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Abstract
The mechanism by which glycoside hydrolases control the reaction specificity through hydrolysis or transglycosylation is a 
key element embedded in their chemical structures. The determinants of reaction specificity seem to be complex. We looked 
for structural differences in domain B between the 4-α-glucanotransferase from Thermotoga maritima (TmGTase) and the 
α-amylase from Thermotoga petrophila (TpAmylase) and found a longer loop in the former that extends towards the active 
site carrying a W residue at its tip. Based on these differences we constructed the variants W131G and the partial deletion 
of the loop at residues 120-124/128-131, which showed a 11.6 and 11.4-fold increased hydrolysis/transglycosylation (H/T) 
ratio relative to WT protein, respectively. These variants had a reduction in the maximum velocity of the transglycosylation 
reaction, while their affinity for maltose as the acceptor was not substantially affected. Molecular dynamics simulations allow 
us to rationalize the increase in H/T ratio in terms of the flexibility near the active site and the conformations of the catalytic 
acid residues and their associated pKas.
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1 Introduction

Glycoside hydrolases (GHs) catalyze the degradation of pol-
ysaccharides such as starch and glycogen, energy reservoirs 
widely used by living organisms, and other glycosyl sub-
strates. These enzymes are broadly distributed in bacteria, 
fungi, yeasts, plants, and animals and have important bio-
logical, industrial, and medical applications [1]. A particular 
group of GHs is family 13 also known as alpha-amylases 
(EC 3.2.1.1). This family comprises a large group of starch 
hydrolases with at least 20 different specificities [2, 3], some 
of which catalyze hydrolysis and transfer reactions of α-D-
glycosidic linkages. Glucanotransferases (EC 2.4.1.25), on 

the other hand, transfer the remainder of the glycoside to 
another glycoside rather than to water after cleavage of the 
glycosidic bond. Many members of this family of enzymes 
catalyze both reactions with a bias dependent on the specific 
enzyme [4]. For example, the α-amylases of B. licheniformis 
and B. stearothermophilus are exclusively hydrolytic [5–7], 
while others, such as the 4-α-glucanotransferase of Thermo-
toga maritima (TmGTase) are predominantly transglycosidic 
[8]. However, there is also a group within the GH13 family 
in which both reactions are present and compete with one 
another. These include α-amylase from T. maritima [9, 10], 
cyclodextrin glucanotransferase NO2 from B. stearothermo-
philus [11, 12] and Amyrel (amylase from Drosophila mela-
nogaster) [13]. GH13 family glycosidases share a similar 
core 3D- structure, comprising three domains: Domain A 
formed by a (β/α)8 barrel catalytic domain, which is inter-
rupted by the smaller and more variable domain B between 
the third β-strand and the third α-helix, and domain C at 
the end of domain A, with a Greek key structure. Besides 
sharing the catalytic architecture, and reaction mechanism, 
some of them, mainly those with transglycosidase activity, 
have a variable number of extra domains either at the N- or 
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at the C- terminus, some acknowledged as carbohydrate 
binding domains and some with unknown function [14, 15] 
(Fig. 1). Domain A is the major contributor to the activity 
of the protein, but domain B acts as a clamp for binding 
the carbohydrate chain [16, 17]. The binding site of these 
proteins consists of a number of subsites, each of which 
binds one glucose unit. The subsites are numbered accord-
ing to the glycosidic bond cleaved so that positive subsites 
are assigned to those belonging to the released saccharide, 
which also constitute the acceptor binding site in transgly-
cosidic enzymes. Negative subsites, on the other hand, are 
those belonging to the part of the molecule that remains 
covalently bound to the enzyme and is transferred in the 
second reaction step [18].

The reaction catalyzed by many GHs is carried out by 
a classical Koshland double displacement mechanism with 
configuration retention of the anomeric carbon at the cleav-
age site [19]. The initiating event in this mechanism is a 
hydrogen transfer from an acid residue to the leaving group. 
Simultaneously, the nucleophile attacks the anomeric car-
bon, forming a covalent bond between the enzyme and the 
remaining glycoside moiety, forming a glycosyl-enzyme 
intermediate (GEI) [20, 21]. In the second stage, an incom-
ing nucleophile is activated by the same residue that acts as 
the base by removing the proton. The activated nucleophile 
then attacks the GEI, releasing the end product and leaving 
the enzyme ready to start a new cycle (Fig. 2). The nucleo-
philic acceptor could be a water molecule (hydrolysis), or a 
molecule different from water (transglycosylation), such as 
another sugar, an alcohol [22, 23], a phenol [24], a carbox-
ylic acid [4] or even an amine [25]. Usually, transglycosyla-
tion shows lower rates than hydrolysis in members of GH13. 
Understanding the mechanisms and structural elements 
by which many glycoside hydrolases control their prefer-
ences for hydrolysis or transglycosylation is important for 

manipulating or designing enzymes with potential applica-
tions. However, progress toward this goal has been hampered 
by the inherent complexity of the process [26]. Some of the 
phenomena associated with the specificity of the reaction 
are the presence of a flexible water channel from the protein 
surface to the active site [27], changes in the pKa of cata-
lytic residues [6, 28], the presence of hydrophobic residues 
at the binding subsites [29], the absence/presence of loops 
facing towards the active site associated to product release 
[13, 30–32], and the protein dynamics around the active site 
[28, 29, 33–35].

There has been much interest in modifying these enzymes 
to change their reaction preference, most commonly to 
increase transglycosylation, for glycosynthesis purposes. 
The search for mutation sites is generally based on the 
sequence alignment of the regions in the vicinity of the 
active site. Due to its high sequence conservation, most of 
these sites are located in the catalytic domain (domain A). 
Changes in the domain B are less easy to predict, as this is 
the most variable domain in this family of proteins; how-
ever, evidence of its involvement in determining reaction 
specificity can be found in the amylosucrases from Deino-
coccus geothermalis and Neisserria polysaccharea [36], 
the Listeria monocytogenes cycloalternan forming enzyme 
(LmCAFE) [29] and Thermoanerobacterium thermosulfuri-
genes cyclodextrin glycosyltransferase (CGTase) [37]. Most 
of the mutations involve aromatic/hydrophobic residues, at 
both the acceptor (positive) and donor (negative) [38, 39] 
subsites, which discreetly increase the affinity for carbohy-
drates while at the same time disfavor the positioning of 
water molecules [4, 11, 27, 40–42].

In the present work we used the TmGTase as a model to 
study the role of structural elements in domain B on reaction 
specificity. The 53 kDa protein is an unclassified member 
of the GH13 family, composed of 441 amino acid residues, 

Fig. 1  Topological map of secondary structure elements (left 
panel) and 3D-structure (right panel) of TmGTase  (PDB ID 1LWJ). 
α-Helices are represented by rods and β-strands are indicated as 

arrows. Domain A: green and blue; Domain B: red and orange; 
Domain C: purple (Color figure online)
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that has been crystallized in the presence and absence of the 
competitive inhibitor acarbose [43]. This protein is a classi-
cal transglycosidic enzyme with negligible hydrolytic activ-
ity, which requires at least maltose as an acceptor for the 
transfer of glucose units from starch [44]. Structural com-
parison of TmGTase with the α-Amylase from T. petrophila 
(TpAmylase) belonging to subfamily GH13_36, reveals a 

long loop with a W residue in the tip extending over sub-
site + 2 in TmGTase (Fig. 3), which is considerably shorter 
in the hydrolase. To investigate the role of this extended 
loop, we constructed two variants of this enzyme, the first 
with a nine amino acid residues deletion to shorten the loop 
and the second with W131 replaced by G to remove a func-
tional group. Both variants showed altered hydrolytic and 

Fig. 2  General mechanism of 
glycosyl hydrolase-catalyzed 
hydrolysis (R′ = H) or transfer-
ence (R′ = Glycosyl, alkyl)) 
reactions produced with retain-
ing stereochemical configura-
tion of anomeric carbon

Fig. 3  Sites targeted to change 
the reaction specificity in the 
TmGTase. Differences in the 
targeted loop from domain B 
of TmGTase (PDB ID 1LWJ, 
green), and TpAmylase (PDB 
ID 5M99, gray). The differen-
tial part of the protruding loop 
(shown in blue) with Trp131 
in the tip is present only in the 
transferase enzyme. The com-
petitive inhibitor acarbose –a 
delimiter of the active site– is 
presented as yellow sticks. The 
sequence alignment between 
TmGTase and TpAmylase for 
the loop region is presented in 
the lower panel (Color figure 
online)
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transglycosidic activities when we carried out kinetic assays. 
We performed molecular dynamics simulations to propose 
a mechanism mediating the change in reaction specificity.

2  Materials and Methods

2.1  Materials

All used reagents were for analysis grade. Yeast extract, tryp-
tone, and IPTG (isopropyl-β-D-thiogalactopyranoside) were 
obtained from Thermo Fisher Scientific (USA). Sodium 
chloride, sodium phosphate, and magnesium chloride were 
acquired from J.T.Baker (USA). Lysozyme, ampicillin, imi-
dazole, calcium chloride, soluble starch, DNS (Dinitro Sali-
cylic acid), iodine species, and Tris-HCl were from Sigma 
(USA). Maltose was purchased in Research Organics (USA).

2.2  Mutation Site Selection

The 3D-structures of the 4-α-glucanotransferase from T. 
maritima (PDB ID 1LWJ) [43] and the amylase from T. 
petrophila (PDB ID 5M99) [45] were downloaded from 
PDB (https:// www. rcsb. org/) [46] and compared by using the 
MatchMaker algorithm implemented in UCSF Chimera [47]. 
The superposed structures were visualized and analyzed in 
Chimera, and the derived alignment was seen with Jalview 
[48]. The sequence-specific regions (SSR) were computed 
with the algorithm Zebra3D [49]. The run was carried out 
with the structure 1LWJ from PDB as a query on mode 4 
(Mustguseal + Zebra3D) of Mustguseal server [50, 51].

2.3  Construction of TmGTase Mutants

The mgtA gene from T. maritima (GenBank accession 
number AAD35451.1), previously cloned in the plasmid 
pET22b(+) [52], was used as a template to build the two 
mutants of TmGTase. The mutant genes were constructed 
by PCR using the corresponding pair of oligonucleotides 
for each mutation shown in Table 1. The first half of the 
TmGTase gene was constructed using a mgtA containing 
pET22b(+) plasmid as template and the oligonucleotide T7_
Fw as 5′-primer with a NdeI restriction site and the respec-
tive mutagenic noncoding oligonucleotide as 3′-primer. 
The second half was constructed using the same plasmid as 
template and their corresponding coding mutagenic oligo-
nucleotide as 5′-primer and the oligonucleotide XhoI_term_
Rv with a XhoI restriction site as 3′-primer (Table 1). The 
amplification products were purified from a 1% agarose gel 
with the High Pure PCR Extraction Purification kit (Roche 
Diagnostics GmbH, Germany). Mutated genes were finally 
constructed by overlapping extension PCR using the cor-
responding two PCR products from the previous reactions Ta
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as templates and the oligonucleotides T7_Fw as 5′-primer 
and XhoI_Term_Rv as 3′-primer. Afterward, amplified prod-
ucts were purified from a 1% agarose gel and then digested 
with NdeI and XhoI, and the purified reaction products were 
ligated into the pET22b(+) plasmid previously digested with 
the same restriction enzymes and purified. This plasmid 
adds a His-tag at the C-terminus of the protein. Plasmid and 
PCR products were ligated with T4 DNA ligase according 
to manufacturer recommendations (Thermo Scientific, USA) 
and finally, electroporated in competent E. coli MC1061 
cells. The culture obtained after one hour of incubation was 
plated on a solid LB medium containing 200 µg/mL ampi-
cillin and incubated at 37 °C for 12 h. All plasmid isola-
tions were performed using the High Pure Plasmid Isolation 
kit (Roche Diagnostics GmbH, Germany). The mgtA gene 
was sequenced completely to ensure that mutations other 
than those designed did not occur. DNA quantification was 
accomplished by measuring the absorbance at 260 nm in 
a NanoDrop 2000 (Thermo Fisher Scientific, USA). The 
design of oligonucleotides and the analysis in silico were 
performed with SnapGene (GSL Biotech LLC, USA).

2.4  Protein Expression and Purification

BL21 cells transformed with plasmids carrying the respec-
tive mutations were cultured at 37 °C in LB medium sup-
plemented with 200 µg/mL ampicillin. Protein expression 
was induced when the absorbance at 600 nm of cultures 
was between 0.5 and 0.6 units by the addition of IPTG 
(isopropyl-β-D-thiogalactopyranoside) to a 0.25 mM final 
concentration, and incubation continued at 20 °C for 16 h. 
Biomass was obtained by centrifugation at 1507 g at 4 °C 
for 30 min in a 5804R refrigerated centrifuge (Eppendorf, 
Germany). For initial analysis, the cellular disruption was 
carried out in 100 mM sodium phosphate pH 8.0 contain-
ing 0.75  mg/mL lysozyme, 21 mM  MgCl2, and 20  µg/
mL DNAse, incubating for 1 h at 37 °C with a shaker at 
200 rpm. Later, insoluble material was separated through 
centrifugation at 1507 g at 4 °C for 30 min in a 5804R cen-
trifuge (Eppendorf, Germany).

For protein purification, E. coli cells transformed with 
the plasmids containing the genes of interest were grown 
in 1 L of LB medium, and protein expression was induced 
with IPTG as described above. The cell pellets obtained after 
centrifugation were resuspended in 300 mM NaCl, 50 mM 
 Na2HPO4, pH 7.7 (Buffer A), and lysed by sonication on an 
ice bath (Branson Sonifier 450, Emerson Inc., USA). After-
ward, the soluble extracts were heated at 70 °C for one hour, 
and the insoluble material was eliminated by centrifugation 
at 1507 g at 4 °C for 30 min in a 5804R centrifuge (Eppen-
dorf, Germany). Protein purification was accomplished in Ni 
Sepharose High Performance (GE Healthcare, USA) affinity 
matrix, previously equilibrated in Buffer A. The column was 

washed first with 20 CV of Buffer A and then with an equal 
volume of Buffer A containing 15 mM imidazole. Finally, 
the protein was eluted with 10 mL of 300 mM imidazole in 
300 mM NaCl, 50 mM  Na2HPO4, pH 7.7 (Elution Buffer). 
Fractions with higher absorbance at 280 nm and high enzy-
matic (transglycosidic) activity were pooled, concentrated, 
and dialyzed overnight against 50 mM Tris buffer, NaCl 150 
mM, pH 7.5. The purity of proteins was assured by 15% 
SDS-PAGE following the procedure described by Laemmli 
[53]. The gels were stained with Coomassie Brilliant Blue 
R-250 to visualize the proteins. Densitometric analysis to 
estimate the % of the full-length protein was carried out with 
Image Lab software v 6.1 (BioRad, USA).

2.5  Transglycosylation Assay

The transglycosylation reaction was based on the method 
reported [8] with modifications to ensure saturating condi-
tions. Briefly, 90 µL of the mixture containing 0.9% starch, 
and varying maltose concentrations from 1.2 to 20.5 mM in 
50 mM Tris/HCl, 150 mM NaCl, pH 7.0 buffer, and 3 µg of 
purified enzymes were incubated at 70 °C for five to fifteen 
minutes to ensure measurement of initial velocity. Reac-
tions (20 µL) were stopped with 0.4 M NaOH (10 µL) and 
subsequently neutralized with an equal volume of 0.4 M 
HCl. Later, each solution was diluted 25-fold with ultrapure 
water, and to quantify the remaining starch, each reaction 
was mixed with 100 µl 0.02% iodine/potassium iodide solu-
tion (Lugol’s solution, diluted 1:50 with 50 mM Tris/HCl, 
150 mM NaCl, pH 7.0 buffer), and the complex between the 
remaining starch and triiodide was monitored by the absorb-
ance at 620 nm on a microplate reader Saphire 2 (TECAN, 
USA). The absorbances were subtracted from the values of 
the corresponding zero-time samples. One unit of GTase 
activity was arbitrarily defined as the amount of enzyme 
which causes a change in one absorbance unit per unit time 
under the above conditions. In the case of W131G, the data 
were corrected by the percentage of full-length protein in 
the sample.

2.6  Hydrolysis Assay

Hydrolysis reactions were performed with 1% starch in 50 
mM Tris/HCl, 150 mM NaCl, pH 7.0, starting the reaction 
by the addition of 3 µg of purified enzymes and incubated 
for 12 h at 70 °C. The hydrolysis products were measured 
as reducing sugars using the dinitrosalicylate (DNS) method 
[54]. In all cases, the absorbance at 540 nm was measured 
using a microplate reader Saphire 2 (TECAN, USA). A 
standard glucose curve was prepared under the same condi-
tions to compare the amount of reducing sugars, and the 
values are expressed as dextrose equivalents per volume 
unit. The values were corrected by subtracting the reducing 
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sugars obtained from a sample incubated under the same 
conditions but without enzyme. A unit of enzyme activity 
is defined as the glucose equivalents (mol) released per min 
and is reported in terms of mg of protein. In the case of 
W131G, the data were corrected by the percentage of full-
length protein in the sample.

2.7  Determination of pKa for the Catalytic Residues

The influence of varying pH values on TmGTase activity 
was determined at 70 °C using a mixture of citrate, phos-
phate, and glycine buffers (100 mM each one) to cover the 
pH range from 3.0 to 11.0. The assays were performed as 
described above using 0.5 U/mL of purified enzymes and 
measuring the difference in absorbance at 620 nm after 
15 min of reaction as was described [43]. The data were fit 
to the following equation to evaluate the pKa of the active 
site residues, using Kaleida Graph V 3.5:

However, the wild-type (WT) enzyme showed a poly-
protic behavior, so that the following model was considered 
to fit the data:

 where species  EH3
−,  EH2

2−, and  EH3−, are considered to 
have x, y, and z relative activity, respectively. According 
with this model the WT data was also fit using the follow-
ing equation:

For the W131G variant the following model was used to 
explain its complex behavior:

 where species  EH2
−,  EH2−, are considered to have x, and 

y relative activity, respectively. According with this model 
the W131G pH profile data was also fit using the following 
equation:
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2.8  CD Spectra

The CD spectra were registered in a Jasco J-710 spectropo-
larimeter (Jasco, USA) equipped with a Peltier temperature 
control using a 1.00 mm path length cell. Three CD scans 
were recorded and averaged from 190 to 260 nm for each 
sample containing between 0.02 and 0.3 mg/mL of TmG-
Tase. The buffer used was a 50 mM Tris, 150 mM NaCl, 
pH 7.0. The CD spectra were analyzed with the Dichroweb 
using the algorithm CDSTTR with set 4 [55].

2.9  Molecular Dynamics Simulations

The atomic coordinates for TmGTase (PDB ID: 1LWJ) [43] 
were obtained from the Protein Data Bank (https:// www. rcsb. 
org/). The structure files were visualized and analyzed with 
UCSF Chimera [47], VMD [56], or Pymol (Schrödinger, 
Inc., USA). The truncated loop mutant structure was mod-
eled with Swiss-Model [57] using the crystallographic 
structure of TmGTase (PDB ID 1LWJ) as a template [43]. 
The quality of the resulting model was assessed with the 
“Structure Assessment” tools available at the Swiss-Model 
server (https:// swiss model. expasy. org/ assess). The single 
mutant (W131G) and the protonation of D186 were carried 
out in the CHARMM-GUI server [58–60]. The charmm36m 

force field [60] was used for energy minimizations and the 
molecular dynamics (MD) simulations. All proteins were 
minimized using CHARMM47 [61] with steepest descent 
for 50 steps for hydrogen atoms only, followed by 100 steps 
of conjugate gradient minimization for the whole protein. 
Subsequently, hydration was performed using explicit water 
molecules with the TIP3P model in a cubic box with an edge 
distance of 15 Å from the surface of the protein. The systems 
were neutralized with 150 mM NaCl. Correction for WYF 
interactions and hydrogen mass partitioning were included 
[61]. Before MD production, an unrestrained minimization 

of 5000 steps was performed for the entire system using the 
steepest descent algorithm, followed by solvent equilibra-
tion in the NVT ensemble for one nanosecond, followed 
by a nanosecond-long unrestrained NPT MD simulation 
for the complete system. The temperature was set to 343 K 
and pressure at 1 atm. The van der Waals interactions were 
calculated using a 12 Å cutoff with a force-based switching 
function. The electrostatic interactions were computed by 
the particle-mesh Ewald method [61] with a mesh size of 12 

https://www.rcsb.org/
https://www.rcsb.org/
https://swissmodel.expasy.org/assess


508 A. Llopiz et al.

1 3

Å. The LINCS algorithm [62] was used to constrain bond 
lengths involving hydrogen atoms, and the simulation step 
was set to 4 fs. Constant temperature was controlled by the 
Nose-Hoover thermostat and pressure with the Parrinello-
Rahaman barostat with a compressibility of 4.5 ×   10−5. 
The simulations were run with GROMACS (GROningen 
MAchine for Chemical Simulation) version 2020.4 [63] as 
three independent replicas for 400 ns each.

The pKa values for the active site and surrounding resi-
dues were calculated with PROPKA 3.5.0 [64] for the last 
frame of every non-overlapping 100 ps simulation interval 
using default PARSE charges. The Root Mean Square Fluc-
tuations (RMSF) calculated for alpha-carbons for non-over-
lapping 100 ps intervals, the Root Mean Square Deviation 
(RMSD) of alpha carbon atoms with respect to the starting 
structure of each MD run, and structural clustering with a 
cutoff of 2 Å over alpha carbon atoms were calculated with 
GROMACS inbuilt tools. Hydrogen bonds (heavy atom-
heavy atom cutoff at 3.4 Å and no angle restriction), and 
carbon atom-carbon atom contacts between a protruding 
loop of domain B and the rest of the protein were computed 
with CHARMM47 with a cutoff of 6 Å.

2.10  Statistical Analysis

Student’s t-test was performed using the GraphPad Prism 
software package v8.0.2 (GraphPad Software Inc., USA). 
A parametric test was used, and a Gaussian distribution for 
the data was assumed. The velocity vs. [maltose] was fit to 
the Michaelis Menten equation. The estimation of experi-
mental pKa was achieved by successive iteration based on 
Eqs. 1, 2, and 3.

3  Results

3.1  Identification of Mutation Sites Based 
on Structural Analysis

A structural alignment comparison between TmGTase, a 
transglycosidic enzyme, and the hydrolytic α-amylase from 
T. petrophila (TpAmylase) was performed. Despite low 
sequence identity between these proteins (33.56%), com-
parison at the 3D-structural level showed a RMSD value of 
0.997 Å over superimposable residues. We found a differ-
ence at the entrance of the active site comprising a loop from 
residues 120 to 142 (numbering as presented in TmGTase), 
which is substantially shorter in TpAmylase, as shown in 
Fig. 3 (right panel). This loop located between helix α’2 
and strand β’1 (Fig. 2) has a W residue in its tip pointing 
towards the active site and forming a clamp together with 
W218 between subsites + 1 and + 2. In the case of the TpA-
mylase, W223 in a nearby position is provided by the loop 

connecting strand β4 and helix-α4 in the TIM barrel. How-
ever, this W residue shows a different orientation, point-
ing toward the glycosidic bond to be cleaved. The sequence 
alignment of the TmGTase and TpAmylase in this region 
shows insertions in the 4-α-glucanotransferase around the 
residues 125–128 (Fig. 3, lower panel).

Zebra software was used to identify the relevance of cer-
tain parts of the structure of TmGTase in its characteristic 
activity. This bioinformatic tool identifies subfamily-specific 
regions (SSRs) such as 3D-determinants of catalytic activity 
that are equivalent within families/subfamilies [49]. Coin-
cidentally, a region comprising the residues 118–154 was 
identified as relevant with a Z-score of 4.3 and a p-value of 
9.3⋅10−6. It thus can be related to functional diversity and 
function-related dynamical events. Based on these analyses, 
a mutant intended to shorten the loop was constructed by 
deleting residues 120–124 and 128–131 from the loop in 
domain B (referred to as truncated loop from now on) to 
evaluate the effect of this region on the reaction specific-
ity. Residues 125–127 were left due to their conservation 
according to the alignment shown in Fig. 3. Additionally, to 
investigate the role of W131 at the tip of the loop, the mutant 
W131G was constructed.

3.2  Hydrolysis/Transfer Ratio Changes in TmGTase

The effect of mutations on the loop comprising residues 
120–131 of TmGTase was investigated by measuring their 
transglycosidic and hydrolytic activities. TmGTase has been 
reported as an α-transglycosidase that acts over starch in 
the presence of at least two units of glucose (maltose) as an 
acceptor molecule.

The reaction catalyzed by TmGTase follows a ping-pong 
mechanism in which starch is the first substrate. After form-
ing a covalent complex with the enzyme, the active site is 
restituted by the transference of the glycosyl moiety to an 
acceptor with at least two units of glucose, like maltose. The 
kinetic analysis carried out by varying the maltose concen-
tration while keeping the starch concentration constant per-
mits the estimation of the apparent maximum velocity and 
the affinity for the acceptor molecule. The Michaelis-Menten 
curves of TmGTase variants showed a ten-fold reduction in 
the maximal velocities of the reactions (Fig. S1), while the 
Km for maltose (G2), unexpectedly was reduced by approxi-
mately 50%, as shown in Table 2. The W131G protein con-
centration was corrected for the percentage of full-length 
protein remaining before the analysis, estimated by densi-
tometry of SDS-PAGE (Fig. S2).

The hydrolysis reaction, measured as reducing sugars, 
showed only a discrete increment of around 20% for both 
variants. Considering the high dispersion obtained for the 
W131G Vmax values, the 20% increment is not signifi-
cantly different from the WT protein. These data together 



509The Role of a Loop in the Non‑catalytic Domain B on the Hydrolysis/Transglycosylation Specificity…

1 3

contribute to an 11-fold higher H/T ratio for both variants 
relative to the WT enzyme (Table 2). The 90% loss of trans-
glycosidic activity upon a single amino-acid replacement 
indicates the relevance of the W131 residue for catalysis or 
stability, contributing by about 1.5 kcal/mol to the stabiliza-
tion of the transition state. Interestingly, during repetition 
experiments, we noticed that this variant lost activity rapidly, 
so we investigated its stability.

3.3  Structural Changes Associated with Mutations 
in TmGTase

To determine if the mutations perturbed the protein struc-
ture or its dynamics, Molecular Dynamics Simulations (MD) 
and Circular Dichroism (CD) spectra were run. Both muta-
tions in TmGTase caused a perturbation in the structure and 
dynamics of the protein. The CD spectra of both variants 
right after purification look similar to the one from WT at 
222 nm (Fig. 4a), even though the SDS-PAGE analysis of 
variant W131G showed a degradation band corresponding 
to approximately 17% of the total intensity (Fig. 4b). We also 
observed that this variant was prone to aggregation, especially 
when maintained in buffer containing 2 mM  CaCl2, where the 
CD signal practically disappeared after three days of storage at 
4 °C (data not shown). For this reason, we avoided the use of 
 CaCl2 in the buffer. In concordance with the fresh-protein CD 
spectra, the analysis of structures from the MD showed similar 
secondary structure content for the three proteins (Fig. S3). 
On the other hand, there is more flexibility in the loop regions 
for the truncated loop variant. These results are obtained from 
the calculation of RMSD along the MD simulations (Fig. 4c); 
the WT protein stabilized close to the starting structure, while 
both mutants deviate more from their starting structure, and 
more so for the truncated loop variant. Upon clustering with 
a 2 Å cutoff over alpha carbons, 99.98% of the conformations 
of the WT protein can be represented by a single structure 
(Fig. 4d, left panel). W131G can be represented with one 
cluster covering 99.44% of the whole population (Fig. 4d, 
middle panel), while the truncated loop variant experienced 
more changes during the simulation, as evidenced by a wider 
distribution of RMSD (Fig. 4c) and the need to include twelve 

cluster structures to represent 98% of the population (Fig. 4d, 
right panel). The increase in RMSD and average RMSF per 
residue for this protein is due to increased motion of the loop 
in domain B and the residues in a loop across the active site 
(Fig. 4e–f, rightmost structure). In general, the fluctuation in 
these loops is heightened in the three variants, but is more 
prominent for the truncated loop variant, reaching values near 
3 Å (Fig. 4e, lower panel).

3.4  The TmGTase Lid is Found in Two Conformations

The loop of TmGTase that contains residue W131 is a key 
structural element to efficiently produce the transglycosyla-
tion of starch [29, 65]. Nevertheless, this structural element 
is not crucial for the hydrolysis reaction. A possible mecha-
nism of catalysis could be associated with the ability of this 
loop to alternate between open and closed conformations 
(Fig. 5a). These protein conformations are mediated by the 
interaction of W131 with K324, W218, H190, and F150 
(Fig. 5b–c). The substitution W131G results in a loss of 
these van der Waals, aromatic, and cation-pi interactions, 
which favors the open state (Fig. 5e–f). In the extreme case, 
the truncated loop variant is unable to keep the closed con-
formation and remains disordered (Fig. 5d).

3.5  Experimental Activity pH Profile

An important property of titratable residues is their pKa, 
whose value is influenced by the surrounding environment. 
E216 has been assigned as acid and base in the first and 
second parts of the reaction, respectively [43]. To determine 
the effect of the mutations in domain B on E216 and D186 
pKas, the activity pH profile of the WT and variants was 
measured in the pH range from 3 to 11. As shown in Fig. 6, 
the WT enzyme showed a complex behavior where the titra-
tion of at least two groups on each side of the activity bell 
can be identified. The fit of the WT and W131G relative 
activities to Eq. 1, which assumes that the active species 
contains one active site protonated residue while the other 
remains deprotonated yields residual errors indicating the 
presence of multiprotic species (Fig. S4). A more complex 

Table 2  Kinetic parameters of TmGTase variants. Values are represented as the average ± standard deviation of at least three experimental repli-
cates

a A unit of activity is defined as the amount of enzyme required to decrease 1 A.U. at 620 nM per unit time

Protein variant Hydrolysis (H)
(Eq Glucose/
L*min*mg enzyme)

Transglycosylation (T)
(U/(min*mg enzyme))a

KmT

(mM)
VmaxT/KmT(U/(min*mM 
maltose*mg enzyme)

H/T Increment H/T 
(relative to 
WT)

WT protein (2.52 ± 0.58)‧10–4 5723 ± 423 11.9 ± 1.8 400 ± 90 4.4‧10–8

Truncated loop (3.09 ± 0.58) ‧10–4 615 ± 34 4.7 ± 1.0 130 ± 35 5.0‧10–7 11.4
W131G (3.26 ± 1. 7) ‧10–4 638 ± 65 6.3 ± 1.5 101 ± 35 5.1‧10–7 11.6
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model in which the protonation state of other residues influ-
encing the pKa of the active site residues and consequently 
the protein activity, is proposed to explain the complex pH 
profile displayed by the WT and W131G proteins, as shown 
in Fig. 6a, b. In this model, there are three species that show 

different degrees of activity, with four pKas listed in Table 3. 
A curve fitting to a two (Eq. 1) or three (Eq. 2) pKas shows 
non-random residuals for both variants (Fig S4). In contrast, 
the truncated loop pH profile could only be fitted to a model 
that considers two pKa values.

Fig. 4  Structural characterization of TmGTase variants. a  CD spec-
tra for TmGTase WT (red), W131G (green), and truncated loop 
(blue) b  SDS-PAGE of purified proteins lane 1  MW marker, lane 
2 WT, lane 3 W131G and lane 4 truncated loop TmGTase variants 
c  RMSD distribution of WT (red), W131G (green), and truncated 
(blue) TmGTase, d Representative cluster centers containing at least 
the 98% of the population for WT (red), W131G (green) and trun-
cated (blue; more labile regions are shown in red). e Fluctuation of 

TmGTase in 100 ps intervals. RMSF for WT (upper panel), W131G 
(middle panel), and truncated loop variant (lower panel). f Structural 
representation with cartoon putty from Pymol based on RMSF val-
ues of WT (left), W131G (middle), and truncated loop variant (right). 
The acarbose (cyan stick) indicates the active site, placed by graft-
ing from the original 1LWJ PDB structure. All structures are colored 
from N-terminus (red) to middle (green) to C-terminus (blue) (Color 
figure online)
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Fig. 5  Conformational changes in TmGTase variants. a  Initial struc-
ture from PDB 1LWJ b Key interactions in the WT protein result in 
a closed lid conformation c Key interactions in the WT protein result 
in an open lid conformation d truncated loop mutant loses all the WT 

interactions leading to lid opening and loop disorder e Interactions in 
W131G mutant in closed conformation f W131G mutant loses inter-
actions resulting in an open lid conformation

Fig. 6  Transglycosylation activity pH profile of TmGTase variants. 
a WT, b W131 G, and c truncated TmGTase. Data are presented with 
errors corresponding to 1 SD and the data were fit to Eqs. 3, 3 and 

1, respectively shown in the  Materials and Methods  section. Lower 
panels show the respective residuals from the experimental data and 
the model fit
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3.6  Dynamics of Acid Residues in the Catalytic Site 
from MD Simulations

The acid-base plasticity of residues located in the catalytic 
pocket is crucial for the correct functioning of the glyco-
side hydrolase. The proposed acid-base residue (E216) has 
a similar, low pKa distribution in the three variants of the 
TmGTase (Fig. 7b). Surprisingly, D186 alternates between 
two populations of pKa, one around three and the other near 
ten, the latter pKa more prominent for all proteins (Fig. 7a). 
Additionally, the W131G variant shows a small population 

with D186 pKa around eight. The acid-base residue should 
be capable of modifying its pKa along the reaction coordi-
nate while the nucleophile pKa should be more stable and 
remain at least 1.5 units below the acid-base residue pKa 
[66]. This implies that only the conformations in which 
D186 has a low pKa could be active. The D186 pKa can be 
influenced by the electrostatic environment in the active site. 
One important residue nearby is R184 which organizes the 
negative charged residues that form the active cleft (D186, 
E216, D89, D278) (Fig. 7e, f). Interestingly, residue Y54 
changes its distance from the catalytic residues depending 

Table 3  pKa of catalytic residues determined from the activity-pH profile

pKa1 corresponds to the nucleophile and the basic limb pKa corresponds to the acid/base residue
a Equation 1 consisted of the data fit considering two pKa values
b Equation 2 considers four pKa values for three active species
c x, y and z are the relative activity for the species

Protein Fit to 
equation

pKa1 pKa2 pKa3 pKa4 xc yc zc R2

WT 1a 4.4 ± 0.1 8.9 ± 0.1 0.975
2b 4.4 ± 0.1 6.2 ± 0.7 7.6 ± 0.3 9.5 ± 0.1 81.6 ± 8.9 106.8 ± 10.9 55.8 ± 7.1 0.989

W131G 1a 4.7 ± 0.1 8.9 ± 0.1 0.968
2b 4.5 ± 0.09 7.7 ± 0.8 8.1 ± 0.5 10.1 ± 0.4 85.7 ± 4.2 145 ± 62 28 ± 11 0.973

Truncated loop 1a 4.6 ± 0.1 8.9 ± 0.1 0.976

Fig. 7  Changes in the computed pKa along the simulation for active site 
residues. Distribution of pKa values for D186 (a), E216 (b), H93 (c), and 
H94 (d) for WT (red), W131G (green), and truncated loop variant (blue) 
e  representative structures of the distribution of D186 with pKa = 3.00 

(left panel) and 10.00 (right panel) in WT f  representative structures 
of the distribution of truncated loop variant D186 with pKa = 4.00 (left 
panel) and 6.50 (right panel), respectively. The distances between atoms 
are represented by broken lines (Color figure online)
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on the pKa of D186, which suggests a possible role in the 
functionality of the catalytic pocket. Along the same lines, 
there are two contiguous histidine residues, H93 and H94, 
that may contribute to the electrostatic environment in the 
active site pocket. H93 pKa is centered in 7 and its role may 
be as a buffer, although it also has a small population with 
pKa 4 (Fig. 7c). H94 pKa, on the other hand, is distributed 
between 3 and 6 (Fig. 7d). Representative structures at the 
extremes of these values indicate that the higher pKa values 
are compatible with the catalytic acids pKas for a functional 
conformation (Fig. 7e, f).

4  Discussion

It is recognized that mutations at the active site, especially 
at the positive substrate binding subsites, influence the 
reaction specificity as was reported for Bacillus stearother-
mophilus NO2, cyclodextrin glucosyltransferase [11], B. 
circulans CGTase [67] and other CGTases [68]. Some of 
the amino acids that form these subsites are easily identi-
fied in the conserved regions of the TIM barrel catalytic 
domain; however, some others are not structurally equiva-
lent among homologous enzymes, like those in domain B, 
which has diverged the most among GH13 enzymes. By 
comparing the 3D-structures of TmGTase (predominantly 
transglycosidic) with TpAmylase (one of its closest hydro-
lase homologous with known structure), an extended loop 
from domain B with an aromatic residue at the tip was iden-
tified only in TmGTase. This structural difference apparently 
could be associated with the reaction specificities of these 
GHs. Zebra3D algorithm also identified a larger region (resi-
dues 118–154) as relevant for function, which includes this 
loop. To test our hypothesis, a truncated loop version and 
the removal of the aromatic residue were investigated. As 
we predicted, both mutants showed an increased H/T ratio 
compared to the WT protein. However, the main effect was 
on the reduction of the transglycosylation reaction. Kinetics 
analysis showed that the deletion of part of the loop drasti-
cally decreased the transglycosidic activity while increasing 
modestly the hydrolytic one. The importance of loops from 
domain B lying on the active site has also been observed in 
Tabium cyclodextrin glycosyltransferase (CGTase), where 
a loop insertion (characteristic of the hydrolytic G2 amyl-
ase) in domain B, placed on subsite − 3/–4, reduced the 
cyclization/disproportion events (by > 97%) more than the 
hydrolytic ones (by 56–92%) [37], resulting in a hydrolytic/
cyclization ratio increased from 0.23 (WT) to a maximum 
of 17. Also, van der Maarel´s group [65] reports the role 
of a flexible loop carrying a Y residue that inserts into the 
active site. Modification of the loop length has significant 
effects on the transglycosylation and hydrolysis activities for 

glycogen branching enzymes (GBEs) from GH family 57, 
most probably due to displacement of the Y residue.

Notably, the W131 at the tip of the protruding loop 
of domain B in TmGTase is part of the + 2 subsite, so 
we decided to investigate its role in the specificity of the 
reaction. Removal of this aromatic residue drastically 
decreased transglycosylation activity, although this was 
not accompanied by a statistically significant (p < 0.1) 
increase in hydrolysis, like in the truncated loop variant. 
However, the mutation of this residue had a greater effect 
on the stability of the protein. It showed some degrada-
tion, so the hydrolytic activity of this variant might be 
underestimated considering its low stability, the high tem-
perature, and the long time needed to measure hydrolysis. 
We took this into account by measuring the amount of 
full-length protein at the start of the activity assays and 
corrected the specific activities accordingly. The impor-
tance of aromatic residues in controlling reaction speci-
ficity has been demonstrated in many GHs that contain a 
(β/α)n (n = 7–8) barrel similar to the GH13 family. It has 
been suggested that their roles could be preventing the 
entry of water molecules into the active pocket, accom-
modating the acceptor carbohydrate through π-stacking 
interactions, and contributing to an active site disposi-
tion favorable for transglycosylation. For instance, in the 
amylomaltase from T. brockianus [69] and GTase from 
P. furiosus [70], the presence of aromatic residues in the 
vicinity of the active site favors the tranglycosylation 
reaction. In the predominantly transglycosidic GH31 L. 
monocytogenes cycloalternan-forming enzyme (LmCAFE) 
the modification of W430A increased the hydrolysis from 
17 to 97 [29]. In addition, for the GH57 T. kodakarensis 
GBE the Y233A substitution, located in a protruding loop 
pointing towards the active site, doubled the hydrolytic 
activity without significant changes in transglycosidic 
activity [65]. Also, the chemical nature of the residue at 
the tip of loop affects the substrate and reaction specifici-
ties, as was demonstrated with the substitution W324Y in 
GH31 Schwanniomyces occidentalis α-glucosidase [71]. 
This mutation reduced its hydrolytic capacity and modi-
fied its transglycosylation profile. The authors attributed 
this to the probable different disposition of the substrates 
around − 1 and + 1 subsites. For TmGTase the W131 resi-
due was shown to contribute to reaction specificity but it 
also plays a crucial role in protein stability. This residue 
functions as a clamp that allows the loop to close over the 
active site. Interestingly and contrary to our expectations, 
the mutations improved the Km for maltose as acceptor in 
the transglycosylation reaction. In light of this, we pro-
pose that the role of the W131 residue, rather than bind-
ing the acceptor, could be to orient it so that it remains in 
a productive conformation. Also, as shown in Fig. 5d–f, 
removing this residue breaks the interactions that kept the 
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loop closed. This results in a permanent open channel for 
water molecules to access the active site, as the minimum 
contact distance between the tip of the long loop and the 
active site increases from 5 to 10 Å (Fig. S3). The fact that 
this variant showed a slightly higher hydrolytic activity 
than the WT enzyme, even though there was a substantial 
loss of transglycosidic activity, suggests that this enzyme 
was more suitable for hydrolysis. The increased access of 
water to the active site accounts for the increased hydroly-
sis and also for the instability of this variant by exposing 
the protein interior to the solvent. To our surprise, short-
ening the loop did not have the catastrophic effect on the 
stability of the protein in contrast to the single amino acid 
replacement. This different behavior finds an explanation 
through the MD, where disorder is observed for the shorter 
loop in domain B, alternating between open and closed 
conformations (Fig. 5d). Some research groups have tried 
to correlate the change in reaction specificity to pertur-
bations in the protein dynamics. However, some studies 
exhibit no correlation [34], while others show a direct [72] 
or inverse [36, 73] relationship between reduction in the 
dynamics of the protein and higher transglycosylation. In 
an attempt to explain the behavior of the two constructed 
variants, MD simulation analysis was performed and an 
increased flexibility in domain B was found for the trun-
cated TmGTase variants. The main effect of the mutations 
was on maximum velocity (Vmax), with approximately a 
10-fold reduction, suggesting that this loop and particu-
larly W131, lock the catalytic configuration. A similar 
perturbation effect was seen for the Pyrococcus furiosus 
4-α-glucanotransferase W229H variant (subsite + 1/+2) 
where a 4.2-fold decrease in the catalytic constant of 
the transglycosylation reaction was measured, while the 
Km for acceptor increased 1.6 times [70]. Also, in the 
cycloalternan-forming enzyme from L. monocytogenes 
(LmCAFE), transglycosylation activity was reduced when 
one of its loops was replaced by the structural equivalent 
from the cyclo-alternan degrading enzyme from Truep-
erella pyogenes (TpCADE). The authors attributed this 
behavior to a reverse Koshland’s induced fit mechanism, 
in which residues close to the active site are locked in the 
active conformation in LmCAFE (transglycosidic enzyme), 
showing a high affinity for sugars in the + 1 subsite, i.e., 
no induced fit occurs, and the site is primed for transgly-
cosylation. In contrast, in TpCADE, the residues forming 
the + 1 subsite are disordered and approach the active site 
until substrate binding occurs (induced fit). After loop 
substitution in CAFE, the extra entropic cost to reach an 
active conformation increases the activation energy for 
transglycosylation, slowing the reaction rate and allowing 
the hydrolysis reaction to take place [29].

Overall, the dynamics and disposition of the acid-base 
residue seem to be a structural element that controls the 

balance between hydrolysis and transglycosylation. How-
ever, other structural factors might govern the efficiency of 
the hydrolytic step, like the hydrogen bonds network posi-
tioning the water in a correct geometry to attack the GEI.

In addition, the dynamics and the surrounding envi-
ronment also have repercussions on the physicochemical 
properties of the catalytic residues, such as the pKa, the 
charge distribution, and the environmental hydrophobicity/
hydrophilicity. The modification of these parameters could 
favor one of the transition states producing hydrolytic or 
transglycosidic products [28]. The D186 pKa distribution 
observed during MD shows that this residue can be in alter-
nate conformations with a low (near 3) and high (near 10) 
pKa for the three variants. From these two distributions 
only the low pKa ones are suitable for its role as nucleo-
phile. The decreased frequency of the lower pKa popula-
tion could account for the loss of transglycosidic activity in 
both mutants. By inspection of the structures during the MD 
we observed that a low D186 pKa, is sometimes accompa-
nied by high E216 pKa, in agreement with its role as proton 
donor at the glycosylation step. This fact points to the need 
for plasticity on the active center to carry out any of these 
reactions.

The WT and W131G enzyme activities as a function of 
pH differ from the classical Henderson-Hasselbalch behav-
ior; the residuals show non-random trends when data are 
fitted to only two pKas (Fig. S4). This behavior has been 
observed in other hydrolases [34, 74]. Notably, we obtained 
pKa values consistent with those observed in the simula-
tion (Table 3; Fig. 7a, b) by assuming various protonation 
states, each with different specific activities. Although the 
simulation was performed with the free enzyme, the MD 
shows the conformational space that is accessible to the 
protein. The residues that interact directly or through an 
interaction network to modify the electrostatic environment 
of the catalytic pocket can be deduced from the analysis of 
the representative structures at each active site residue pKa. 
Thus, it is possible to see how Y54 moves away when the 
pKa of the catalytic residues is appropriate (Fig. 7f). At the 
same time, R184 approaches the nucleophile (D186) and 
moves away from the acid-base residue (E216). In contrast, 
Y54 moves closer to this residue while R184 moves away 
to interact with E216 when the high pKa conformational 
interactions for D186 are analyzed (Fig. 7e). The truncated 
loop variant is the protein with the most significant change 
in pH profile, in which the intermediate pKa values observed 
in the WT protein collapsed to the two extreme pKa values, 
indicating that the network of interactions influencing the 
pKa behavior of the catalytic residues was perturbed in this 
variant. In concordance, during MD, E216 shows a narrower 
pKa distribution. By analyzing the differences in the elec-
trostatic network of this variant around the catalytic site, it 
can be observed that H94 moves closer to the active site. The 
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presence of H94 might buffer the electrostatic environment 
around the catalytic residues. In the case of W131G variant, 
a fit to 4 pKas is better (Fig. 6b), with the highest pKa shift-
ing to a value of 10.1 compared to 9.5 for WT. Interestingly 
one intermediate pKa around 8.0 is obtained for this protein 
that is coincident with a small peak in the D186 pKa dis-
tributions of the MD (Fig. 7a), that might be representing a 
small population of D186 in an unfavorable conformation for 
a nucleophilic attack. Enzymes are in constant exploration 
of the conformational space. The activities measured are the 
average of every enzyme molecule acting simultaneously. 
Albeit the simplest model to explain the phenomena could 
be applied, the observation of non-random distribution in the 
residuals are indicative of other processes going on. A recent 
QM-MM analysis of the human pancreatic α-amylase sug-
gests a structural equilibrium in which some conformations 
lead to the formation of competent E-S complexes while 
others do not [75]. Our results showing different pKa for the 
active site residues with different activity agree with these 
findings.

In TmGTase, the structure has been evolutionarily 
optimized to favor transglycosylation over hydrolysis. As 
enzymes that work in an aqueous medium, closing the active 
site is imperative to control the water entrance to the active 
site. The presence of long loops in domain B may be one of 
the strategies for this protein to keep water away from the 
active site. We achieved a change in H/T ratio by increasing 
the mobility of one of the loops that form part of the lid to 
close the active site by increasing the water access to the 
active site and altering the hydrogen-bond network compris-
ing catalytic residues.

5  Conclusions

We obtained two TmGTase variants with a modest increased 
H/T ratio by substitutions/deletions outside the catalytic 
domain, specifically in domain B. The importance of the 
aromatic residue at position 131, which is part of the + 2 
subsite, was demonstrated by a drastic reduction of the trans-
glycosidic activity, just as the truncation of the loop contain-
ing it. Both mutations showed an increase in the H/T ratio. 
This was mainly due to the loss of transglycosidic activity 
with only a modest increment in hydrolysis. Interestingly 
the single mutation of W131 to G had a major effect on 
the stability of the protein. This effect was overcome by its 
removal together with other residues in the loop. The results 
suggest that the loop not only provides the W residue to lock 
the active site in an active conformation for transglycosyla-
tion, but also acts as a lid to prevent water from entering the 
active site by switching between closed and open conforma-
tions. Comparative analysis of the kinetics and dynamics of 
these variants relative to the WT protein suggests that the 

combination of flexibility, hydrophobicity/hydrophilicity of 
the active site, and pKa of the catalytic residues are respon-
sible for the observed changes in reaction specificity. Dur-
ing evolution, the sequence of the WT TmGTase has been 
optimized to keep the catalytic residues in an optimal con-
figuration to carry out the transfer reactions at the expense 
of the ancestral hydrolytic activity. Thus, the two mutations 
in TmGTase seem to interfere with this complex interaction 
of factors making the transfer to groups other than water less 
favorable and altering the specificity of the reaction.
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