
The Protein Journal (2023) 42:633–644
https://doi.org/10.1007/s10930-023-10142-4

Lactoferrin, as a multifunctional protein (including bac-
terial clearance and pathogen opsonization), has been well-
studied in over the past decades [7–10]. Bovine lactoferrin 
peptide (LFcinB), the digest product of bovine lactoferrin 
(BLf) catalyzed by pepsin, is a peptide containing 25 amino 
acid residues (Residue No. 17–41, Mw: 3.1 kDa) near the N 
terminal of BLf [11–17]. In the intact BLf, the peptide frag-
ment of LFcinB folds into an α-helical conformation, the 
conformation transforms into a twisted, antiparallel β-sheet 
structure when released from BLf [18]. In the mature peptide 
LFcinB, the hydrophobic surface is made up of the residues 
F1, C3, W6, W8, P16, I18, and C20 and resulted in amphi-
philicity (the physicochemical property for antimicrobial 
effects) due to the high proportion of basic residues [19]. 
Owing to the small molecular weight and broad-spectrum 
antimicrobial activity, LFcinB has a wide range of applica-
tions in food preservation, biomedicine and feed additives 
[20, 21].

In this study, we constructed three expression systems 
(pET32a-LFe, pET32a-LFt and pET28a-SUMO-LF) to 
express and prepare the peptide LFcinB. Then, five mutant 
peptides were rationally designed using bioinformatic tools 
(Table S3), of which mutant LF4 (M10W/P16R/A24L) had 
improved antimicrobial activity compared with LFcinB. 
The stability and physicochemical properties of LFcinB 
and LF4 were analyzed and compared. Lastly, the potential 

1  Introduction

Antimicrobial resistance (AMR) is a crital health challenge, 
which causes substantial economic burden, morbidity and 
death globally [1]. The emergence and rapid spread of 
multidrug-resistant (MDR) bacteria poses a huge threat to 
human health due to the misuse of antibiotics with 10 mil-
lion people expected to die from antibiotic resistance by 
2050 [2]. In 2019, WHO identified 32 antibiotics in clinical 
development, of which six were classified as innovative [3]. 
Therefore, it is urgent to develop novel antimicrobial drugs 
to replace antibiotics. Antimicrobial peptides (AMP) have 
broad-spectrum antibacterial activity, strong antibacterial 
ability and less likely to develop resistance, which are the 
potential alternatives to antibiotics [4, 5]. However, natural 
antimicrobial peptides usually have low antimicrobial activ-
ity, stability and high hemolytic activity, which greatly lim-
its the applications of antimicrobial peptides [6].
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explanations for the improved antimicrobial activity of LF4 
were systematically discussed.

2  Materials and Methods

2.1  Materials

Escherichia coli BL21(DE3) was used as expression host 
strain. Plasmid pET32a and pET28a were utilized as expres-
sion vectors. PrimeSTAR Max Premix (2x) for PCR ampli-
fication (catalog number: R045A) and endonuclease DpnI 
(catalog number: 1235  S) were purchased from TaKaRa 
Co., Ltd (Japan). 2x Taq Master Mix (catalog number: P111-
01) was purchased from Vazyme Biotech Co., Ltd (Nanjing, 
China). IPTG (catalog number: A100487), Ampicillin (cat-
alog number: A610029) and Kanamycin (catalog number: 
A600286) were purchased from Sangon Biotech Co., Ltd 
(Shanghai, China). Enterokinase (catalog number: E8350) 
and thrombin (catalog number: T8021) were purchased 
from Solarbio Co., Ltd. (Beijing, China). SUMO protease 
(catalog number: PE007) was purchased from Novoprotein 
Scientific Inc (Shanghai, China). Easy II Protein Quantita-
tive Kit (BCA) (catalog number: DQ111-01) was purchased 
from Transgen Biotech Co., Ltd (Beijing, China). Ni-NTA 
resins (catalog number: 70666-3) was purchased from 
Novagen Co., Ltd (America).

2.2  Construction of Recombinant Plasmids

The primers used in this work were listed in Table S1-
S2. The 25-amino acid protein sequence of LFcinB 
(FKCRRWQWRMKKLGAPSITCVRRAF) was down-
loaded from NCBI and transformed into nucleotide sequence 
based on the codon preference in E. coli. The LFcinB encod-
ing gene were RF-cloned (restriction-free) into expressing 
vector pET32a and pET28a to produce three recombinant 
plasmids with different protease cleavage sites, namely 
pET32a-LFe (enterokinase), pET32a-LFt (thrombin) and 
pET28a-SUMO-LF (SUMO protease) [22] (Fig. S1). 
Mutant plasmids (pET28a-SUMO-LF1, pET28a-SUMO-
LF2, pET28a-SUMO-LF3, pET28a-SUMO-LF4 and 
pET28a-SUMO-LF5) were also constructed according to 
above experimental procedures.

The PCR product was transformed into competent E. coli 
BL21 (DE3) after digestion with DpnI (37℃, 1 h). The sin-
gle colony in screening plate was picked up for verification 
by PCR with T7 universal primers and DNA sequencing.

2.3  Protein Expression, Purification and Digestion

The engineering E. coli BL21 (DE3) cells harboring recom-
binant plasmid were grown overnight at 37℃ and 200 rpm 
in LB medium containing 50 mg/L kanamycin or 100 mg/L 
ampicillin. The overnight culture was transferred into fresh 
medium at a ratio of 1 to 100, and incubated at 37℃ and 
200 rpm.

Once the OD600 reached a value of 0.6–0.8, varied con-
centration of IPTG (0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 mM) 
was added to induce protein expression, and the culture 
was incubated at different temperature (16, 20, 25, 30 and 
37℃) and 200  rpm for an additional 16 h [23]. The cells 
were harvested by centrifugation (7,000 rpm, 5 min) under 
4℃, and resuspended with buffer (25 mM Tris-HCl, pH8.0). 
The cells were lysed by ultrasonication and induced pro-
teins were purified by Ni-NTA resins (Novagen) according 
to the manufacturer’s instructions. Then, purified protein 
was qualified by SDS-PAGE analysis and quantified using 
Easy II Protein Quantitative Kit (BCA) (TransGen Biotech). 
Lastly, to obtain antimicrobial peptides for further activity 
assay, three kinds of purified proteins was further digested 
by enterokinase, thrombin and SUMO proteases (1 U/50 µg 
fusion protein) at 25℃, respectively.

2.4  Antimicrobial Activity Assay

Gram-negative E. coli MG1655 and Gram-positive Staph-
ylococcus aureus ATCC 25,923 were used as indicator 
strains for antimicrobial activity assays [24]. Single colony 
was transferred into fresh Mueller-Hinton Broth (MHB) 
medium and incubated at 37℃ and 200 rpm until the cells 
grow in logarithmic growth phase. The cells were diluted 
to 5 × 105 CFU/mL with MHB medium. Briefly, 50 µL 
MHB medium containing different concentration of peptide 
LFcinB or its mutants (0, 1.25, 2.5, 5, 10, 20 and 40 µM) 
was co-incubated with 50 µL diluted cells in 96 microplates 
and incubated at 37℃ and 200  rpm for 16 h. The optical 
density was monitored at 600 nm. Each group had three rep-
licates. The inhibition rate (%) can be solved according to 
the following equation:

Inhibitionrate =
Controlgroup′sOD600 − Testgroup′sOD600

Controlgroup′sOD600
× 100%

The minimum inhibitory concentration (MIC) are defined as 
the lowest concentration of antimicrobial agent that inhibits 
the visible growth of microorgannism [25]. Besides MIC95, 
MIC50 can be also specified according to the 95% and 50% 
inhibition.
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2.5  Effect of Temperature, pH, Salts and Protease 
on Antimicrobial Activity

To evaluate the thermostability [26, 27], antimicrobial pep-
tides (20 µM) were incubated at different temperatures (4, 
20, 40, 60, 80 and 100℃) for 1 h, and then tested for antimi-
crobial activity against E. coli MG1655 as indicator strain.

To evaluate the stability at different pH [26, 28, 29], anti-
microbial peptides were adjusted with Tris-glycine buffer 
(pH2.0, 100 mM), Sodium acetate buffer (pH4.0, 100 mM), 
Phosphate buffer (pH6.0, 100 mM), Tris-HCl buffer (pH8.0, 
100 mM) and Glycine-NaOH (pH10.0, 100 mM) to differ-
ent pH (2.0, 4.0, 6.0, 8.0 and 10.0), respectively and incu-
bated at 37℃ for 4 h. The treated samples were neutralized 
to pH7.0 with 1  N HCl or 1  N NaOH solution, and then 
tested for antimicrobial activity against E. coli MG1655 as 
indicator strain.

To evaluate the stability at physiological concentrations 
of salts [30, 31], antimicrobial peptides were added into dif-
ferent concentrations of salts (150 mM NaCl, 4.5 mM KCl, 6 
mM NH4Cl, 8 mM ZnCl2, 1 mM MgCl2 and 2.5 mM CaCl2) 
and incubated at 37℃ for 4 h. Then the samples were tested 
for antimicrobial activity against E. coli MG1655 as indica-
tor strain.

To evaluate the stability under proteases [32, 33], anti-
microbial peptides were treated with following proteases: 
Pepsin (pH2.0), Trypsin (pH6.0), Proteinase K (pH7.0) and 
Papain (pH8.0). All samples were incubated at 37℃ for 4 h 
and were neutralized to pH7.0, and then tested for antimi-
crobial activity against E. coli MG1655 as indicator strain.

2.6  Hemolysis Determination

50 µL antimicrobial peptide LFcinB or LF4 of different con-
centrations (5, 10, 20 µM) were added to the blood plates 
by Oxford cup method [34], and then the plates were incu-
bated at 37℃ for 16 h [35]. Sterile Tris-HCl buffer (50 mM, 
pH8.0) and 0.1% Trition-100 were regarded as negative and 
positive control, respectively. By this method, we qualita-
tively assess biocompatibility by area size.

2.7  Bioinformatic Analysis

CAMPR3 (http://www.camp3.bicnirrh.res.in/) is a collection 
of antimicrobial peptides [36], which was utilized to design 
antimicrobial peptide rationally (Table S3) and predict anti-
microbial activity (Table S4). Physicochemical properties 
of antimicrobial peptide (such as Molecular weight, Charge, 
GRAVY, Theoretical pI and Instability index) were analyzed 
by ProtParam online tool (https://web.expasy.org/prot-
param/) [37–39]. The amphipathic distribution was calcu-
lated by ProtScale (https://web.expasy.org/protscale/) [40]. 

PeptideCutter website (https://web.expasy.org/peptide_cut-
ter/) was used to predict possible cleavage sites cleavaged 
by proteases in a given protein sequence [40]. Homology 
modeling was performed by EasyModeller software [41] to 
generate the structures of mutants.

3  Results

3.1  Expression of Fused Protein in E. coli BL21 (DE3)

In order to obtain the fused LFcinB from E. coli BL21 
(DE3), we firstly designed three recombinant plasmids 
(including pET32a-LFe, pET32a-LFt and pET28a-SUMO-
LF) for expressing fusion proteins TrxA-LFe, TrxA-LFt 
and SUMO-LF respectively. The inducible protein bands of 
TrxA-LFe, TrxA-LFt and SUMO-LF were distributed in the 
range of 17–25  kDa (Fig.  1A), 11–17  kDa (Fig.  1B) and 
17–25 kDa (Fig. 1C) respectively, which were well in accor-
dance with the theoretical molecular weight (TrxA-LFe: 
20.2 kDa, TrxA-LFe: 17.2 kDa, SUMO-LF: 18.44 kDa).

For heterologous expression in E. coli, temperature and 
IPTG concentration are the key factors affecting soluble 
expression [42]. Too high temperature or IPTG concentra-
tion tends to lead to too fast transcription, and inclusion bod-
ies are easily produced when proteins have no enough time 
to fold into the correct configuration [42]. Low temperature 
or IPTG concentration can significantly reduce the transcrip-
tion level of bacteria, so that the protein has enough time to 
fold properly, but the expression level will also be decreased 
[42]. Different proteins have different folding efficiency, 
which requires us to optimize the expression temperature 
and IPTG concentration for inducing the three fusion pro-
teins (Fig. S2). As the temperature increased from 16℃ to 
30℃, the expression of TrxA-LFe gradually increased (Fig. 
S2A). Inclusion bodies were found at 37℃ (Fig. S2A), indi-
cating that the excessive temperature was not conducive to 
the soluble expression of fused peptide TrxA-LFe. 30℃ was 
the best inducing temperature for expression of TrxA-LFe 
with the highest expression and solubility. Then, we further 
analyzed the effect of IPTG concentration on the expres-
sion of TrxA-LFe under 30℃. The expression of TrxA-LFe 
increased slightly with the increase of IPTG concentration 
(Fig. S2D). Since the high concentration of IPTG may affect 
the growth of organisms and even lead to the generation of 
inclusion bodies, 0.1 mM IPTG was finally chosen as the 
optimum induction concentration (Fig. S2D). Therefore, the 
optimal temperature and IPTG concentration for TrxA-LFe 
were 30℃ and 0.1 mM. Similarly, the optimal temperature 
and IPTG concentration for TrxA-LFt and SUMO-LF were 
25℃ (Fig. S2B), 0.1 mM (Fig. S2E) and 20℃ (Fig. S2C), 
0.1 mM (Fig. S2F) respectively.
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3.3  Rational Design of LFcinB

In order to improve antimicrobial activity, the amino acid 
sequence of LFcinB was analyzed using “Rational Design of 
Antimicrobial Peptides” service of CAMPR3 database. The 
result showed that the positions 2, 10, 16, 19 and 24 were 
engineering targets due to frequent substitution with high 
AMP probability. Therefore, five mutants were designed 
rationally, namely LF1-LF5 (Table S3), of which LF3, LF4 
and LF5 peptides were predicted to possess improved activ-
ity (Table S4).

3.4  Antimicrobial Activities of LFcinB and its 
Variants

All five designed fusion proteins (LFcinB mutants fused 
with SUMO tag) were expressed in E. coli BL21 (DE3) and 
purified (Fig. 3A) as well as their parent LFcinB. The SDS-
PAGE result implied that the mutagenesis did not affect the 
expression of fusion protein in E. coli. Five mutant peptides 
were obtained by SUMO protease-mediated hydrolysis 
(Fig. 3B).

Taking E. coli MG1655 and S. aureus ATCC 25,923 
as indicator strains, antimicrobial activity of five mutant 
peptides were measured quantitatively and compared 
with LFcinB. The growth of E. coli MG1655 was almost 
inhibited by all mutant peptides at concentration of 20 µM 
(Fig.  3C). Mutant LF4 (M10W/P16R/A24L) possesses 

3.2  Digestion of Fused Protein

The expression of three fusion proteins were induced at 
large scale under optimal induced conditions and purified 
with Ni-chelating affinity chromatography. Purified proteins 
were further digested by proteases according to the cleavage 
site in fused tag.

The digestion of TrxA-LFe by enterokinase was non-
specific, with a high number of bands (Fig. 2A) appearing 
on SDS-PAGE. Moreover, TrxA-LFe could not completely 
digested within 18 h (Fig. 2A). For TrxA-LFt, it was fully 
cleaved within 15 h and released the N-terminal TrxA tag 
and C-terminal LFcinB peptide (Fig.  2B). Fusion protein 
SUMO-LF and N-termial SUMO tag were similar in molec-
ular weight (18.4 kDa and 15.3 kDa respectively). As shown 
in Fig. 2C, after 3 h of digestion, only SUMO tag and C-ter-
minal LFcinB peptide were detected on SDS-PAGE, declar-
ing the completely digestion of SUMO-LF. The Tricine 
SDS-PAGE is commonly used to separate proteins/peptides 
in the mass range 1-100 kDa [43]. LFcinB peptides released 
from different fusion proteins, were distributed in the range 
of 3.3–6.5 kDa using Tricine SDS-PAGE with 10% acryl-
amide gels (Fig. 2D-F) and exceed slightly the theoretical 
molecular weight (3.3  kDa), which might result from the 
high proportion of polar amino acids (52%) (reported as a 
factor to affect protein migration rate in electrophoresis) in 
LFcinB.

Fig. 1  Expression of recombinant fusion proteins TrxA-LFe (A), TrxA-LFt (B) and SUMO-LF (C) in E. coli BL21C (DE3).
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the best mutant LF4 against E. coli MG1655 decreased by 
35.33% and 14.38%, respectively.

Similarly, peptide LF4 possessed the best inhibitory 
effects on S. aureus ATCC 25,923 (Fig. 3D). The MIC50 of 
LFcinB and its mutants LF1-LF5 against S. aureus ATCC 
25,923 was 6.23 µM, 6.20 µM, 5.07 µM, 4.54 µM, 3.96 
µM and 5.94 µM, respectively (Table  1). And the MIC95 
of LFcinB and its mutants LF1-LF5 against S. aureus 
ATCC 25,923 was 46.10 µM, 45.30 µM, 36.40 µM, 28.20 

the best inhibitory effects on E. coli MG1655 at different 
concentrations (Fig.  3C). The MIC50 of LFcinB and its 
mutants LF1-LF5 against E. coli MG1655 was 3.68 µM, 
4.31 µM, 4.98 µM, 3.27 µM, 2.38 µM and 6.72 µM, respec-
tively (Table 1). And the MIC95 of LFcinB and its mutants 
LF1-LF5 against E. coli MG1655 was 9.32 µM, 14.00 µM, 
14.10 µM, 8.26 µM, 7.98 µM and 21.10 µM, respectively 
(Table 1). Compared to LFcinB, the MIC50 and MIC95 of 

Fig. 2  LFcinB peptides obtained by enzymatic cleavage. SDS-PAGE analysis for digested fusion proteins TrxA-LFe (A), TrxA-LFt (B) and 
SUMO-LF (C). Tricine-SDS-PAGE analysis for digested fusion proteins TrxA-LFe (D), TrxA-LFt (E) and SUMO-LF (F)
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3.5  Stability Comparison at Various Temperatures, 
pH Level, salt Environment and Proteases

In the thermostability test, both LFcinB and LF4 had good 
thermostability at 4–40℃ (Fig.  4A) maintaining > 80% 
inhibition rate. As the treating temperature increased, the 
residual inhibition rate decreased and maintained about 
40% at 100℃. As a whole, LF4 possessed comparable ther-
mostability with LFcinB (Fig. 4A).

µM, 22.77 µM and 40.59 µM, respectively. Compared to 
LFcinB, the MIC50 and MIC95 of LF4 against S. aureus 
ATCC 25,923 decreased by 36.44% and 50.61%, respec-
tively (Table 1).

In summary, the designed peptide LF4 showed an 
improved antimicrobial activity than its parent LFcinB with 
the lowest MIC50 and MIC95 against E. coli MG1655 and S. 
aureus ATCC 25,923.

Fig. 3  Antimicrobial activities of five LFcinB mutants. (A) Purification of fusion proteins. (B) SDS-PAGE analysis for digested fusion proteins. 
(C) Inhibitory activities of mutants against E. coli MG1655. (D) Inhibitory activities of mutants against S. aureus ATCC 25,923
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made little difference on the stability of peptides in salt 
environment. Compared to control group, the inhibition 
activity of LFcinB and LF4 exhibited slight decrease and 
maintained > 80% inhibition rate against E. coli MG1655 
after incubation with 4.5 mM KCl, 6 mM NH4Cl, 8 mM 
ZnCl2, 1 mM MgCl2 and 2.5 mM CaCl2 for 4 h (Fig. 4C). 
However, LFcinB and LF4 were both sensitive to NaCl and 
their inhibition rate decreased by 35–40% after the treat-
ment with 150 mM NaCl (Fig. 4C).

Poor proteolytic resistance has been a main obstacle for 
the clinical application of antimicrobial peptides [32, 33]. 
Therefore, we tested the antimicrobial activities of LFcinB 
and LF4 after the incubation with different proteases (includ-
ing Pepsin, Trypsin, Protease K and Papain). As shown in 
Fig.  4D, the two peptides (LFcinB and LF4) maintained 
effective bactericidal activities after 4 h of incubation with 
Proteinase K. In contrast, the inhibition rate was inactivated 
partially by Pepsin, Trypsin and Papain.

LFcinB and mutant LF4 showed little differences in pH 
stability (Fig. 4B). Both of LFcinB and LF4 showed good 
stability in the range of pH2.0-8.0 with > 80% inhibition 
rate against E. coli MG1655 and reached the highest value 
at pH8.0 (nearly 100%) (Fig. 4B). However, both two pep-
tides only maintained about 60% inhibition rate at pH10.0, 
suggesting that LFcinB and LF4 were tolerant to acid and 
sensitive to alkali.

Salt concentration is an important factor affecting the 
activity of antimicrobial peptides [31, 44, 45]. Mutagenesis 

Table 1  MIC50 and MIC95 of LFcinB and mutants against E. coli 
MG1655 and S. aureus ATCC 25,923
Peptides E. coli MG1655 S. aureus ATCC 

25,923
MIC50 MIC95 MIC50 MIC95

LFcinB 3.68 9.32 6.23 46.10
LF1 4.31 14.00 6.20 45.30
LF2 4.98 14.10 5.07 36.40
LF3 3.27 8.26 4.54 28.20
LF4 2.38 7.98 3.96 22.77
LF5 6.72 21.10 5.94 40.59

Fig. 4  The thermostabilities (A), pH stabilities (B), salts stabilities (C) and proteases stabilities (D) of antimicrobial peptide LFcinB and mutant L4
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the secondary structure [5, 51]. Compared to porcine lac-
toferricin (LFP-20), its analogs (LF-2, LF-4, and LF-6), in 
which residues Cys were replaced with Trp, exhibited 4- to 
64-fold improved antimicrobial activity [52], suggesting 
that hydrophobic Trp plays an important role in increased 
antimicrobial activity. For bovine lactoferricin (11 residues, 
named BLFC), the mutants (B3, B5 and B7) with double 
Arg at the N-terminal had better activity than other mutants 
(B4 and B6) with doule Lys at the N-terminal [53]. Substitu-
tion with hydrophobic Leu in antimicrobial peptide is also a 
promising work [54, 55].

Based on above findings, LF1(L13W), LF2(A24L), 
LF3(K2R/M10W/T19R), LF4(M10W/P16R/A24L) and 
LF5(K2R/W10R/A24R) were rationally designed using 
bioinformatic tools (Table S3). The antimicrobial activity 
of LFcinB and mutants were determined and compared. 
Mutant LF4 was the best mutant with the highest antimicro-
bial activity against E. coli MG1655 and S. aureus ATCC 
25,923 reflected in the lowest MIC50 and MIC95 value 
(Fig. 3C, D).

Overall, the inhibitory activities of LFcinB and its vari-
ants against S. aureus ATCC 25,923 (Fig. 3D) were weaker 
than that against E. coli MG1655 (Fig. 3C). This difference 
in antibacterial activity against different microorganisms 
might be explained that Gram-positive bacterium S. aureus 
ATCC 25,923 contains peptidoglycan and phosphopeptidic 
acid in the cell wall, which inhibits the binding of peptides 
[56].

4.3  Stability of LFcinB and Mutant LF4

In order to compare the stability of bioactive peptides, 
LFcinB and its mutant FL4 were subjected to stability anal-
ysis under given condition with various temperature, pH 
level, salts environment and proteases. E. coli MG1655 was 
taken as indicator strain.

Instability index is used to predict the stability of the tar-
get protein according to the weight of the stability of each 
dipeptide unit [38]. Generally speaking, both of LFcinB and 
mutant LF4 were unstable, which accorded with instabil-
ity index (II) (Table S5). A protein whose instability index 
(II) is smaller than 40 is regarded as stable. Both two pep-
tides were predicted to be unstable with 77.92 and 103 of 
instability index (II) (Table S5), respectively. Their instabil-
ity might be related to the difficulty to form stable structure 
with short length of amino acid sequence [57].

To form a hydrophobic surface, LFcinB and LF4 con-
tain > 20% aromatic residues in their structure, which is the 
reason for the sensitive to Pepsin. Trypsin and Papain pre-
fer to cleave the carboxyl terminal of basic residues (Lys 
and Arg) [58] that happen to be abundant in LFcinB and 
LF4. The potential protease cleavage sites of LFcinB and 

3.6  Biocompatibility Analysis

The hemolytic activities of LFcinB and LF4 were further 
assessed experimentally. Both LFcinB and LF4 formed 
hemolytic circles at the concentration of 10 µM and 20 µΜ 
(Fig. S3). When the concentration of antimicrobial pep-
tide was reduced to 5 µM, hemolytic circle was generated 
only with LFcinB, indicating that the hemolytic activity of 
mutant LF4 was lower than its parent LFcinB.

4  Discussion

4.1  Preparation of Peptide LFcinB

In order to obtain peptide LFcinB or its variants, peptide 
were expressed fused with different solubility-promoting 
tags in E. coli BL21 (DE3). The target peptide can be pre-
pared from the digestion of fused protein (including TrxA-
LFe, TrxA-LFt and SUMO-LF) by corresponding protease 
(including enterokinase, thrombin and SUMO proteases). 
Therefore, 3 recombinant plasmids (including pET32a-LFe, 
pET32a-LFt and pET28a-SUMO-LF) were constructed 
for expressing fusion proteins TrxA-LFe, TrxA-LFt and 
SUMO-LF, respectively. Due to the solubility-promoting 
effect of TrxA tag and SUMO tag [46, 47], almost all fusion 
proteins appeared in supernatant (Fig.  1), indicating that 
all designed fusion proteins were successfully expressed 
in soluble form in E. coli BL21 (DE3). After the condition 
optimization, the optimal inducing temperature (30℃, 25℃ 
and 20℃ respectively) and IPTG concentration (0.1 mM for 
all proteins) for expressing fused proteins TrxA-LFe, TrxA-
LFt and SUMO-LF were determined.

Compared with fused proteins TrxA-LFe and TrxA-LFt, 
SUMO-LF can be specifically cleaved fully by SUMO pro-
teases in 3–4 h (Fig. 2). Therefore, pET28a-SUMO expres-
sion system was selected for further experiments.

4.2  Rational Design to Improve Antimicrobial 
Activities of LFcinB

Bovine lactoferrin peptide LFcinB was regarded as a prom-
ising alternative of antibiotics owing to its broad-spectrum 
antimicrobial activity and specific mechanism. However, 
the weak antimicrobial activity, high hemolysis and poor 
stability of LFcinB limited its applications in the field of 
biomedicine, food and agriculture. Protein engineering is an 
effective way to rationally design target protein or peptide to 
meet the needs of application.

The antimicrobial activity of antimicrobial peptide 
is mainly influenced by the net positive charge [48, 49], 
hydrophobicity [48, 49], amino acid composition [50] and 
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4.5  Mechanism for the Improved Antimicrobial 
Activity of LF4

4.5.1  More net Positive Charge Endowed LF4 Higher 
Antimicrobial Activity

ProtParam was used for the physicochemical characteriza-
tion of the antimicrobial peptide LFcinB and mutant LF4 
[37–39]. LF4 had more positive charge (+ 9) than that of 
LFcinB (+ 8) (Table S5). The net positive charge of bio-
active peptides is reported to be positively correlated with 
antimicrobial activity [48, 60]. Therefore, the increased 
antimicrobial activity of LF4 might be closely correlated 
with its more positive charge.

4.5.2  Better Amphiphilicity Promoted the Interact Between 
LF4 and cell Membrane

ProtScale is employed to analyze hydropathicity of each res-
idue in a given protein sequence. The residue with a minus/
positive hydropathicity value is regarded as hydrophilic/

mutant LF4 were predicted with PeptideCutter tool (Table 
S6). After the mutation, LF4 had one more cleavage site 
for Pepsin, Trypsin and Proteinase K than LFcinB (Table 
S6), which was consistent with the poorer tolerance of LF4 
towards tested proteases than LFcinB (Fig. 4D).

4.4  Enhanced Biocompatibility of LF4

High biocompatibility of antimicrobial peptide is required 
for the clinical applications [59]. The hemolytic activities 
of LFcinB and LF4 were further assessed experimentally 
and compared in Fig. S3. For LFcinB, there is no apparent 
differences in the formed circles between the concentration 
of 20, 10, and 5 μm (Fig. S3). When the concentration of 
peptide achieved 5 µM, hemolytic circle only appeared in 
LFcinB (Fig. S3), indicating that the mutant LF4 had a bet-
ter biosafety with lower hemolytic activity than LFcinB.

Fig. 5  Analysis of amphipathic and structural properties for LFcinB 
and LF4. The amphipathic distribution of antimicrobial peptide 
LFcinB (A) and mutant LF4 (B). Ribbon representation of the crys-

tal structure (PDB: 1LFC) of LFcinB (C) and predicted structure by 
EasyModeller of mutant LF4 (D). The mutated residues are labeled in 
the structures
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