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Abstract
The biological significance of proteins attracted the scientific community in exploring their characteristics. The studies shed 
light on the interaction patterns and functions of proteins in a living body. Due to their practical difficulties, reliable experi-
mental techniques pave the way for introducing computational methods in the interaction prediction. Automated methods 
reduced the difficulties but could not yet replace experimental studies as the field is still evolving. Interaction prediction 
problem being critical needs highly accurate results, but none of the existing methods could offer reliable performance that 
can parallel with experimental results yet. This article aims to assess the existing computational docking algorithms, their 
challenges, and future scope. Blind docking techniques are quite helpful when no information other than the individual 
structures are available. As more and more complex structures are being added to different databases, information-driven 
approaches can be a good alternative. Artificial intelligence, ruling over the major fields, is expected to take over this domain 
very shortly.

Keywords  Protein–protein docking · Deep learning · Artificial intelligence · Nature-inspired algorithms · Geometric 
algorithms · Searching and scoring

1  Introduction

Proteins are essential biological molecules whose interac-
tions are at the pivot of many biological systems, including 
the immune and nervous systems. The interactions can hap-
pen between proteins of any size, i.e., any protein oligomer 
is a potential candidate for interaction. Their interactions are 
very specific, and hence any mutation at interaction inter-
faces are more threatening than at the non-interface regions 
[1]. Interfacial mutations are reported to trigger diseases 
like cancer [2]. Aggregation of proteins causes diseases like 
Alzheimer’s disease and Parkinson’s disease; a cure is not 
yet found for these diseases. This points to the importance 
of interaction studies on proteins. Structural biology gains 
popularity in studying protein interactions as their function 
and structure are highly interrelated. Along with the advent 
of experimental techniques like X-ray crystallography, NMR 

(Nuclear Magnetic Resonance) spectroscopy, and cryo-EM 
(Electron Microscopy) have come radical changes in interac-
tion studies. X-ray crystallography proved simple and cheap 
and can generate high-resolution structures, while NMR can 
accommodate interaction dynamics. On the negative side, 
the former demands crystallizable structures and hence can-
not account for the possible conformational changes, and the 
later procedure describes the structures in terms of observed 
distances which makes it difficult to use in large proteins. 
The prediction of protein structure greater than  50 kDa 
is nearly impossible using NMR. With the introduction of 
cryo-EM, better quality structures could be obtained even for 
large molecules. Both hardware and software improvements 
contribute to its better performance. It utilizes the enhanced 
computational power provided by GPU and improvements 
in image processing techniques accompanied by a better 
electron microscope and detector to deliver better struc-
tures. Yip et al. recently reported that using cryo-EM, they 
could obtain a high-quality structure of 1.25Å resolution for 
apoferritin [3]. This technique is appropriate for samples of 
high molecular weight only. Apart from the aforementioned 
limitations, the experimental techniques are laborious and 
expensive. There is a considerable gap between the num-
ber of individual protein structures and the protein complex 
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structures available in PDB databank. Thus computational 
techniques become a viable alternative in structure predic-
tion tasks.

Computational techniques for protein complex structure 
prediction are broadly classified as template-based methods 
and template-free methods. In template-based methods, the 
onus of generating accurate structures is fulfilled only with 
the available templates. A substantive improvement in the 
quality of predictions is visible by the application of refine-
ment techniques. On the other hand, a template-free method 
starts the prediction procedure from scratch, with no refer-
ence structure available. Protein–protein docking is one of 
its kind that predicts the near-native orientations of proteins. 
Input to a docking algorithm can be any oligomeric protein. 
Largest among the input proteins is designated as the recep-
tor and the smallest as the ligand for computational ben-
efits. Predictions by these techniques are utilized to delineate 
interactions’ characteristics, the role of mutation in interac-
tion patterns, and affinity predictions; this information can 
aid in drug discovery.

Another exciting classification of docking technique is 
based on the flexibility of interacting proteins. Rigid-body 
techniques assume that, upon complex formation, the indi-
vidual proteins preserve their internal geometry, which is 
not necessarily the case. Changes can happen to side-chain 
atoms and/or at backbone positions. Methods like Molecular 
Dynamics (MD), Monte Carlo (MC) methods, Normal Mode 
Analysis (NMA) help us to account for such conformational 
changes. A recent review on flexible docking methods [4] 
observes that technological advancements have driven the 
field much forward, but the scope for improvement remains.

We know that 20 amino acids can be connected in differ-
ent combinations and permutations through peptide bonds 
to generate different proteins. In 1963, Ramachandran et al. 

[5] inspected the internals of the structures and proposed 
the Ramachandran plot, which delineates the range of tor-
sional angles in a near-native protein structure. It suggests 
the probability contour of torsion angles (shown in green 
color in Fig. 1) based on reference to already known struc-
tures. In Fig. 1, left side shows the plot corresponding to 
a plausible structure where other than few outliers, all the 
angles are within the contour. In contrast, the angles are seen 
dispersed in the allowed and prohibited regions in the figure 
on the right side, showing its distortion. A Ramachandran 
plot adhering to the torsional angle criterion is necessary 
but not sufficient to conclude on the quality of the structure 
under consideration. The plot cannot identify the clashes 
between residues far apart in the sequence but too closer in 
structure, as these residues may satisfy angle criteria. Other 
conditions like negative potential should be added to identify 
plausible near-native structures.

2 � Protein Representation Schemes

A string of amino acids is designated as polypeptide or 
protein, depending on its length. The largest protein in the 
human body, titin, contains  27,000 to  33,000 amino acids, 
each containing at least four atoms. Computations involving 
such gigantic proteins in all-atom representation demands 
more execution time and high-end resources. In such situa-
tions, the adoption of a good representation technique may 
help. This drives the experiments in reduced representation 
schemes. Different computational techniques assume differ-
ent levels of granularity—from all-atom to residue level—
in representing input proteins. Recent studies show that a 
coarse-grained approach improves the performance in terms 
of execution time while maintaining the accuracy [6].

Fig. 1   Ramachandran plot of a plausible structure and distorted structure of a sample protein
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Zacharias [7] presented a coarse-grained model where 
at least two pseudo atoms represent all but Glycine—one 
pseudo atom represents the C � atom, and one or two pseudo 
atoms represent side-chain heavy atoms depending on the 
size of amino acid. Results show that the minimum energy 
structure obtained by docking proteins in reduced represen-
tation resembles with experimental structure. This scheme is 
effectively used in many docking techniques [8–10].

Koliński proposed [11] a reduced protein representation, 
C�−C� Side group (CABS) model, where four atoms repre-
sent a residue viz. C� atom, C� atom, and two pseudo atoms 
: one representing the center of two C� atoms, and the other 
for the center of mass of side-chain atoms. This lattice-based 
model redefines the force-field parameters based on the 
extensive statistical analysis of available protein structures. 
This approach is reported to be widely used in applications 
related to protein folding, structure prediction tasks [12, 13], 
protein interactions[14], and protein docking [15].

UNited RESidue (UNRES) model proposed by Khalili 
et al. [16, 17] reduce the number of representative atoms to 
two—C� atom that represents the backbone atom, and center 
of mass of side-chain atoms—with support for the extended 
simulation period. The coarse-grained UNRES MODEL is 
utilized in UNRES-DOCK [18], which is designed for pro-
tein–protein and protein-peptide docking.

AWSEM (Associated memory, Water mediated, Struc-
ture and Energy Model) [19] uses three atoms to represent 
a residue: C� , C� , and O. The model accommodates both 
direct and water-mediated interactions. It finds application 
in the prediction of dimerization interfaces of protein–pro-
tein complexes [20]. An extensive study on coarse-grained 
representation can be found in [21].

With the advancements in problem-solving strategies, 
there is a paradigm shift in docking methods. Blind dock-
ing techniques that demand no a priori information, other 
than interacting protein structures, usher integrative mod-
eling; this becomes the new order of the day [22]. Recently, 
deep learning techniques are also gaining ground. This work 
aims to throw light into the challenges and opportunities in 
docking techniques, particularly rigid-body docking, how 
existing methods handle them, and the scope of developing 
good-sounding concepts.

3 � Protein–Protein Docking: A General 
Pipeline

This section gives an overview of the docking procedure, 
which may be conducive to understanding its intricacies. 
The onerous task of protein–protein docking, in general, 
involves two steps : pose generation and scoring. A sche-
matic diagram of the same is given in Fig. 2. A preprocess-
ing step that precedes the algorithm execution may involve 

cleaning the bound structure of input proteins, adding miss-
ing information on atoms or residues, which is mostly done 
by MODELLER [23], extracting the surface information, 
and finding an appropriate representation scheme for input 
proteins.

3.1 � Pose Generation

In molecular docking, the pose generation phase is very 
critical as the exclusion of near-native poses in this step will 
profoundly affect the efficiency of the method. The basic 
steps involved in this stage are translation and rotation of 
interacting proteins, which can be done using an exhaustive 
or stochastic method; both approaches have advantages and 
disadvantages. Exhaustive searching, also called systematic 
searching, brings down the propensity of an algorithm to 
omit near-native structures by considering all the possible 
transformations of ligand and receptor at a given interval. It 
drastically increases the time and space for execution from 
a different perspective, thus the demand for improved sam-
pling methods. The method is altered so that search confines 
to regions that can probably lead to near-native structures. 
The introduction of constraints like shape complementarity 
and electrostatic complementarity helped in finding poten-
tial binding sites. Stochastic methods, on their capacity, can 
also lead to the accurate prediction of near-native structures, 

Fig. 2   A general pipeline in protein–protein docking. Here sampling 
and scoring phases are shown separately for the ease of representa-
tion. Usually both stages happen in concert
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coercing the scoring stage to be more accurate. This tech-
nique is more suitable with metaheuristic algorithms that 
begin execution using a random set of solutions.

3.2 � Scoring

This phase involves assigning a score to different poses 
based on various criteria. The effectiveness of scoring func-
tions may depend on the characteristics of proteins involved 
in interactions. Scoring functions are classified as force-
field-based, knowledge-based, empirical, consensus, and 
machine learning-based, depending on the parameters used 
for score calculation. Force-field based scoring functions 
[24–26] take advantage of non-bonded terms (van der Waals 
potential and electrostatic potential), combined with bonded 
terms like bond angle, bond length, and dihedral angle. In 
the case of rigid-body docking, only the non-bonded terms 
are applicable. Flexible docking gives more refined results 
by considering atoms’ vibration, and such algorithms use 
bonded terms, too, for more accurate calculations. Empiri-
cal scoring functions [27] utilize intermolecular interactions 
and changes in the accessible surface area of the proteins 
to calculate the score. The total score may be attributed to 
factors like hydrogen bonds, hydrophobicity, and hydrophi-
licity of residues. Knowledge-based scoring functions [28, 
29] use existing knowledge on protein interactions to derive 
statistical potential mean force. Consensus-based scoring 
[30] operates on a combination of parameters, considering 
the different aspects of interactions. With the application 
of AI techniques, machine learning-based scoring functions 
[31] are developed.

The best structures chosen after the scoring phase may be 
subjected to refinement where the side chain or even back-
bone atoms undergo conformational changes to get the mini-
mum energy structures. A mindful selection of strategies is 
advised in designing the tools as both steps play a seminal 
role in accurately predicting structures.

4 � Algorithmic Approaches in Protein–
Protein Docking

The incalculable computational complexity of docking 
techniques, owing to the innumerable possibilities it needs 
to consider, can be tackled by skillfully utilizing the key 
provisions in different algorithmic approaches. From the 
introduction of Fast Fourier Transform (FFT) to exhaustive 
searching techniques, the field was evolving with many dra-
matic improvements in solution strategies. Different tech-
niques tested with the geometric, energetic, and topological 
aspects of protein interactions are discussed in this section.

4.1 � Computational Geometric Algorithms

Among the many successful methods in docking, geometry-
based techniques are one of the prominent because of the 
shape complementarity exhibited at interface regions of pro-
teins. However, the constraint is not as strict as in protein-
ligand docking, where the lock-key strategy is applied. The 
dominance of shape complementarity largely depends on the 
nature of interacting proteins. A near-exact complementarity 
is expected for rigid-body targets, while a relaxed strategy 
works for antigen-antibody targets [32].

Delaunay tesselation [33], alpha shape [34], convex hull 
[35, 36], and geometric hashing are some of the geometric 
concepts that are widely endorsed in the surface generation, 
interface identification, and pose generation. A general pipe-
line of geometry-based methods is shown in Fig. 3. The pro-
cedure begins with the extraction of surface information of 
the interacting proteins. The usual practice is to roll a sphere 
of specific radius over the protein and render the path traced 
by its surface [37]. The generated surface is fragmented into 
convex, concave, and flat regions based on the curvature val-
ues of the points, and the alignment of these curved regions 
ensues pose generation. An indispensable entity in protein 
alignment is a shape descriptor [38, 39] that satisfies the 
following criteria [40].

Translation and Rotation Invariance: The input proteins, 
perhaps, have different orientations and may occupy distant 
coordinate space. The alignment of their complementary 
regions must not be affected by these factors. The descriptors 
must be invariant on rotation and translation of the proteins 
to align them with its counterpart.

Fig. 3   Geometry based docking. In this figure, first column shows 
the ribbon structure of input proteins. In the second column, different 
surface patches are shown in different colors. The solid surface in the 
3rd column shows the receptor protein. Some of the possible positions 
of ligand around the receptor are shown around it as ribbon structures
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Statistical Independence: Descriptors of different points 
must be statistically independent. It indicates the need for a 
compact representation.

Reliable and Fast: There is a trade-off between correct-
ness and speed of execution. The descriptor must be accu-
rate, and its calculation must not induce a performance 
bottleneck.

The critical points of alignment may be the center of the 
surface patch [41] or a point equidistant from the majority 
of the points in a patch [42]. The curvature value of a point 
can also make it eligible for a critical point. The alignment 
of surface patches is pivoted on these critical points. Mul-
tipatch alignment can be adopted instead of single or two-
patch assembly to ensure that the proteins are arranged based 
on shape complementarity.

Though not properly addressed, topological complemen-
tarity was considered in the pioneering work in automated 
protein–protein interaction prediction. Wodak et al. [43] 
applied exhaustive searching, which uses a coarse-grained 
representation of residues to identify the interacting residue 
in combination with the free energy of dissociation. The 
work laid the foundation for further studies in interaction 
prediction.

A breakthrough in exhaustive searching methods was in 
1992 when Katchalski-Katzir et al. [44] introduced FFT to 
speed up the searching strategy. They formulated a correla-
tion function that can be applied to the discrete molecu-
lar representation. The method solely based on geometric 
complementarity was successful for rigid structures. This 
revolutionary technique inspired many to modify the same 
to improve the performance [45–48].

The majority of FFT-based techniques work in 3D trans-
formation space. It requires a new grid for each rotated posi-
tion, demands separate FFT calculation for each term in the 
correlation function, and has difficulties in accomodating 
restraints. Padhorny et al. [49] attempted to apply FFT in 
5D rotation space to circumvent these limitations. Com-
promising energy calculations and offloading the liability 
of accurate prediction to the clustering stage, the proposed 
representation in SO(3) contributes largely to fast execution. 
Cluster centers, chosen as predictions, are selected based on 
cluster size, balancing the inaccuracy in energy calculation.

Geometric hashing is a computer vision technique that 
identifies a match between two regions under considera-
tion. It assigns each point an invariant representation with 
respect to a selected reference frame and compares them for 
similarity. An agreement in the representation of data points 
indicates a match between the regions. This technique is 
successfully implemented in docking algorithms to find the 
complementary regions on proteins during pose generation 
[50, 51]. The problems introduced by the non-uniform distri-
bution of data, in the case of proteins, during hashing can be 
discounted by the application of rehashing techniques [52] 

or self-organizing maps [53]. Venkatraman et al. [54] pro-
posed an alternative hashing strategy for the same problem, 
which uses kd-tree to search the matching points; steps to 
calculate the invariant representation is the same. Recently, 
Christoffer et al. [55] released the LZerD webserver capable 
of doing pairwise and multiple protein docking. Estrin et al. 
[56] proposed the SnapDock algorithm that utilizes hash-
ing in template-based docking. The method calculates hash 
values of templates in Dockground [57] and PIFACE [58] 
dataset. Similar processing is applied to the query sequence 
to find the matching interface region. The identified regions 
are then aligned to generate the actual prediction.

Another geometric technique adopted in docking is trian-
gulation. When the interaction between atoms is hindered by 
intermediate atoms, calculating distance-based potential will 
cause unjustifiable computational costs. With this assump-
tion, Jafari et al. [59] proposed a Delaunay triangulation-
based scoring function. It calculates the score only for the 
triangulated interprotein atoms that are within a threshold 
distance. The method is proved to have superior performance 
in calculating the potential but underperforming in structure 
prediction, which may be rectified by proper tuning.

4.2 � Population Based Metaheuristic Algorithms

Among the many factors determining the interaction 
between proteins, van der Waals force, electrostatic force, 
and desolvation potential are prominent. Upon complex for-
mation, these forces of attraction or repulsion may induce 
conformational changes in proteins due to their fundamental 
nature to exist in minimum stable energy. Thus structure 
prediction can be modeled as an optimization problem where 
the system tries to minimize the energy of generated struc-
tures. Due to the hardness of the docking problem, a popula-
tion-based metaheuristic algorithm may be necessary to find 
a suitable solution. These algorithms, in each iteration, try 
to improvise the solutions by applying different operators.

Evolutionary algorithms are metaheuristic algorithms 
that mimic natural evolution. These algorithms balance 
exploration and exploitation of solution space by applying 
reproduction, mutation, recombination, and selection opera-
tions. The foundation stone for evolutionary algorithms was 
laid in the 1970s when John Holland [60] proposed Genetic 
Algorithm (GA). The algorithm begins execution by gener-
ating a random set of chromosomes, constituting an initial 
population. Then, in the course of execution, the algorithm 
tries to improve the population in each generation by apply-
ing cross-over and mutation operations. Finally, to curb 
the population explosion, only the fittest chromosomes are 
allowed to survive. In 2001, Gardiner et al. [61] proposed a 
solution to protein–protein docking based on this algorithm 
with each chromosome representing the degrees of freedom 
of ligand in six dimensions. They employed Niche restriction 
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[62] which chooses a new solution based on its difference 
with existing ones so that searching is not confined to a local 
region. Geometric complementarity of the surfaces used to 
find the fitness of a pose is not implemented as a strict con-
straint due to the structural characteristics of proteins. Sunny 
et al. [63] proposed FPDock that uses Flower Pollination 
Algorithm (FPA) [64]. Pollens, the agents in the algorithm, 
are quaternions representing the transformation parameters. 
Pollens try to improve their score in each iteration by com-
bining with the best or some random pollens. These itera-
tions are followed by the purging of unhealthy pollens to 
avoid population explosion and maintain the population’s 
quality. The pollen score depends on its electrostatic and 
van der Waals potential, based on which the best pollens 
are identified. These best pollens may be toppled by better 
new generation pollen. The algorithm stops execution after a 
fixed number of iterations as no prior information on the sta-
ble potential of the target is available. Choosing multimodal 
output is satisfied by splitting the initial population into dif-
ferent islands where the earlier steps are applied. Though 
this split is similar to the island variant of FPA, the migra-
tion step is excluded for getting diverse solutions. All the 
evolutionary algorithms have to deal with a large population, 
and score calculation can be a bottleneck in execution. The 
introduction of parallel algorithms can effectively deal with 
the problem, supported mainly by the island implementation.

Swarm optimization algorithms take the collective behav-
ior of agents in the swarms to find the optimal solution. Fig-
ure 4 shows such a system where ligand swarms are formed 
around the receptor. In Particle Swarm Optimization (PSO) 
[65], each particle is associated with a position and veloc-
ity. These values get updated depending on the best position 
accomplished by any particle in the swarm, i.e., individual 
best and swarm best determine particles’ current position 
and velocity. A variant, PSO2 [66], uses PSO for a local 
search around selected particles in basic PSO. PSO algo-
rithm along with normal mode analysis is at the pivot of 

SwarmDock algorithm [67]. Particles, which represent the 
ligand transformations, are spread around the receptor as in 
Gaussian distribution. Their fate is determined by distance-
dependent potential, which is the sum of electrostatic and 
van der Waals potential. Best positions on receptors are 
identified through intensification and diversification of solu-
tions. JabberDock [68] uses PSO “kick reseed”, proposed 
in POWer environment [69], to explore the potential energy 
surface of the proteins. Unlike PSO, “kick reseed” randomly 
reinitializes the particle positions, thereby improving the 
convergence while saving the particles from being trapped 
in local minima. The docking algorithm starts with an MD 
simulation followed by the application of the PSO algo-
rithm for sampling. The generated structures are checked 
for atomic clashes, and those having only negative van der 
Waals potential are hand-picked for shape complementarity 
checking. The proposed STID maps are proved to be suit-
able in devising appropriate scoring functions, and it leads 
to improved performance of the tool. The tool is found to be 
efficient for transmembrane proteins, too [70].

A notable work in docking was proposed by Jiménez-
García et al. [71] which uses Glowworm Swarm Optimi-
zation (GSO). LightDock initializes the swarm centers 
around the receptor where the swarms get flourished. Each 
swarm has a swarm center with the highest luciferin value, 
to which glowworms in its vicinity get attracted. This mul-
timodal optimization algorithm that returns swarm centers 
accommodates multiple scoring functions. It allows users to 
design their scoring function or use the default nine scoring 
functions in any combination. The disadvantage of getting 
trapped in local minima is avoided here by the multimodal 
nature of the GSO algorithm. Anisotropic Network Model 
(ANM) [72, 73] in the framework supports partial flexibility 
of backbone atoms. A problem that can arise in a 3D system 
that describes rotation in terms of Euler angles is Gimbal 
lock problem. This occurs after several rounds of rotations 
when any two axes of rotation become parallel to each other, 
and consequently the system loses a degree of freedom in 
space. Quaternion offers a solution to this problem, and 
hence it is adopted in this technique. It is observed that the 
proposed method works best for flexible complexes than for 
rigid complexes. The blind docking model of LightDock is 
later revised to a data-driven model that can make predic-
tions based on information about binding sites [74]. This 
addition made a drastic increase in the success rate of the 
tool. When compounded with HADDOCK refinement [6], 
LightDock could work well for membrane-associated com-
plexes, utilizing the topological information of membranes 
[75]. Faster execution time in LightDock is attributed to the 
parallel execution supported by the swarms in the system.Fig. 4   Population-based docking. From the input proteins, surface 

information is extracted, shown in column 2. Ligand swarms, shown 
as ribbon like structures, formed around the receptor are shown 
as different clusters. The solid surface in the 3rd column shows the 
receptor protein
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4.3 � Monte Carlo Algorithms

Monte Carlo (MC) algorithms, indeed, are a class of algo-
rithms that predicts the probability values based on historical 
data. They have an inherent element of randomness in their 
execution, with a slim chance of returning an incorrect solu-
tion. Nevertheless, these algorithms offer solutions when 
many fail to do so, making it favorable to find solutions to 
hard problems. For instance, problems involving numerous 
degrees of freedom of particles can be solved using MC 
algorithms. It offers non-deterministic solution to a stochas-
tic problem. The main steps involved in solution determina-
tion are defining a solution space, choosing random inputs 
from a probability distribution and its evaluation, and getting 
the compounded result. The docking problem has a similar 
interpretation where solutions are identified from the confor-
mation space based on its probability of being a near-native 
structure.

RosettaDock [76, 77] uses one such method where MC 
search joins hands with optimization of atom coordinates to 
get proper docking results. Here, the rigid-body perturba-
tions, rotamer packing, and minimization of rigid-body dis-
placement followed by the scoring phase precisely determine 
the quality of predictions. Rosetta has a two-stage sampling 
procedure—a coarse-grained rigid-body sampling and a 
fine-grained, flexible sampling where side-chain conforma-
tions are acceptable. The unavoidable computational cost 
incurred by the implementation of MC in high-resolution 
sampling can be alleviated by parallel tempering or replica 
exchange tempering [78, 79]. Parallel tempering, proposed 
to improve physicochemical simulations, starts by randomly 
initializing N copies of the system at different temperatures; 
the replicas are allowed to exchange their configurations. 
A replica can sample over a large space at high tempera-
tures, while local sampling is possible at low temperatures. 
An ensemble-based method involving frequent temperature 
exchange between hot and cold samples can avoid a pos-
sible convergence at local minima. A deliberate choice of 
temperature and number of replicas can help in handling 
computational cost. Another alternative is the use of Ham-
iltonian exchange among ensembles [80], where replicas 
show differences in interactions. The allowable degrees of 
freedom cause a bottleneck in its working as the algorithm 
needs an overlap in energy levels of ensembles. A well-tem-
pered ensemble (WTE), which holds energy as the collective 
variable, offers a solution to this problem. Zhang et al. [81] 
compared the standard MC, Temperature Replica Exchange 
Monte Carlo (REMC), well-tempered ensemble temperature 
Replica Exchange Monte Carlo (WTE-REMC), and well-
tempered ensemble two-dimensional Hamiltonian Replica 
Exchange Monte Carlo (WTE-H-REMC) to find the best 
method that can be added with RosettaDock. The authors 

observe that the concocted WTE-H-REMC outperformed 
the other methods.

Siebenmorgen et al. [82] presented repulsive scaling 
replica exchange MD (RS-REMD) simulation for complex 
structure prediction. It assigns an increased van der Waals 
radius and reduced van der Waals attraction, reducing the 
effect of Lennard Jones (LJ) potential, which is a functional 
form used to describe van der Waals interactions, and other 
potential parameters. Compounding this with repulsive 
bias helps the system to escape from suboptimal binding 
sites. Existing methods for MD simulation require the start-
ing point to be near the actual binding site. RS-REMD can 
assure the convergence to a near-native solution with no such 
constraints.

4.4 � Graph Based Algorithm

For problems involving dependencies between entities, a 
graphical representation of the data perhaps paves the way 
for better and easier solution strategies. In the basic defi-
nition, a graph G = (V ,E) consists of a set of vertices V 
connected by edges in set E. A one-to-one correspondence 
between two graphs is called graph isomorphism, where 
the edges between nodes are maintained. In an alternative 
graph definition, a graph can be expressed as a mapping 
f ∶ X− > Y  . i.e., G = (x, f (x)|x ∈ X) . These definitions are 
applicable in a protein, where there is a relation between 
atoms connected through bonds. Spatial relations between 
atoms can be treated as a connection. A residue level graph 
also holds information about interactions. Apart from the 
proximity data, it conveys information about physico-
chemical characteristics as attributes of nodes and edges. 
Vishveshwara et al. [83] performed a detailed analysis on 
the construction of protein graphs in various applications. 
Graph properties like isomorphism and graph spectra are 
widely used in protein folding, function, and dynamics 
studies. Clique, which is a complete subgraph in a graph, 
has numerous applications in different fields. It is used in 
protein structure comparison, especially in drug discovery 
applications [84]. Complementarity finding can be easily 
mapped to similarity finding problems if both inside and 
outside the protein surface are treated similarly. Grindley 
et al. [85] proposed a maximum common subgraph (MCS) 
based solution to the similarity finding problem. The method 
constructs a correspondence graph that contains all the pos-
sible equivalence between the graphs. The following steps 
are carried out to generate such a graph. Let A and B are two 
graphs whose MCS needs to be identified. Firstly, generate 
a set C = {(na, nb)|na ∈ A and nb ∈ B} . Each element in C 
occupies a node in the correspondence graph, CG. Add an 
edge between two nodes in CG if an edge exists between 
corresponding nodes in graphs A and B. Now cliques in 
CG can be interpreted as MCSs in A and B. Gardiner et al. 
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[86] adopted this idea in finding regions that satisfy both 
shape and hydrogen-bonding complementarity. They identi-
fied hydrogen-bonding donor-acceptor pairs in both proteins 
and constructed a docking graph. The inclusion of an edge in 
the graph implies that the distances between these atoms in 
two proteins are comparable with a threshold value. Cliques 
identified in this graph represent similar regions and can 
be interpreted as complementary regions. Observing the 
inner and outer regions alike can lead to the identification 
of similar regions, too, along with complementary regions, 
ensuing clashes in docking predictions. Axenopoulos et al. 
[42] solved the issue by considering the ligand surface and 
negative of receptor surface; the idea is later successfully 
adopted in SP-Dock [41], a shape complementarity based 
docking tool.

Like sampling phase, scoring can also take advantage 
of graph representation. We know that a tree is an acyclic 
graph. A kd-Tree is an efficient data structure in handling 
k dimensional data. It follows the principles of a binary 
search tree, where elements to the left of a node are less 
than its value and elements to the right are greater than or 
equal to its value, and hence searching in k-D space is easy. 
The proficiency of a multidimensional binary search tree 
in tracking down solutions is utilized by TreeDock [87] in 
exploring the energy landscape of proteins. It generates a 
kd-tree using the polar coordinates of the atoms in two pro-
teins—one is fixed (F), and the other is assumed to be mov-
able (M)—promoting the easy searching of atoms within a 
threshold distance from partner protein. This implementa-
tion drastically speeds up the energy calculation step, result-
ing in an overall improvement in performance. Generation 
of clash-free and low-energy structures is fundamental to 
perceiving a proper docking tool, which TreeDock achieves 
by merry-go-round algorithm. In this algorithm, a movable 
protein explores the space around a fixed protein to find the 
lowest energy structure. Firstly, using the generated kd-Tree, 
the merry-go-round algorithm finds those M atoms that can 
be moved closer to F atoms by rotation about the z-axis. 
It, then, removes those transformations leading to atomic 
clashes. Each transformation applied to the movable struc-
ture attempts to update the lowest energy values and the 
corresponding configurations.

The implementation of random walk graph kernel 
(RWGK) in GraphRank [88] to find subgraph similarity 
is exploited by Borgwardt et al. [89] to predict functions 
of proteins. Geng et al. [90] utilized the same for choos-
ing the best docking model. The proposed tool, iScore, is 
equipped with an SVM classifier to segregate the positive 
and negative models. An interface graph representing pro-
tein–protein interaction is a bipartite graph constructed 
using interface residues. Each node in this graph is anno-
tated with an evolutionary conservation profile of residues. 
This 20x1 vector obtained from Position Specific Scoring 

Matrix (PSSM) represents the log-likelihood ratio between 
the observed probability of an amino acid to appear in a 
particular position and its expected probability in a random 
sequence. RWGK applied concurrently on the two interface 
graphs calculates the similarity score between them. This 
is integrated with HADDOCK energy terms to boost the 
performance of the scoring function. The combination of 
energetic information and evolutionary information enables 
iScore to outperform GraphRank. The main bottleneck in 
the implementation of the tool is the generation of interface 
graph, and computation of RWGK [91], which is solved by 
MPI implementation with offloading of tasks to GPU.

4.5 � Machine Learning Based Algorithms

Machine learning is a branch of AI that generates models 
that learn from training data without explicit coding. Sta-
tistics and probability form the base of these algorithms. 
During the training phase, the model tries to identify hidden 
patterns in the training data. Based on this knowledge, it can 
later perform similar tasks on new input. ML techniques can 
be classified on the basis of learning strategies as supervised, 
unsupervised, semi-supervised and reinforcement learn-
ing. Supervised learning techniques require labeled data 
for training. Once trained, it can perform classification and 
regression tasks on unknown data. Classification involves 
categorizing the data into some classes, while regression 
tasks demand the prediction of numerical values. Unsuper-
vised techniques that do not require labeled training data 
draw inferences from the given data and divide the data into 
different classes after several rounds of refinement based on 
predefined criteria. This approach is best suited for problems 
like clustering and dimensionality reduction of data. Semi-
supervised learning supports the use of a mix of labeled and 
unlabeled data. The most promising reinforcement learning 
algorithms take in feedback from the environment, this feed-
back is then used to ascertain the next step.

The journey towards machine intelligence began in 1944 
when Warren McCullough and Walter Pitts implemented 
a neural network. There were ups and downs in the popu-
larity of the model during the period of its development. 
The idea of backpropagation put forth in the 1980s trig-
gered a second surge of its acceptance. With the introduc-
tion of voluminous data, there was a paradigm shift from 
knowledge-based methods to data-driven methods. Thus 
the objective, learning from rules, changed to learning the 
rules. The current success of machine learning techniques, 
particularly deep learning, is attributed to parallel comput-
ing and advancements in hardware technologies. A funda-
mental characteristic of machine learning-based methods is 
that it demands user-supplied features. Classical ML models 
include Artificial Neural Network (ANN), Support Vector 
Machine (SVM), and decision trees. SVM uses a kernel 
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function to find the maximal distant hyperplane capable of 
separating two data classes as shown in Fig. 5. Classifica-
tion and regression tasks in protein–protein interactions have 
been successfully implemented using the ML algorithms 
mentioned earlier.

Being data-driven, the type of data and its volume are 
primary concerns in developing a good model. Equally 
important is the number of samples in the different data 
classes. An imbalance in data may lead to biased predic-
tions, which is unacceptable. E.g., in the case of protein–pro-
tein interactions, the number of interacting residue pairs is 
much lesser than the number of non-interacting pairs. This 
data imbalance affects the performance of the model. Tech-
niques adopted by existing methods to tackle this issue are 
discussed in the remainder of the text.

A protein interface is usually defined by changes in the 
accessible surface area upon complex formation or those 
residues having heavy atoms within a distance threshold 
of a partner protein. The threshold is usually taken as 6Å. 
The commonly used sequence-based features are sequence 
profile, sequence conservation score, and one-hot encoded 
residue name. Structure-based features include but are not 
limited to the relative accessible surface area, half-sphere 
exposure, geometrical descriptor, hydrophobicity, protru-
sion index, residue depth, and one-hot encoded secondary 
structure. Since the properties of interacting residues depend 
not only on their features but also on their neighbors, the 
structural and sequential environment features are consid-
ered for predictions.

Earlier, SVM-based techniques were adopted for design-
ing scoring functions. The use of probabilistic SVM along 
with the structural, biological, and physicochemical proper-
ties, outperformed many scoring functions [92]. SVM-based 
scoring function combined with geometric correlation and 
amino acid-specific scoring functions also yielded good 
results [93]. Later, this technique was adopted in interface 

prediction methods. Unlike many sequence-based methods, 
PAIRPred [94] uses both sequence and structural data to 
predict partner-specific binding information. An SVM fed 
with a pairwise kernel predicts the score for each interacting 
pair of residues. A neighborhood averaging following this 
step gives the actual interactions. Tests show that bringing 
in structural features has a positive effect on the results. Das 
et al. [95] proposed an SVM based classifier for classifica-
tion of interfacial residues. They generated a non-redundant 
dataset of complexes using CD-HIT [96] and BLASTp [97]. 
The method generates complexes from individual protein 
structures using PatchDock [51] and its identified interfaces 
are analysed, using PISA [98, 99], for feature extraction. 
An SVM now does the classification based on training. The 
proposed method predicts the nearness of a predicted inter-
face to a known interface. This is available online as Protein 
Complex Prediction by the Interface Properties web server.

Ensemble methods are a class of machine learning meth-
ods that base their decision on a set of models created during 
execution. For instance, averaging and voting are ensemble 
methods. It outperforms other methods due to its collective 
decision-making ability. A popular ensemble machine learn-
ing algorithm is the random forest, which is widely used in 
studies related to drug discovery [100] and protein–protein 
interactions [101, 102]. BIPSPI [103] uses Extreme Gradient 
Boosting (XGBoost) in identifying the interfacial residues. 
Like PAIRPred, it works on both sequence and structural 
data. In its implementation, two consecutive XGBoost clas-
sifiers are fed with the feature set; these classifiers then 
predict interacting pairs, which are finalized by applying a 
scoring function. Another ensemble-based learning method 
for protein–protein interaction site prediction is EL-SMURF 
proposed by Wang et al. [101]. While DLPred [104], a 
sequence-based method that uses simplified LSTM, achieved 
an accuracy of 71.1%, 73.1%, and 71.8% for PDBtestset164, 
Dtestset72, and Dset186, respectively, ELSMURF has an 
accuracy of 77.7%, 79.1%, and 77.1% on the same datasets. 
It is interesting to look into the intricacies of the method. 
The algorithm works on sequence profile features and evo-
lutionary information (Residue Evolution Rate). The appli-
cation of oversampling to circumvent the data imbalance 
problem is followed by a multidimensional scaling algorithm 
to deal with dimensionality reduction of features. The use of 
a random forest classifier compounded by expert system vot-
ing for data integration yields good results in classification.

Though ML methods can work utilizing a small amount 
of data, they have some disadvantages. These methods 
require human intervention in feature selection. The impor-
tance of chosen features influence the overall performance 
of the model. Hence it becomes an esoteric job and demands 
in-depth domain knowledge to develop an efficient model. 
Another potential demerit is its inability to learn beyond a 
level, which limits its performance. i.e., the supply of an Fig. 5   Support vector machine
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enormous amount of data does not always improve the per-
formance of an ML model.

4.6 � Deep Learning Techniques

A boom in deep learning (DL) techniques accompanied 
revolutionary changes in hardware technologies. DL is a 
particular class of machine learning methods that relieve the 
programmer from hand-picking features. They are deep neu-
ral networks that can learn from self-designed feature sets, 
and the supply of abundant data can significantly improve 
its performance. Equally important is its black box nature, 
which demands experience to fine-tune the model to get the 
intended level of accuracy. A schematic diagram showing 
the difference in ML and DL is shown in Fig. 6. A deep 
learning model utilizes forward propagation and backward 
propagation to learn the relation between input and output. 
The forward propagation step checks whether the model can 
generate the intended result, and the backward propagation 
step tunes the network parameters. The ability of an ANN 
to mimic biological neurons forms the backbone of deep 
learning networks. A basic flow diagram is shown in Fig. 7. 
It has different connected nodes triggered based on the sig-
nal from other nodes. A neural network in its basic structure 
has an input layer, at least one hidden layer, and an output 
layer. The input layer gets the input for the hidden layers to 

process. The output of all nodes, but input layer nodes, is 
a function of data from the previous layer, weight associ-
ated with the edges connecting it with the previous layer 
nodes, and the bias, which is an additional adjustment for 
the output. The activation function applied to the obtained 
result determines the triggering of a particular node. These 
functions add nonlinearity to the input, making it suitable for 
handling complex relations. Also, its differentiability sup-
ports the backpropagation step. The nodes that have values 
above a threshold can pass the data to the next layer. At the 
output layer, the node having the highest value determines 
the output of the model. A loss function calculates the dif-
ference in expected and predicted outputs based, the back-
propagation step then adjusts the weight matrices in different 
layers. The repeated application of these steps yields the 
optimal solution. The selection of the loss and activation 
functions depend on the nature of the problem to be solved. 
Convolutional Neural Networks (CNN) [105, 106], Recur-
rent Neural Networks (RNN) [107, 108], Long Short Term 
Memory networks (LSTM) [109], Generative networks [110, 
111], transformers [112, 113] are some of the most popular 
deep learning architectures.

Recently, the scientific community witnessed the enor-
mous power of deep learning (DL), amassed through years 
of research, in predicting the tertiary structure of proteins 
from amino acid sequences. The groundbreaking solution 

Fig. 6   Machine learning vs 
deep learning techniques. 
Machine learning needs human 
intervention to extract features 
upon which machine learning 
model can act. Deep learning 
models themselves are capable 
of extracting features
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to this hard problem was proposed by DeepMind [114]. 
The program, AlphaFold2, utilized an attention mechanism 
on a graph along with the evolutionary information. It was 
reported to be trained on 170,000 structures publicly avail-
able in protein databank and other data sources. The perfor-
mance of AlphaFold in CAPS opened many discussions on 
the effectiveness of deep learning in structure prediction. 
Baek et al. [115] used a three-track network that uses the 
sequence data, distance map, and 3D coordinate information 
to elucidate the working of AlphaFold. In this method, an 
SE(3) transformer refines the 3D coordinates of atoms gen-
erated by a graph transformer that accepts MSA features. In 
addition to protein structure, the model could predict protein 
complex structures too, but with low resolution.  

Voluminous data in appropriate representation is required 
to propel the model to its full performance in DL. One nota-
ble advantage of this technique is its ability to identify fea-
tures independently, thereby exempting the user from the 
burden of providing essential features. At the same time, 
this black box nature results in poorly interpretable mod-
els. The scientific community has started experiments with 
deep learning in tasks like identification of binding sites, 
interface regions, prediction of protein–protein interactions, 

implementation of scoring functions, and structure predic-
tion of complexes.

4.6.1 � Convolutional Neural Networks (CNN)

One of the breakthroughs in deep learning algorithms was in 
1998 when Yann LeCun developed CNNs for document rec-
ognition [105]. Motivated by the development of Neocogni-
tron [116] in 1988, LeCun started working towards convolu-
tional networks. In its inception, the architecture was called 
LeNet [117, 118]. Convolutional Neural Networks (CNN or 
ConvNets) features and architecture are most suitable for 
handling tensors. The inclusion of the convolution operation 
led to remarkable changes in the output of these deep learn-
ing models. CNN mainly contains four types of layers as 
shown in Fig. 8. In a model, there can be one or more convo-
lutional layers, which implements convolution operation. In 
each convolutional layer, filters are convolved over the multi-
dimensional input data to extract features. Feature extraction 
is incremental; the first layer extracts only low-level features. 
Consecutive layers should extract higher-level features. The 
results of the dot product of filters and input are known as 
feature maps. During the training phase, randomly initialized 
filters are modified to reduce the loss function value. After 

Fig. 7   a. Artificial neural 
network architecture. b. The 
structure of a single node in 
ANN. x1 , x2,...xn represent the 
input values, w1 , w2,...wn rep-
resent the weights, b is the bias 
applied to a neuron, and f is the 
activation function
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the convolutional layer, there is pooling layer. The use of too 
many parameters in a layer may be computationally chal-
lenging. Aggregation operations on the feature map can deal 
with the issue by reducing the dimension. A pooling layer 
takes up this responsibility. In the pipeline, a ReLU (Recti-
fied Linear Unit) layer, which acts as an activation function, 
replaces all the negative values in the feature map with zero. 
The last layer in this architecture is the fully connected layer 
that processes the flattened data from the previous layer to 
predict the output. This architecture outperformed all the 
then state-of-the-art architectures with their prowess to 
specially treat important input aspects. Apart from this, the 
application of filters gives a reduced representation making 
it suitable for handling massive inputs. Inter-protein interac-
tions are orchestrated not only by the participating residues. 
The neighboring residues rather influence the probability of 
interaction. A simple neural network can never ought to this 
demand. CNN equipped with convolution operation is best 
suitable for this need.

Townshend et al. [119] describe the architecture of SAS-
Net, which uses the spatial information of atoms in pro-
teins to identify the interfacial residues. The method does 
not use any handcrafted features but applies siamese like 
3D CNN on voxelized input proteins containing the atom 
type information to generate feature vectors. It has improved 
performance compared with BIPSPI [103] and Node average 
method using GCN [120] due to the use of a large dataset, 
DIPS (Database of Interacting Proteins) containing 42826 
binary protein interactions, for training. A degradation in the 
tool’s performance when trained using Docking Benchmark 
5 (DB5) is due to fewer samples in the dataset. Still, the 
proposed method outperforms the other two tools.

Xie et al. [121] introduced a CNN-based method for find-
ing the interaction sites utilizing the binding propensity of 
residues. Given a sequence of amino acids and its associ-
ated information like sequence profile and physicochemical 

properties, and the structural features like accessible surface 
area, relative accessible surface area, protrusion index, and 
depth index in addition to its hydrophobicity of residues in 
the inputs, the algorithm predicts the interaction propensity 
of the residues. In this implementation, the interface region 
includes those residues having any atom within a distance 
of 6Å from any atom in the partner protein. This definition 
sometimes causes the inclusion of false-positive residues in 
the interface. The authors observed that these false positives 
in training data badly affect the prediction accuracy.

Zhu et al. [122] proposed ConvsPPIS in an attempt to 
devise an ensemble deep convolutional neural network 
tool to predict interface residues. The method includes 
evolutionary information in addition to the sequence and 
structural data to generate separate feature graphs. The 
association of an ensemble predictor with three deep 
CNNs trained on these feature graphs exposes residues’ 
interactability. The model is found to be effective and has 
an accuracy of 88% on the DBv5-Sel dataset.

Hadarovich et al. [123] attempted to predict the struc-
ture of homodimers using a CNN model. The first stage 
generates a contact map using a deep CNN model with 
binary cross-entropy as the loss function, which is then fed 
along with the 3D structure of the protein in its unbound 
state to a gradient descent algorithm. The burden of find-
ing the affine transformation that can be applied to the 
second protein to get the dimer structure is on the shoul-
ders of the optimization algorithm. The method failed to 
output an impressive result. Nevertheless, the attempt was 
appreciated and can be an indicator of future trials.

The efficiency of 2D and 3D CNNs [124–126] are 
proved undoubtedly through many works in image pro-
cessing. DOcking decoy selection with Voxel-based deep 
neural nEtwork (DOVE) [127] is the first attempt to test 
the applicability of 3D CNNs in protein–protein docking. 
As the name suggests, it does voxelization of the decoys, 

Fig. 8   A convolutional neural 
network architecture. Multi-
dimensional input is passed 
through convolutional, pooling 
and fully connected layer to 
generate the desired output
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analyses the interfacial residues, and calculates the poten-
tial developed upon complex formation using a 3D CNN 
to separate the near-native from other structures. The 
method uses TMscore [128], which measures the similar-
ity between structures using Eq. (1), to remove redundant 
poses in the input dataset. TMscore uses the number of 
amino acids in the protein, L N , number of its matching 
residues with any reference protein, L T , distance between 
ith matching residues, d i  , and the normalization factor, d o 
to calculate the resemblance.

At the same time, to cope with the problem of unbalanced 
data, positive samples are generated by differently orienting 
the original structures. It is worth noting that each voxel is 
associated with total atomic potentials. The performance of 
the model revealed the power of CNN in scoring too.

4.6.2 � Graph Neural Networks(GNN) and Graph 
Convolutional Networks (GCN)

CNN-like models are suitable when dealing with data that 
lies in the n-dimensional linear space, ℝn. However, not all 
data can be mapped to ℝn. Sometimes, graphs can replace 
n-dimensional grids to represent the relationship between the 
different dimensions of input data. Graphs are better struc-
tures for representing the hierarchical relation between a set 
of entities, the same applies to graph neural networks. Input 
to GNN is a graph that represents the relations between dif-
ferent entities in a problem. Each node embeds information 
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about its neighbors by message passing, which includes an 
aggregate operation on neighboring node data followed by a 
combine operation with the nodes feature. Computations at 
lth layer can be mathematically written as follows:

where v is the node, N() returns the neighborhood, a(l)
v

 is the 
aggregated node feature of neighborhood, and h(l−1)

u
 is the 

neighborhood node feature in (l − 1)th iteration.

Like any other network, stacking of layers can improves 
the model’s performance. Summation of the individual 
node encodings gives a representation of the whole graph. 
When the neighbors need to be treated differently, there is 
a demand to fall back on convolution. Graph convolution 
networks save the situation. A GCN has a convolution layer, 
linear layer/fully connected layer, and non-linear activation 
layer to carry out the intended task. A multilayer GCN is 
shown in Fig. 9 [129]. The models are scalable as changes 
need localized modifications to get new embeddings. 
Another variant of GNN is the Graph autoencoder which 
encodes the graphical data. The encoder part generates a 
latent vector representation while the decoder generates the 
graph from this encoded vector.

Fout [120] proposed a GCN-based model, which classi-
fies the residue pairs as interacting or not, based on structural 
and sequence data. It separately treats the two proteins using 
GCN, and the final merging operation facilitates the predic-
tion of interacting residue pairs. The results showed that 
convolution has a significant role in improving the results. 
In interface prediction, adding residue binding propensity to 
separate positive and negative residue pairs is successfully 
implemented in [121]. This implies a difference in the nature 
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Fig. 9   Multilayer graph convo-
lutional neural network [129]
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of residues occurring at the surface and interior of proteins. 
Also, there is residue preference for interaction due to the 
change in properties of different residues. An integrated 
graph neural network and CNN-based approach [130] which 
uses structural, sequential, and high order interaction data 
was proposed recently. High-order interaction data includes 
details about adjacent residue pairs as they have a role in the 
interactions. GNN models generate a sequential representa-
tion of individual proteins. This sequential data is summed 
or concatenated to form a tensor which then passes through 
CNN layers to yield predictions for pairwise interaction. The 
inclusion of in-protein interaction information helps to deal 
with the imbalance in training labels.

Cao et al.[131] use graph convolution networks to imple-
ment a scoring function. The network accepts both intra and 
inter-molecular contact maps as input. This spatial relation-
ship between residues is used to calculate the intra and inter-
protein energy values. The model is trained to reduce the 
difference in calculated Gibbs energy and the actual energy 
of the complex. Also, the generated score value can be relied 
on for binding affinity prediction. Improved performance 
can be expected if the model is trained with data, which 
is a distribution of test data. Wang et al. [132] presented a 
GNN based scoring function where interfacial information 
is embedded in a graph. Two graphs representing the cova-
lent and non-covalent interactions are treated with a gated 
graph attention network which predicts the probability of a 
structure to be near-native.

4.6.3 � Generative Models

Generative models in deep learning are designed with 
immense power to generate new data instances. Hence, its 

introduction has a widespread impact on many fields. For 
instance, data scientists could compensate for the low data 
availability to train deep learning models. It is interesting to 
know the working of generative models. In simple terms, the 
method attempts to generate data that follows the distribution 
of training data. When strict constraints on data distribution 
may make the task impossible, near-exact compliances can 
be expected from a successful model. Variational autoen-
coder (VAE) [133] and generative adversarial networks 
(GAN) are examples of generative models. An autoencoder 
has an encoder and a decoder network, working hand-in-
hand to reconstruct its input at the output. The encoder gen-
erates a latent vector of the input on which the decoder oper-
ates to generate the actual input. Latent vectors are a reduced 
representation of the input, and hence the architecture is 
widely used in dimensionality reduction. Autoencoders with 
only one hidden layer are vanilla autoencoders. They have 
the power to generate data from an encoded representation 
but fail to create variations from the input data. VAE, which 
uses Bayesian inference to update the probabilities, has the 
power of a generative model. Instead of encoding the data, 
VAE tries to encode the data distribution. Thus a sample 
from this encoded data can be used for generating data that 
follows the distribution.

GAN [134] is similar to VAE but varies in the training 
method. Fig. 10 shows the working of a simple GAN. A 
GAN has a generative network, G, to generate the data, 
which the discriminator, D, classifies as real or fake based 
on its training. The objective of the method is to find Nash 
equilibrium between the two networks, where the genera-
tor and discriminator make optimal moves to minimize and 
maximize the loss, respectively. In short, the model is an 

Fig. 10   Overview of generative 
adversarial network



15Protein–Protein Docking: Past, Present, and Future﻿	

1 3

implementation of a min-max game that works on the fol-
lowing equation:

where �z is the expectation of noise data and �x is the expec-
tation of real data. The discriminator is first trained with 
actual data. The data generated from the supplied noise data 
is fed to a discriminator, and its results are propagated back 
separately to train the two networks. The generator tries to 
maximize the probability of the discriminator making a mis-
take. On each iteration, both networks improve their skills 
until a balance is attained.

Degiacomi [135] tested the ability of autoencoders in 
generating protein structures. He showed that the decoder 
part of a well-trained autoencoder suffices to generate a 
conformation space. Structures generated by MD simulation 
were used in autoencoder training, which generates latent 
vector representations of the structures. The trained model 
can generate a conformation space from these latent vectors. 
Recently, Ramaswamy et al. [136] improved the conforma-
tion space generation procedure using 1D convolutions in 
both encoder and decoder. The combination of force-field 
parameters and the Mean Squared Error (MSE) loss func-
tion helps to generate low-energy structures. While the non-
bonded terms (van der Waals and electrostatic potential) 
guide the transition to a conformation, bonded terms (bond 
angle, bond length, and dihedral angles) help in refining 
the structure by making local alterations in atom positions. 
Results showed that the inclusion of physics-based terms 
helped in generating biologically relevant conformations. 
Nguyen et al. [137] made a similar attempt with generative 
adversarial networks in D3R Grand Challenge 4. Along with 
generator and discriminator modules, the proposed method 
accommodates a mathcentre. The generator module is an 
auto decoder that generates a structure using latent space 
and noise input. The mathcentre converts this structure to a 
low-dimensional mathematical representation utilizing alge-
braic topology, differential geometry, and algebraic graph. 
The discriminator, which is an autoencoder, encodes the 
mathematical representation to a latent space and checks 
its quality. While the discriminator tries to maximize the 
loss function, the generator tries to minimize it. Their adver-
sarial action helps the network to find the optimal model 
parameters.

An image-to-image translation system is designed to 
accept images from one domain and manipulate them to 
generate images in another domain that follows a different 
style. One of the main hurdles in implementing this trans-
lation system was the requirement of paired training data. 
CycleGAN [138], an unsupervised learning technique, was 
first introduced to circumvent this demand for supervised 
learning. The network has two pairs of generators and 

(4)
Gmin Dmax V(D,G) = �x[logD(x)] + �z[log(1 − D(G(z)))]

discriminators. One of the notable features of CycleGAN is 
the cycle consistency loss, which ensures forward-backward 
consistency of the generated data. Mol-CycleGAN [139] 
utilized the power of CycleGAN in generating optimized 
molecular structures. A more precise description would be 
that, given a molecule, Mol-CycleGAN generates a mol-
ecule of a similar structure but with optimized character-
istics on par with the standards. A step to generate latent 
vector containing a component of junction tree scaffold 
and molecular graph using JT-VAE (Junction Tree VAE) 
[140] is carried out before the application of cycleGAN. The 
model works on two sets of latent vectors—an active set, Y, 
and an inactive set, X. Two mapping functions G ∶ X− > Y  
and F ∶ Y− > X are defined along with corresponding dis-
criminators D Y and D X respectively. The discriminator and 
generator functions try to outperform their adversary till 
convergence is achieved. For instance, D Y forces G to focus 
on the distribution of Y. It is the identity mapping loss that 
ensures similarity of input and generated structure. i.e., it 
ensures that input to one generator and output of the other 
generator are matching. Once trained, this model has learned 
the rules for transforming an inactive molecule to its active 
state. Thus given an input molecule, x ∈ X , G generates an 
embedding of x that follows the distribution of Y and is simi-
lar to x. The generated embedding can be fed to the decoder 
of JT-VAE to obtain the optimized molecule. The method 
finds application in generating molecules that are difficult 
to synthesize.

4.6.4 � Other Deep Learning Architectures

Though 3D CNN can handle translation, it has an inherent 
inability to afford rotation invariance, and hence it might 
be unwise to use it to manipulate point cloud data. Tensor 
field networks [141] are special networks that can work with 
such data as it offers rotation and translation invariance. This 
distinct quality eschews the data augmentation step in addi-
tion to its support for solving problems related to classical 
mechanics molecular structure. Eismann et al. [142] utilized 
tensor field networks in PAUL, an end-to-end implementa-
tion of a scoring function. Unlike other methods that feed in 
the physicochemical properties, this method uses only three 
atom level features—3D coordinates, corresponding atom 
name, and whether it belongs to receptor or ligand. In the 
implementation, the convolution operation is carried out by 
taking the tensor product of input and truncated series of 
spherical harmonics with learnable radial function to ensure 
the equivariance of input. Hierarchial learning is achieved 
by atomic and residue-level aggregations in different lay-
ers to finally give a single feature vector representation for 
the whole structure. Since the physical forces are significant 
over a locality, convolution is applied within the neighbor-
hood only. The model is trained for the regression task of 
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Ligand Root Mean Square Deviation (LRMSD) prediction 
and the classification task of segregating acceptable and 
unacceptable structures. Each layer of processing reduces 
the granularity of input data, and in the last fully connected 
layer, a scalar output is generated. The equivariant network, 
hierarchical learning, and the nearest neighbor convolutions 
form the backbone of this model. Results show that aug-
menting PAUL with other scoring functions promises better 
prediction.

Gainza et al. [143] explored the capacity of geometric 
deep learning in checking the interactability of proteins. 
The methods divide the surface into fragments of fixed 
geodesic radius to which biophysical and chemical/struc-
tural properties are assigned as an encoded descriptor. For 
a matching pair of surface fragments, the distance between 
the descriptors will be significantly less, and such a pair 
can form the base of interaction. The authors describe three 
critical applications of the descriptor: MaSIF-site, MaSIF-
ligand, and MaSIF-search. MaSIF-site identifies the interac-
tion site between two proteins, MaSIF-ligand can find the 
binding pockets of ligands, and MaSIF-search helps filter 
out the best probable interactions. The method, using bound 
structures, is compared with PatchDock, ZDOCK [144], and 
ZDOCK+ZRANK and is found to have comparable per-
formance but with much-reduced execution time. This is 
because the fragmentation of surface into patches serves the 
simultaneous processing of multiple patches. However, the 
model needs to be improved to get good results for unbound 
structures.

5 � Implementation Aspects: Parallel 
Computing in Docking

The twenty-first century witnessed many advancements 
in the hardware domain. It led to evolutionary changes in 
computation; serial programming paves the way for paral-
lel computing, which can effectively utilize the improved 
hardware. There are provisions to support instruction-level 
parallelism, thread-level parallelism, data-level parallel-
ism, and transaction-level parallelism. Porting an existing 
serial system to parallel execution must be handled care-
fully to get the intended results. An APOD (Assess, Paral-
lelize, Optimize, and Deploy) strategy can be employed to 
get the maximum benefits. A proper analysis of the program 
is required to identify the potential candidates for paral-
lelization. It is always recommended to conduct automated 
profiling of the code to support the manual analysis. Once 
profiled, independent steps that take more execution time 
can be parallelized to get improved efficiency. The use of 
GPU-accelerated libraries, OpenACC directives, and GPU 
programming languages helps in accomplishing the task. 
A code that complies with the best practices adds to the 

optimized performance and can be deployed successfully. 
OpenMP, MPI, CUDA, OpenACC, and OpenCL are popu-
lar platforms that offer parallel programming capabilities. 
Protein docking, being a computationally intensive job and 
has the scope of parallel execution, can benefit from this 
technique to a great extend. Some of the specific works that 
adopt parallel programming are discussed below.

MegaDock 4.0 [145] uses the method proposed by Katch-
alski-Katzir to compute the score of generated poses. Unlike 
the proposed correlation functions, a single correlation func-
tion that accommodates all factors is utilized, making the 
execution faster. This method offloads all processing into 
GPU, including voxelization, ligand transformation, score 
calculation, and final prediction. The provision for simul-
taneously utilizing multiple cores and GPUs makes the 
execution even faster. In each of the 420 nodes available for 
computing, 2 Intel Xenon X5670 CPUs and 3 NVIDIA Tesla 
K20X GPUs are accommodated. A boost on the software 
side is achieved using hybrid CUDA, MPI, and OpenMPI. 
Shimoda et al. [146] studied the effect of different compu-
tational environments – GPU and MIC (Many Integrated 
Cores) – in the working of MEGADOCK and GPU proved 
to be better.

Cell-Dock [147] implemented an array of techniques for 
faster execution. It parallelizes both rotation and discretiza-
tion steps on a PlayStation 3 (PS3) and Cell BE Blade in 
addition to the data localization techniques employed. It 
offers two versions – CELL-256 and CELL-128 – out of 
which the former has a better performance. CELL-256 on 
a dual-processor Cell BE-based blade contained two SMT-
enabled Cell BE processors at 3.2 GHz with 2 GB DD2.0 
XDR RAM (1 GB per processor). The integration of task-
level parallelism with data-level parallelism improved its 
performance compared with FTDock[45], which is an FFT-
based technique that uses shape and electrostatic comple-
mentarity for filtering the structures.

Sukhwani et al. [148] analyze the ways to accelerate the 
PIPER [46], an FFT-based algorithm . A profile analysis 
identified FFT as a good candidate for applying paralleliza-
tion. Along with this, other steps were also considered as the 
application of Amdahl’s law suggests that modifications to 
the above step could speed up the whole procedure by a fac-
tor of 11 only. Finally, the work compared the performance 
of FPGA and GPU in accelerating docking and observed the 
dominance of GPU in protein–protein docking.

Deep learning techniques, randomized algorithms, popu-
lation-based algorithms, and other traditional approaches are 
suitable candidates for parallel execution. Such techniques 
can drastically reduce the execution time in addition to effec-
tively utilizing the resources.
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6 � Critical Assessment of PRediction 
of Interactions (CAPRI)

Critical Assessment of Structure Prediction (CASP), started 
in 1994, to bring state-of-the-art techniques in protein struc-
ture prediction from amino acid sequences to a single plat-
form. It is treated as a world championship where reputed 
labs test their tools using unknown targets, whose structures 
are not published anywhere. In 2001, EMBL-EBI started 
Critical Assessment of PRediction of Interactions (CAPRI), 
following the path laid down by CASP, to showcase the per-
formance of scorers and predictors in the protein–protein 
docking process. Given the coordinates of input proteins, 
predictors generate ten possible near-native structures of 
the complex. In addition, they may supply large number 
of structures for the scorers to check the efficiency of their 
scoring functions. CAPRI offers separate tracks for servers 
and human predictors. Targets, whose experimentally deter-
mined complex structures are yet to be published, are cho-
sen in different CAPRI rounds. Emphatically, the individual 
structures are available in free form. Ab initio methods were 
adopted for docking at its inception, and only protein–pro-
tein complexes were chosen as targets. Later, the arena 
opened for other protein-bound targets too. In 2014, CASP 
joined hands with CAPRI for a biennial event CASP-CAPRI. 
Most of the targets in these events are homo-oligomers, and 
homology modeling may suffice to predict their complex 
structures. By this time, predictors relied on template-free 
methods only on the unavailability of target templates. The 
introduction of clustering techniques improved the meth-
ods by effectively choosing appropriate templates from a 
set of similar structures. Targets having different structural 
domains posed a real problem for both predictors and scorers 
[149, 150]. Apart from the changes in input and procedure, 
CAPRI brought new objectives to the event. In addition to 
structure prediction of targets, the participants were assigned 
the task of predicting position of interfacial water molecules 
[151], and binding affinity [152–154]. Overall performance 
of 4 servers which are consistently gaining success in CASP-
CAPRI events is shown in Table 1; the values are taken from 
[149, 150, 155].

Lensink et al. [155] reported the details of CASP13-
CAPRI held in 2019. Participants were 24 human predic-
tors, eight predictor servers, 14 human scorers, and five 
scorer servers. In a competition where template structures 
are supplied, the general trend of docking servers is to adopt 
template-based techniques wherever possible. Cluspro 
server identified appropriate templates of given sequence 
data using HHPred [156]. On the unavailability of templates 
for complex, Cluspro [48] opted for free docking, which 
starts by applying the FFT-based PIPER algorithm [46]. 
The generated structures were scored using van der Waals, 

electrostatic, and desolvation potentials. Finally, the clus-
tered structures’ centers are chosen and cleaned of atomic 
clashes by implementing van der Waals minimization that 
uses CHARMM potentials. MDockPP also uses the FFT-
based structure generation technique, followed by an opti-
mization step and scoring using ITScorePP [29]. The final 
models were selected from clustered data based on the bio-
logical information. GalaxyPPDock takes advantage of Gal-
axyHomomer [157] to segregate the templates identified by 
HHsearch [158]. It performed FFT-based ab initio docking 
and then refined the generated structures using GalaxyRefi-
neComplex [159]. PSO-based structure prediction technique 
uses HHBlits [160] for finding the homologous sequences 
and generate the individual structures using constricted 
PSO2 with Dfire potential [161]. The standard SwarmDock 
algorithm to find the optimal binding location is then used 
together with ranking SVM [31] to select the desirable 
structures. HADDOCK employed ab initio, template-based, 
and information-driven approaches to predict a near-native 
structure. However, the ab initio method could not generate 
any successful targets. LZerD server used a combination 
of PSI-BLAST and HHpred to find the template structures. 
Therefore, the application of the LZerD algorithm is limited 
to cases for which templates could be identified and the abil-
ity to identify the correct templates predominantly affects 
the performance of servers. Optimization of the generated 
structure is indeed encouraged in the case of difficult targets. 
Among the predictor servers, HADDOCK outperformed all 
other servers in quality of prediction and the number of tar-
gets solved. This analysis clearly shows that all methods 
apply template-based techniques wherever possible to obtain 
high-quality results. Furthermore, with the addition of more 
protein–protein complex structures, the tool’s performance 
could be improved. Fig. 11 shows the performance of dif-
ferent docking servers based on the rank and quality of the 
generated structures as reported in [155]. The majority of the 
servers got through for almost all easy targets but the results 
were not promising for difficult targets.

Table 1   Composition of docking performance of different servers 
in CASP-CAPRI experiments. Results of each experiment are taken 
from corresponding publications [149, 150, 155]

**Indicates medium quality structures, ***indicates high quality 
structures, and the numbers indicate the count of targets for which the 
server has successfully predicted near-native structures

Server CASP11-CAPRI CASP12-CAPRI CASP13-CAPRI

Cluspro 16/8** 7/3** 12/10**
HADDOCK 16/9** 6/1***/1** 9/3***/3**
SwarmDock 11/4** 5/1***/1** 9/5***/4**
LZERD 3 5/1***/2** 9/3***/6**
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7 � Benchmark Set and Evaluation Criteria

The truest test for docking tools is their ability to predict 
near-native structures for flexible targets. There must be 
ways to compare the performance of different docking 
techniques. Protein–protein docking benchmark, DOCK-
GROUND, and PPI4Dock are docking datasets that provide 
the opportunity for the same.

The protein–protein docking benchmark, proposed by 
Chen et al. [162] in 2003, was the first of its kind. They took 
special attention to include targets of all difficulty levels—
rigid-body, medium, and difficult—while avoiding redun-
dant structures. This benchmark set was refined many times 
to generate different versions [163–166]. The latest version 
protein–protein docking benchmark version 5.5 [167] con-
tains 162 rigid-body, 60 medium difficulty, and 35 difficult 
targets. It should be noted that these benchmark sets con-
tain experimentally generated structures, and the individual 
structures are available in a bound and unbound form.

DOCKGROUND [57, 168], a dataset compiled by 
Douguet et al. in 2006, offers support for multiple aspects 
in protein–protein complex structure prediction. Apart 
from experimental structures, computationally obtained 
bound and unbound structures are also included in this 

dataset. Specifically, X-ray bound, X-ray unbound, simulated 
unbound, model-model complexes, X-ray docking decoys, 
and docking templates are supplied by this dataset. X-ray 
bound structures, whose details are stored in a PostgreSQL 
database, are downloaded directly from the PDB repository, 
and X-ray unbound structures are identified with the help 
of ProPairs software [169]. Generation of computational 
unbound structures utilizes the service provided by Langevin 
dynamics simulation on the bound structures separated from 
their partners. DOCKGROUND generates decoys structures 
of complexes using GRAMM-X [170].

The largest dataset for docking hitherto is PPI4Dock 
[171], which contains 1417 targets obtained by homology 
modeling. These targets are classified as easy, very_easy, 
hard, very_hard, and super_hard, depending on the deviation 
of template structure from the original crystal structure. The 
authors observe that a tool that could generate near-native 
structures for very_easy, easy, and hard targets can be con-
sidered efficient.

The well-accepted criteria for checking the quality of 
structures generated by different docking tools is CAPRI 
evaluation criteria, which uses LRMSD, IRMSD, and f nat 
values for the same. LRMSD is the root mean square devia-
tion of ligand backbone atoms when receptor backbone 
atoms of predicted and crystal structure are superposed. 
Similarly, Interface Root Mean Square Deviation (IRMSD) 
measures the change in interface coordinates of the predic-
tion and original structure. Fraction of native residues (fnat ) 
keeps a record of the number of interface residues in a native 
structure that is reproduced in the predicted structure. Based 
on the values of these parameters, generated structures are 
classified high, medium, acceptable, and incorrect, as shown 
in Table 2.

However, this criteria is not robust as it uses three dif-
ferent quantities in qualifying the structures. Even slight 
changes in the values of any of these parameters may change 
the quality class of a generated structure. Also, a large 
LRMSD value may be compensated by a good f nat value, 
making the structure counted as acceptable. Basu et al. [172] 
proposed DockQ as an alternative measure that returns a 
single score value between 0 and 1. It uses scaled IRMSD 
and LRMSD values obtained by the inverse square scaling 
technique. The final score is calculated as follows [172]:

where

The values of d i  are 8.5Å and 1.5Å to calculate LRMSD 
and IRMSD respectively. Even CAPRI competition started 

(5)DockQ = (fnat + LRMSDscaled + IRMSDscaled)∕3

(6)
RMSDscaled =

1

1 +
(

RMSD

di

)2

Fig. 11   Performance of different docking servers in CASP13-CAPRI 
in terms of rank and quality of best prediction
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using DockQ for quality analysis [155]. Fig. 12 shows the 
range of DockQ scores used in classification of structures 
into different quality classes.

8 � Discussion

The majority of docking tools prefer high-quality X-ray 
crystallographic structures as input. These structures 
could reveal the atomic details of proteins. The scarcity 
of such high-quality X-ray crystallographic data stresses 
the need to investigate the utility of low-quality structures. 
Structures obtained through small-angle X-ray scattering 
(SAXS) and homology modeling may be useful in this 
regard [173, 174]. The usefulness of augmenting input 
data with additional theoretical knowledge to get around 
its frailty can also be a point of investigation.

A docking algorithm is required to take only the neces-
sary information using which it can perform well. One of 
the most striking examples is the performance of HAD-
DOCK-CG with Martini force-field [6]. A notable feature 
of coarse-grained representation is that it smoothens the 
energy landscape and speeds up the execution. Also, it is 
conducive to deal with slight changes in conformation. 
Thus careful selection of information may contribute to 
the performance of the method.

Every sensible docking algorithm that tries to accom-
plish improvement takes care of its computation cost too. 
Score calculation and refinement are the main bottlenecks 
in the majority of the docking procedures. Increased execu-
tion time is attributed to the pairwise energy calculation in 
interprotein residues in score calculation. Since interaction 

does not happen in the core region, many docking techniques 
calculate the pairwise energy only for residues at a specific 
depth. Measures to reduce the size of the conformation space 
can also help in reducing the computational cost.

A water molecule rich in hydrogen-protein bonds is called 
a highly coordinated water molecule. Such molecules have a 
significant role in the interaction [175]. Adding its contribu-
tion to the scoring function improves the sampling of con-
formation space. A two-stage approach that explicitly treats 
water molecules adds to the performance of the scoring stage 
[176]. Also, an interacting molecule perhaps displaces water 
molecules to get associations, and hence it may be utilized 
as an indicator of binding sites. The use of explicit water 
molecules in MD simulation can improve results [177].

Evolutionary algorithms are used in many protein-related 
tasks. Underutilization of these algorithms in docking may 
be due to the difficulty in fixing the convergence criteria. A 
possible solution is to fix the number of iterations. Further-
more, the addition of SVM with these algorithms may help 
to fix the parameters [178, 179]. Another problem with these 
algorithms is their computational complexity which the 
application of embarrassingly parallel execution can solve.

Dealing with flexibility is a primary concern in protein 
docking. An efficient docking tool may have to deal with 
both side-chain and backbone flexibility. Proper employ-
ment of refinement techniques is crucial to get near-native 
structures for flexible targets. These refinement techniques, 
in their effort to reduce the physical energy, give better struc-
tures. Nevertheless, assuming flexibility to targets may not 
always result in good structure prediction as a few proteins 
prefer to be in a rigid state, exhibiting limited segmental 
flexibility [180, 181]. Thus information about the charac-
teristics of input has an important role. The current trend 
in docking techniques is towards integrative modeling, 
which combines information from different sources. X-ray 
crystallography, NMR spectroscopy, Electron microscopy, 
footprinting, chemical crosslinking, FRET spectroscopy, 
SAXS, and proteomics are counted as data sources for such 
techniques.

The participants in CAPRI opted for ab initio methods 
only when there were no available templates. The current 

Fig. 12   Range of DockQ score

Table 2   CAPRI evaluation 
criteria [184]

Reprinted from [184]

CAPRI quality Conditions

High f
nat

≥0.5 AND (LRMSD≤1.0 OR IRMSD≤1.0 )
Medium (f

nat
≥0.3 AND f nat <0.5 ) AND (LRMSD≤5.0 OR IRMSD≤2.0)

OR
(f
nat

≥0.5 AND LRMSD>1.0 AND IRMSD>1.0)
Acceptable (f

nat
≥0.1 AND f nat <0.3) AND (LRMSD≤10.0 OR IRMSD≤4.0)

OR
(f
nat

≥0.3 AND LRMSD>5.0 AND IRMSD>2.0)
Incorrect fnat <0.1 OR (LRMSD>10.0 AND IRMSD>4.0)
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trend shows that template-based methods are gaining popu-
larity. With the addition of more and more complex struc-
tures, such methods could perform better.

8.1 � Challenges and Future in Deep Learning 
Techniques

The transition from ML to DL was gradual and was boosted 
by the technological advancements in GPUs. Backed by the 
high computational power, DL models are responsible for 
feature extraction from training data on the precondition of 
supply of a large quantity of data. Apart from the theoreti-
cal aspects, in practice, the claim of DL methods extract-
ing features is specious. The input need not always be raw 
data; a preprocessing step perhaps precedes a deep learning 
model. Max pooling layer is one instance of hard-coded fea-
tures. However, the pretense of requiring fewer hand-coded 
features compared to ML models is ensured in DL models.

The model design demands handcrafted features due to 
the reduced number of known protein complex structures. 
A major hurdle in using deep learning-based approaches on 
protein docking or any other protein-based application is 
data representation. It is challenging to effectively represent 
both the positional information of the atoms and the inter-
actions between them. Furthermore, using a 3-dimensional 
space to represent the positional details of the protein is also 
difficult due to its sparsity. The uneven distribution of atoms 
adds to the trouble of representation scheme selection. A 
sparse convolution offers a solution to the sparsity problem. 
Another possibility is the use of graph representation which 
graph networks can process. Though graphs can give spatial 
proximity data, they lack implicit data on the location and 
direction of atoms/residues and can be added as an explicit 
node feature. A novice designer can take the assistance of 
encoder networks to get the proper representation schemes. 
It not only returns a reduced representation but also avoids 
less critical features. When dealing only with sequence 
data, BERT and transformers are also helpful in finding the 
embeddings for input data.

As with any deep learning model, overfitting and under-
fitting can shadow the performance. The model may learn 
the training data in every detail, including the noise, mak-
ing it unfit for predicting new data. The same can happen 
when the model fails to understand the underlying rule of 
the data. Proper training with adequate data can solve this 
issue; the distribution of data matters here. Training data 
must contain data from different data distributions with 
sufficient size.

Finding the fitting parameters is essential for the model 
performance. Equally important is the tuning of hyperpa-
rameters. For instance, varying the learning rate during the 
training phase possibly improves the learning of the model. 

The available computational capabilities may constrain the 
selection of batch size.

Deep learning techniques are computationally demand-
ing due to the requirement for processing huge-sized data 
and the depth of the network. Deeper networks may use a 
huge number of parameters and thus may be stopped by 
computational limitations. Furthermore, compared to the 
evolutionary changes in algorithmic approaches, hardware 
improvements are far behind, limiting the model perfor-
mance. Researchers observe that only computationally effi-
cient methods can sustain in the future as computational 
limits are fast approaching [182].

A promising deep learning model for protein–protein 
complex structure prediction is GAN. Generator and dis-
criminator networks in GAN are ideally working against 
each other. Hence it is crucial to find the correct balance 
between their working. As with any other model, the selec-
tion of loss function demands utmost care. Since GAN is 
designed for data generation, further augmenting data for 
training may negatively affect the results. Another pos-
sibility is using tensor field networks, which are helpful 
when dealing with point cloud data that demands transfor-
mation invariance. This property avoids the need for data 
augmentation.

Protein complex structure prediction from sequence data 
is also worth mentioning. Discussions about quaternary 
structure prediction followed the much-celebrated success 
of Alphafold [183] in tertiary structure prediction. A trans-
former is one of the successful neural network models capa-
ble of dealing with sequential data. The main crux of the 
transformer lies in its self-attention module, which computes 
how strongly the information should be routed from one 
token to another. The transformer suits best as any protein-
related task depends on the interaction between the amino 
acids in the sequence. However, it considers the relations 
between every pair of tokens in the input, which may not be 
desirable for protein sequences where only local attention is 
needed. In addition, a fully connected graph for the long pro-
tein sequences may overburden the computational resources. 
The recently proposed graph transformers seem a solution to 
this problem. It gives local attention to the input tokens. In 
other words, it examines only the relationship between con-
nected nodes, making it suitable for tasks related to interac-
tion prediction. The idea can be further extended to structure 
prediction tasks. Unlike RNNs and other sequential models, 
the transformer performs better because it can be parallel-
ized, and also, the attention module makes the information 
flow much more concrete.

The application of deep learning in the structure predic-
tion of protein complexes has to overcome other challenges 
too. First, training a model for the same purpose requires 
voluminous data. The number of complex structures avail-
able in different databases counts to a few thousand, and 
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this may not be sufficient for a model to learn the rules. 
Second, any learning procedure ought to deal with the data 
imbalance problem. Third, since a model cannot afford to 
learn from low-quality data, there is a stringent need for 
high-quality experimental data. A generative model may be 
a pathbreaking solution to this problem.

There is immense scope for the application of deep learn-
ing techniques in protein-related tasks. Interaction prediction 
of proteins, interfacial region identification, classification 
of interfacial residue pairs, interprotein contact map predic-
tion, implementation of scoring function, and generation of 
conformation space are actively probed by the research com-
munity. In addition, attempts to generate protein complex 
structures are on their way to development.

9 � Conclusion

Study on protein interactions is crucial in understanding the 
working of biological systems. Computational techniques 
have overtaken experimental methods in popularity but need 
much refinement for the former to replace the later. Con-
ventional techniques for protein docking in their capacity 
can work with less volume of data. These methods analyze 
the physicochemical and geometric properties of proteins 
to predict probable near-native structures. The addition of 
more and more protein–protein complex structures to differ-
ent databases favors templates-based methods in docking. 
Template-based methods are more efficient than ab initio 
methods, provided proper templates. Also, experiments for 
integrating available knowledge in structure prediction are 
increasing due to its improved performance. The latest trend 
in problem-solving is the application of deep learning tech-
niques. They demand a vast amount of data for training. A 
full-fledged DL model for protein–protein docking shall be 
expected soon as the algorithmic techniques and the size of 
protein–protein complex data are increasing.
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