux is most likely related to rapid urbanization that

started in the early 1950s (Pant et al. 1980). Urban

development led to deforestation and higher inputs of

nitrate-rich domestic waste into the lake, which

triggered the change.

The external sources of S input into the lake

include springs and ground water, which erode the

gypsum-rich Krol and Tal formations before draining

into the lake (Das 2005; Chakrapani 2002), as well as

anthropogenic input from the catchment. The flux for

total S in Nainital sediments does not show a specific

trend (Fig. 4). Because of reducing conditions and

sulfate reduction, the rate of sulfide accumulation in

these sediments is high (0.30–0.80 g m-2 year-1).

Presence of sulfate (0.01–0.21 g m-2 year-1) in such

a reducing environment is, however, surprising,

especially in the deeper sediments (Fig. 4). Most

probably this is due to oxidation of sulfide minerals

during sample handling and represents an artifact.

The cores were sliced in the field and refrigerated.

After returning to the laboratory, the samples were

freeze-dried, which can affect the oxidation state of S

(Hjorth 2004).

Elemental ratios

The atomic C/N ratio in Nainital sediments is 10–15

and suggests algal-derived material as the primary

source of sediment OM. This is consistent with other

studies, which indicate that atomic C/N ratios [20

imply input of vascular plants, whereas lower C/N

ratios (5–8) indicate principally algal-derived OM

(Meyers 1994, 2003). The presence of inorganic N in

sediments can, however, alter C/N ratios and thereby

confound the interpretation of OM sources (Talbot

2001). The regression line for the scatter plot between

Ntotal and C in Nainital sediments suggests an absence

of inorganic N because the intercept is low (0.009).

Because there is no inorganic N in these sediments,

and the C/N (atomic) of algal matter is *8 and that

of terrigenous OM is *25 (Meyers 2003), we can

estimate the percent of autochthonous, i.e. algal-

derived OM (%Cal). The calculated %Cal values

range from 52 to 80% (Fig. 4), and confirm that the

OM source in Lake Nainital sediments is essentially

autochthonous (algal-derived). Moreover, the C/N

ratios indicate that run-off waters from the catchment

do not increase the terrestrial OM component, even

though the lake is surrounded by mountains and

nearly 48% of the catchment is forested.

Sub-aquatic springs with high sulfate concentra-

tions (2–4 mmol l-1) derived from weathering of

dolomites and limestones enriched in gypsum feed

Lake Nainital (Das 2005; Chakrapani 2002). Hence,

large inputs of S affect the C/S ratio in this lake, and

the ratio deviates from values typically observed in

freshwater sediments (typically [20; Berner and

Raiswell 1984; Urban et al. 1999). Moreover, strati-

fication by mid- to late-summer causes seasonal

anoxia in the hypolimnion, and incorporates S as

sulfide (pyrite) in bottom sediments. Thus, the atomic

C/S ratio decreases with depth (Fig. 4), and the low

(4.3–18) values represent a reducing environment

associated with eutrophic conditions (Putschew et al.

1995; Urban et al. 1999). The increase in S accumu-

lation with depth could also result from preferential

mineralization of C relative to S. Consistent with this

observation, there is a decrease in pore water DOC

levels with depth (Fig. 4). Urban et al. (1999) reported

a decrease in C/S ratios with depth in Swiss lakes, and

correlated this to human-induced trophic state shifts.

In particular, Lake Nainital has a striking similarity

with the alpine Lake Cadango, which has C/S ratios

between 5.9 and 11 (Putschew et al. 1995). The upper

part of Lake Cadango mixes regularly, whereas the

lower part remains stagnant and is anoxic.

Productivity changes

The PP equation proposed by Muller and Suess

(1979) does not take into account variations in

terrigenous input, but rather, provides information

on the integrated preserved total carbon. Hence, it is

important to compare the PP trend based on produc-

tion of autochthonous OM, and then relate the PP
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values to the lake’s trophic status. Because OM

deposited in these sediments is primarily from in-lake

production (low C/N ratio and high %Cal values), PP

calculated based on the n-
P

C15,17,19 values indicates

a similar trend to the TOC-derived PP (Fig. 4).

Paleoproductivity estimates in Lake Nainital based

on TOC do not vary much (average 675 g C m-2

year-1), except for increases that occur around

*1950 and *2000. The increase in PP around

1950 coincides with the beginning of increased

urbanization in the catchment. Although human

population and urbanization in the catchment

increased steadily (Singh and Gopal 1999), the

reason(s) for a decrease in PP in subsequent years

(1960–1980) is unknown. Meyers (1997) indicated

that primary production in mesotrophic freshwater

bodies is from 100 to 310 g C m-2 year-1, whereas

in eutrophic systems it is from 370 to 640 g C m-2

year-1. Based upon these rough estimates, the

eutrophic status in Lake Nainital has remained mostly

unchanged over the last *95 years.

Stable isotope records

Carbon isotopes

The d13C values of sediment OM show little variation

(-26.5% to -27.8%) with depth. Based on these

d13C values, it is impossible to determine whether C3

vascular plants or phytoplankton are the primary

sources of OM because they use isotopically identical

sources of inorganic carbon, i.e. atmospheric CO2 or

dissolved CO2 in lake water. The d13C values of OM

in Nainital Lake are, however, similar to values in

many eutrophic lakes affected by external input of

nutrients (Schelske and Hodell 1995; Brenner et al.

1999; Routh et al. 2004; Vreča and Muri 2006;

Choudhary et al. 2008). Under eutrophic conditions,

elevated productivity in the lake is related to

preferential removal of dissolved 12CO2 by primary

producers from water, which leaves the dissolved

inorganic C enriched in 13C. As the availability of
12CO2 gradually diminishes in the lake, a progres-

sively greater fraction of the 13CO2 is incorporated

into OM. Furthermore, additional in-lake processes

could involve active uptake of bicarbonate (Law et al.

1998) and release of isotopically light biogenic CH4

(Kendall et al. 2001). This phenomenon is common

when lakes become eutrophic and anoxic conditions

develop (Gu and Schelske 1996; Brenner et al. 1999;

Vreča and Muri 2006). However, we have not

measured methane in Nainital sediments or in the

water column, and hence, the role of methanogenesis

in affecting d13C of sedimentary OM is speculative.

There is a decrease in d13C values from 1972 to

the early 1980s, after which they increase to higher

values in surface sediments; this period in the 1970s

and 1980s coincides with enrichment of d15N

(Fig. 5). The variability in d13C values perhaps

results from input of soil-derived or terrestrial OM

with lighter isotopic composition that was incorpo-

rated due to major landslides in this region during

1982 and 1987 (Singh et al. 2001), assimilation of
13C-depleted CO2 formed during degradation of

sinking OM (Hollander and Smith 2001), or contri-

bution of isotopically-depleted CO2 from use of fossil

fuels (Schelske and Hodell 1995; Vreča and Muri

2006). The decrease in d13C and C/N values coupled

with an increase in d15N values in this interval most

likely indicates enhanced algal productivity. Consis-

tent with this idea, algal-derived PP also increases

during this period (Fig. 4). Likewise, other studies

have also proposed a similar relationship between

stable isotopes, elemental concentrations, and PP

(e.g. Herczeg et al. 2001; Routh et al. 2004, 2008;

Brenner et al. 2006; Choudhary et al. 2008).

Nitrogen isotopes

In Lake Nainital, the d15N values increase up-core

from 3.1 to 5.1% (Fig. 5) with elevated values

occurring at depths of 30–35 cm (1941–1952) and

10–15 cm (1972–1990). Higher d15N values in these

intervals coincide with elevated N input (particularly

at 30–35 cm), which affect in-lake productivity. The

d15N value of sedimenting OM is typically related to

the supply and utilization of the dissolved inorganic

nitrogen (DIN) pool. When the DIN pool is small, the

preferential uptake of 14N by algae diminishes, and

d15N values become larger. Elevated d15N values can

result from anthropogenic inputs of sewage and soil-

derived nitrate, yielding values as high as 10% in

sedimenting OM (Teranes and Bernasconi 2000;

Talbot 2001; Routh et al. 2007). Previous studies

have reported an increase in inputs of sewage and

nitrogenous wastes into Lake Nainital in recent years

(Ali et al. 1999; Chakrapani 2002). Similarly,

enrichment of d15N in the sediments due to loss of
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isotopically light ammonia by degassing can lead to

isotopic enrichment of the DIN pool (Teranes and

Bernasconi 2000). Consistent with this idea, Pant

et al. (1980) reported an increase in ammonia

concentration from 19 to 156 lg l-1 between the

period 1954 and 1975. Likewise, NLRSADA (2002)

indicated 0.10 mg l-1 of ammonia in the water

column, implying ammonification as an important

process in Lake Nainital.

Notably, the d15N values in Nainital Lake suggest

algal material from primarily non-N2-fixing phyto-

plankton (d15N is typically[2%; Talbot and Laerdal

2000; Herczeg et al. 2001). Although cyanobacterial

pigments echinenone and zeaxanthin are abundant

(see below), their role in N2 fixation is open to

question. Typically, the d15N value of sedimented

OM produced by N2-fixing cyanobacteria is between

-3 and 1% (Fogel and Cifuentes 1993), which is

outside the range of d15N values observed in Nainital

sediments. However, the core exhibits a trend

towards lower d15N values in recent years; this

coincides with an increase in abundance of N2-fixing

cyanobacteria since the 1980s.

Sulfur isotopes

Occurence of microbial sulfate reduction in Lake

Nainital is based on indirect geochemical evidence

(low Eh, decrease in DOC, H2S emanation, and high

sulfide flux in sediments; Fig. 4). As bacterial sulfate

reduction progresses, the d34S of dissolved sulfate

becomes unusually high, exceeding the d34S of

evaporite (10–30%) and sulfide (-40 to 10%)

minerals (Grossman and Desrocher 2001). Sulfate

reduction in surface sediments in Nainital Lake

results in decrease of sulfate (Fig. 4) and low

(-6.4%) d34S in the sulfide fraction (Fig. 5). In

contrast, there is little difference between the d34S of

sulfate and sulfide fractions in deeper anoxic sedi-

ments. This is consistent with other studies, which

indicate that sediments from lakes with anoxic

bottom waters display less overall isotopic fraction-

ation (Fry et al. 1995; Urban et al. 1999). The authors

suggest that most of the sulfate in deeper anoxic

sediments is reduced, involving little fractionation,

whereas in near-surface sediments, less rapid sulfate

consumption allows larger isotopic fractionation.

Lack of d34S fractionation in deeper sediment implies

that sulfate that enters the lake is quickly reduced

because the water above is reducing, and conditions

are suitable for sustaining sulfate reduction (avail-

ability of OM and sulfate). The small d34S frac-

tionation (*1.5–2%; Fig. 5) in deeper sediments, is

most likely due to oxidation from sample handling as

discussed earlier. Consistent with this, Fry et al.

(1995) also suggested that sulfide oxidation after the

formation of reduced S exerts a relatively minor

effect on the d34S composition of sulfide minerals.

Biomarker records

n-Alkanes

The total hydrocarbon content in Nainital sediments

shows an up-core increase to a depth of 35 cm.

Above this depth, there is little variation in total

hydrocarbon content (Fig. 6). Total hydrocarbon

concentration covaries with n-
P

C15,17,19 and implies

a gradual shift in algal productivity. The sediments

indicate low CPI (average 1.5) and TAR (average

1.7) values, and represent OM produced by in-lake

sources (i.e. algae, submerged and emergent fresh-

water plants). Consistent with this evidence, different

species of algae (Microcystis aeruginosa, Spirogyra

adnata, Mougeotia scalaris, and Oedogonium sp.),

photosynthetic bacteria, and floating and submerged

macrophytes (Polygonum amphibium, Potamogeton

pectinatus, and P. crispus) thrive in the lake (Pant

et al. 1980; Singh and Gopal 1999; Gupta et al. 1999).

Increased CPI values at specific intervals in the core

imply higher input of terrestrial OM (particularly

n-C27,29,31 alkanes; Fig. 6). This interpretation is

probably flawed based on the other lines of evidence

(C/N, %Cal, in-lake productivity, and pigments), which

imply limited terrestrial input. Because diagenetic

losses of the non-hydrocarbon components of total OM

exaggerate the importance of different OM sources

based on absolute amounts of specific hydrocarbons,

interpretation of OM sources must be carefully veri-

fied. This exaggeration is especially true for land

plants (Meyers 2003), which tend to produce propor-

tionally more hydrocarbons (particularly n-
P

C27,29,31

alkanes) than algae, and consequently, over-represent

the fraction of land-derived OM, particularly in small

lakes. Moreover, short-chained n-alkanes are likely to

degrade faster during early diagenesis (Meyers and

Ishiwatari 1993; Peters et al. 2005).
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Pigments

The total concentration of pigments is relatively high

(1.2–12.5 mmol g-1 of TOC), and is consistent with

high primary productivity in the lake (Fig. 7). The

CD:TC ratio suggests autochthonous sources of

sediment OM and reducing conditions (Rybak et al.

1988). Moreover, the CD:TC ratio represents typical

eutrophic conditions as indicated by Sanger and

Crowl (1979).

The Chl trends demonstrate considerable variability.

This is expected because Chl degrades rapidly to form

pheophytin and pheophorbide, and is rarely well-

preserved in sediment records (Leavitt 1993). More-

over, fluctuations in the zooplankton population, e.g.

Brachionus, Rotatoria, Phillodina, Cyclops, Bodo,

Eutricha, Epistylis, and Vorticella (Pant et al. 1980),

which feed on green algae, can lead to significant

alterations in the distribution of Chl (Drenner and

Hambright 1999). The high concentrations of Chl a, Chl

b, and b,b-carotene and their ratio (Chl a/b,b-carotene)

around 27–33 cm and 5–13 cm suggests elevated

productivity (Griffiths 1978; Kowalewska 2001; Bian-

chi et al. 2002). The concentration of b,b-carotene

remains almost constant (0.98 mmol g-1) until 13 cm,

except for some variations between 29 and 31 cm; after

this b,b-carotene indicates a steady increase in con-

centration. b,b-carotene is very stable and it can persist

even under oxygenated conditions, unlike other pig-

ments (Hodgson et al. 1998; Bianchi et al. 2000; Leavitt

and Hodgson 2001). Low concentration of b,b-carotene

in deeper sediments may be due to less phototrophic

organisms in the water column.

The appearance of lutein, myxoxanthophyll, and

alloxanthin in the upper half of the core suggests an

increase in productivity, and a possible change in the

phytoplankton community in response to high nutri-

ent influx and sewage disposal (Ali et al. 1999;

Chakrapani 2002; Fig. 7). The presence of these

pigments suggests a change in phytoplankton species

to a system dominated by green algae and Crypto-

phytes and cyanobacteria (Leavitt and Hodgson

2001). The absence of these carotenoids in deeper

sediments is most likely due to their low stability

(Leavitt and Hodgson 2001). Particularly, sugar-

containing functional groups and polyene side-chains

make these carotenoids susceptible to oxidative

degradation (Leavitt et al. 1989; Leavitt and Hodgson

2001).

Echinenone and zeaxanthin are the more abundant

carotenoids and they occur in variable concentrations

throughout the core. Echinenone is considered a

specific marker for filamentous N2-fixing cyanobac-

teria (e.g. Anabaena, Aphanizomenon), whereas

zeaxanthin is more characteristic of non-N2-fixing,

colonial species (e.g. Microcystis, Oscillatoria; Paerl

1988; Leavitt 1993; Bianchi et al. 2000, 2002.

Nagdali and Gupta (2002) indicated that Cyanophy-

ceae represents about 51% of the total phytoplankton

population in this lake. The sediment depths above

25 cm, however, show a marked increase in echine-

none, with a corresponding decrease in zeaxanthin

concentrations, and thus an increase in the echine-

none/zeaxanthin ratio (Fig. 7). This suggests a

gradual shift in the phytoplankton community to

filamentous, N2-fixing cyanobacteria, which thrive in

highly competitive environments relative to colonial

species (e.g. Microcystis, Synechococcus) because of

their symbiotic relationship with aquatic plants

(Masepohl et al. 1997). The increase in cyanobacteria

is probably related to elevated P inputs. Phosphate

concentrations in wastewater discharged into the lake

(mainly from sewage drains) have an average value

of 210 lg l-1 (NIH 1999). Similarly, phosphate

concentration measured by Nagdali and Gupta

(2002) in the water column was [46 lg l-1, which

is higher than the critical P loading value for a lake

of this mean depth (Vollenweider 1976). Finally,

denitrification processes in the sediments favor

cyanobacteria because during respiration, they use

dissolved nitrate or nitrite instead of oxygen.

Human-induced effects?

Previous studies in Lake Nainital indicated heavy

metal pollution, an increase in sewage discharge, and

other problems associated with urban development in

the catchment (Pant et al. 1980; Ali et al. 1999;

Chakrapani 2002). The perceived impacts of these

changes on the sediment and water quality, however,

need to be reexamined. For example, although heavy

metal concentrations in Nainital sediments are

reportedly high (Das et al. 1995; Chakrapani 2002),

metal fractionation experiments reveal that most of

the heavy metals are present in the residual phase

(Patra et al. 2006). The residual fraction is mostly

immobile and therefore, less bioavailable. Moreover,

since the surrounding lithology is prone to chemical
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weathering (Chakrapani 2002) and land slides, heavy

metals will continue to accumulate in these fine-

grained lake sediments.

Paleolimnological findings in this study yielded a

few surprises. There has been little change in the

input of terrestrial OM into the lake from external

runoff; OM in the lake sediment consists primarily of

algal-derived matter. Although there has been a

change in the phytoplankton community (increase in

cyanobacteria population), the trophic status of the

lake has been eutrophic and remained largely

unchanged over the last nine decades. Unlike other

urban water bodies in the region (e.g. Lake Sattal,

Choudhary et al. 2008), Lake Nainital does not seem

to have been strongly impacted by human activities in

the catchment. Instead most of the changes in the

geochemical proxies are related to ongoing bio-

geochemical processes in the water-column and

sediments. Nachiappan et al. (2002) completed

detailed isotope mass balance studies on Lake

Nainital, and came to the similar conclusion that

Lake Nainital is not seriously impacted by anthropo-

genic activities.

Conclusions

The different geochemical variables investigated in

this study provide a detailed record of biogeochem-

ical changes in Lake Nainital spanning the last

*95 years. Geochemical proxies indicate anoxic

conditions in bottom sediments influence in-lake

processes. Deposition of organic C and N shows

some variations, particularly in the deeper layers—

these changes coincide with eutrophic conditions and

higher productivity in the lake. Sulfur is added to the

lake mainly from weathering processes.

Organic matter deposited on the lake bottom is

primarily from in-lake algal material. Stable C and N

isotopes indicate positive shifts in their values

coinciding with microbial processes, productivity

shifts, and OM degradation. In particular, agricultural

and sewage input have increased the d15N values. The

S isotopes indicate sulfate reduction associated with

anoxic degradation of OM. Specific biomarkers such

as hydrocarbons and pigments signify algal-derived

material and elevated productivity towards the

start of rapid urbanization in the lake’s catchment

(during the 1950s). The pigments signify a change in

phytoplankton community to a cyanobacterial-dom-

inated system in recent years. However, the trophic

state of the lake has remained largely unchanged over

the last several decades. Finally, we conclude that the

overall impact of human-induced changes in the

lake’s catchment is most likely limited.
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(1997) The ferredoxin-encoding fdxN gene of the fila-

mentous cyanobacterium Anabaena variabilis ATCC

29413 is not essential for nitrogen fixation. New Phytol

136:419–423. doi:10.1046/j.1469-8137.1997.00771.x

Meyers PA (1994) Preservation of elemental and isotopic

source identification of sedimentary organic matter. Chem

Geol 114:289–302. doi:10.1016/0009-2541(94)90059-0

Meyers PA (1997) Organic geochemical proxies of paleocea-

nographic, paleolimnologic, and palaeoclimatic processes.

Org Geochem 27:213–250. doi:10.1016/S0146-6380(97)

00049-1

Meyers PA (2003) Applications of organic geochemistry of

paleolimnological reconstructions: a summary of exam-

ples from the Laurentian Great Lakes. Org Geochem

34:261–289. doi:10.1016/S0146-6380(02)00168-7

Meyers PA, Ishiwatari R (1993) Lacustrine organic geochem-

istry—an overview of indicators of organic matter sources

and diagenesis in lake sediments. Org Geochem 20:867–

900. doi:10.1016/0146-6380(93)90100-P

Meyers PA, Lallier-Verges E (1999) Lacustrine sedimentary

organic matter records of late Quaternary paleoclimates.

J Paleolimnol 21:345–372. doi:10.1023/A:10080737321

92

Meyers PA, Leenheer MJ, Bourboniere RA (1995) Diagenesis

of vascular plant organic matter components during burial

in lake sediments. Aquat Geochem 1:35–52. doi:10.1007/

BF01025230

Muller PJ, Suess E (1979) Productivity, sedimentation rate, and

sedimentary organic matter in the oceans—I. Organic

carbon preservation. Deep Sea Res 26A:1347–1362. doi:

10.1016/0198-0149(79)90003-7

Nachiappan RMP, Kumar B, Manickavasgam RM (2002)

Estimation of subsurface components in the balance of

Lake Nainital (Kumaun Himalaya, India) using environ-

mental isotopes. Hydrol Sci 47:S41–S54

Nagdali SS, Gupta PK (2002) Impact of mass mortality of a

mosquito fish Gambusia affinis on the ecology of fresh

water eutrophic lake (Lake Nainital, India). Hydrobiologia

468:45–52. doi:10.1023/A:1015270206187

NLRSADA (2002) Nainital lake region special area develop-

ment authority. Internal Report, p 7

Paerl WK (1988) Nuisance phytoplankton blooms in coastal,

estuarine and inland waters. Limnol Oceanogr 33:823–

847

Pant MC, Sharma AP, Sharma PC (1980) Evidence for the

increased eutrophication of lake Nainital as a result of

human interference. Environ Pollut 1:149–161 Series B

Patra AK, Pendkar N, Chakrapani GJ (2006) Heavy metal

fractionation and mineralogy in sediments of Nainital

lake, Kumaun Himalaya. Geol Soc India 68:181–185

Pedersen TF, Calvert SE (1990) Anoxia versus productivity:

what controls the formation of organic-carbon rich sedi-

ments and sedimentary rocks? Am Assoc Pet Geol Bull

74:454–466

Peters KE, Walters CC, Moldowan JM (2005) The biomarker

guide. Volume 2: Biomarkers and isotopes in petroleum

exploration and earth history. Cambridge University

Press, Cambridge
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