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Abstract
Tau is a microtubule-associated protein that is mainly expressed in central and peripheral nerve systems. Tau binds to tubulin 
and regulates assembly and stabilization of microtubule, thus playing a critical role in neuron morphology, axon development 
and navigation. Tau is highly stable under normal conditions; however, there are several factors that can induce or promote 
aggregation of tau, forming neurofibrillary tangles. Neurofibrillary tangles are toxic to neurons, which may be related to a 
series of neurodegenerative diseases including Alzheimer’s disease. Thus, tau is widely accepted as an important therapeutic 
target for neurodegenerative diseases. While the monomeric structure of tau is highly disordered, the aggregate structure of 
tau is formed by closed packing of β-stands. Studies on the structure of tau and the structural transition mechanism provide 
valuable information on the occurrence, development, and therapy of tauopathies. In this review, we summarize recent pro-
gress on the structural investigation of tau and based on which we discuss aggregation inhibitor design.
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1 Introduction

Tau is a microtubule-associated protein that is mainly 
expressed in central and peripheral nerve systems. Tau 
binds to tubulin and regulates assembly and stabilization of 
microtubule, thus playing a critical role in neuron morphol-
ogy, axon development and navigation [1, 2]. In addition to 
regulating microtubule assembly, recent studies show that 
tau has other functions [3–6]. For example, tau regulates the 
function of mitochondria, dynamics of RNA, formation of 
stress granules, integrity of neuronal DNA, motility of motor 
proteins, and the signaling pathway of brain insulin [7–12].

Under normal conditions, wild type tau protein is highly 
soluble, showing little tendency for aggregation; however, 

under pathological conditions, a variety of factors have 
been shown to induce or promote tau aggregation, including 
mutation, post-translational modification (PTM), metal ions, 
and interaction with polyanion or other molecules. Aggrega-
tion of tau into neurofibrillary tangles (NFTs) characterizes a 
series of neurodegenerative diseases termed as tauopathies, 
including Alzheimer’s disease (AD), Parkinson’s disease 
(PiD), Huntington’s disease, progressive supranuclear palsy 
(PSP), corticobasal degeneration (CBD), agyrophilic grain 
disease, and frontotemporal dementia with parkinsonism-17 
[13, 14]. Consequently, tau is widely considered as a poten-
tial target for the treatment of tauopathies [15–20].

So far, several strategies have been applied to reduce 
tau aggregation [2, 15–21]. Aggregation inhibitors directly 
bind to tau and block its aggregation. Molecules stabiliz-
ing microtubules enhance binding of tau to microtubules, 
thus reducing the concentration of free tau. Molecules tar-
geting pathways involved in tau hyperphosphorylation or 
acetylation also suppress tau aggregation by reducing tau 
PTMs. Furthermore, anti-tau vaccines, via active or passive 
immunotherapies, enhance clearance of tau aggregates. In 
this review, we summarize recent progress on the structural 
characterization of tau, based on which tau targeted aggrega-
tion inhibitor design/discover is discussed.
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2  Primary Structure of Tau

Human tau protein (UniProt ID P10636) is encoded by the 
MAPT gene which is located on chromosome 17q21 and 
comprises 16 exons [22]. Alternative splicing of exons 
2, 3 and 10 generates six different tau isoforms, which 
contain zero, one or two N-terminal inserts (0 N, 1 N and 
2 N) and three or four microtubule-binding repeats (3R 
and 4R) (Fig. 1a) [23, 24]. The amounts of 3R and 4R tau 
isoforms are approximately equal in normal brain [25], but 
their distributions can be uneven in tauopathies. Based on 
the biochemical properties and functions, the tau protein 
can be divided into four distinct domains: the N-termi-
nal domain (NTD), the proline-rich domain (PRD), the 
microtubule-binding domain (MTBD), and the C-terminal 
domain (CTD) (Fig. 1a) [1, 26, 27]. The NTD and PRD 
form the projection domain which extends outward from 
the microtubule surface when tau associates with microtu-
bule via the MTBD [28, 29]. Compared to 3R tau, 4R tau 
contains one more repeat. Consequently, 4R tau exhibits 
higher affinity for microtubule and promotes microtubule 
assembly more efficiently [2, 25]. As shown in Fig. 1b, 
the amino acid sequence of 2N4R tau is mostly hydro-
philic, low complexity, and locally repetitive. 4R tau con-
tains two aggregation-prone hexapeptide motifs, PHF6* 
(275VQIINK280) and PHF6 (306VQIVYK311), as well as two 
cysteine residues, Cys291 and Cys322. PHF6* and Cys291 
are located on the R2 repeat of MTBD while PHF6 and 
Cys322 are located on the R3 repeat. PHF6 and PHF6* are 
critical for tau aggregation. Tau molecules lacking these 
two hexapeptide motifs cannot aggregate [30]. The two 
cysteine residues also regulate tau aggregation in a DTT 
dependent manner. In the presence of DTT, cysteine to ala-
nine mutation delays the initial aggregation kinetics [31]. 
On the contrary, cysteine to alanine mutation promotes 
aggregation in the absence of DTT [32]. Charge distribu-
tion analysis reveals that the NTD and CTD are mainly 
negatively charged (Fig. 1c). On the contrary, the PRD and 
MTBD are highly positively charged. As discussed below, 
such a charge segregation feature has a critical impact on 
the structure and function of tau.

Tau can be subjected to a large number of PTMs 
(Fig. 1d) [33–35]. 2N4R tau contains 45 serine residues, 
35 threonine residues, and 5 tyrosine residues. Within 
these 85 potential phosphorylation sites, phosphoryla-
tion on about 45 sites has been observed experimen-
tally [36]. It has been found that phosphorylation plays 
a critical role in regulating the function of tau, and the 
phosphorylation state of tau is developmentally regulated 
[36]. Fetal tau and adult tau carry approximately seven 
and two phosphates per molecule on average, respectively 
[37]. Although the phosphorylation extent of tau is low 
in normal adults, it rises again in AD patients, with eight 
phosphates per molecule on average [38], indicating a cor-
relation between tau phosphorylation and tauopathies [39, 
40]. Besides phosphorylation, acetylation is another major 
PTM regulating the function and stability of tau. Tau con-
tains 44 lysine residues and more than twenty of them can 
be acetylated [41–43]. Tau acetylation is detected in vari-
ous transgenic mice and human tauopathies, suggesting 
that tau acetylation could be involved in the pathogenesis 
of neurodegenerative diseases [44, 45]. Similar to phos-
phorylation, acetylation can also impair tau–microtubule 
interactions and result in tau aggregation [41, 44–49]. 
Acetylation and phosphorylation may compete with each 
other or one PTM may promote the other [49, 50]. Ubiqui-
tination usually drives protein degradation. It is surprised 
to find that tau filaments from CBD and AD brain tis-
sues are ubiquitinated and ubiquitination of tau mediates 
the filament structures [51]. Recently, Kametani et  al. 
investigated PTMs of tau associated with a wide range 
of tauopathies [52]. They identified 170 PTMs in total, 
among which disease-specific PTMs are usually found in 
the MTBD. Theses disease-specific PTMs may contribute 
to form the filaments, or they may occur after the filaments 
have been formed.

3  Secondary Structure of Tau

Although tau forms extensive β-strands in the aggregated 
filaments, free tau monomer is intrinsically disordered, with 
low propensity of forming secondary structures (Fig. 2a) 
[53]. Circular dichroism (CD) confirms that tau has very little 
secondary structure [54, 55]. The α-helix and β-strand con-
tents are estimated to be less than 5% and 15%, respectively 
[55]. Nevertheless, nuclear magnetic resonance (NMR) 
reveals that dynamic and residual secondary structures are 
present in tau monomer [56–60] (Fig. 2b). Segments show-
ing β-structure conformations include 86GKQAAAQ92 (in 
N2), 161GQKGQA166 (in P1), 224KKVAVVR230 (in P2), 
256VKSKIG262 (in R1), 274KVQIINKKLDL284 (in R2), 
305SVQIVYKPVDL315 (in R3), 336QVEVKSEKLD345 and 

Fig. 1  Primary structure of tau protein. a Human MAPT gene 
encodes six tau isoforms that are resulted from alternative splicing of 
exons 2, 3, and 10. N1 and N2 are the N-terminal inserts. P1 and P2 
are the two proline rich regions. R1 to R4 are the four microtubule-
binding repeats. R’ is the C-terminal repeat-like region. b Amino acid 
sequence of 2N4R tau isoform. Individual region is indicated by the 
same color as in (a). The two hexapeptide motifs and the two cysteine 
residues are highlighted in yellow. c Net charge per residue (NCPR) 
distribution of 2N4R tau. NCPR was analyzed by CIDER [182]. d 
Residue type specific post-translational modifications of tau (Color 
figure online)
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351QSKIGSL357 (in R4), where segments comprising PHF6* 
and PHF6 exhibit the highest β-structure propensity [57]. 
α-Helical propensity is observed for 114LEDEAAGHVT123 
(between N2 and P2) and 428LADEVSASLA437 (in CTD). 
Polyproline II helical conformation is identified for three 
segments within the PRD, i.e., 175TPPAPKTPPS184 (in P1), 
216PTPPTREP223 and 232PPKSPSSA239 (in P2). The forma-
tion of these secondary structure elements is transient. For 
example, the β-structure conformation is populated 12% of 
the time for 256VKSKIG262 segment and the α-helical con-
formation is populated 25% of the time for 428LADEVSA-
SLA437 segment [57].

Solvent conditions, mutations, PTMs, metal ions as well 
as intermolecular interactions can remodel the conforma-
tional propensity of tau monomer. In the presence of 50% 
trifluoroethanol, the α-helix content of tau rises to 30% [55]. 
Inferred from NMR data, the 301P-K311 segment forms nas-
cent β-structure, where a type II β-turn is formed around 
301PGGG 304 [59]. It has been found that Pro301 is critical in 
maintaining this β-hairpin since P301L mutation promotes 
conversion from collapsed hairpin to extended conforma-
tions [61]. C291R, a mutation with potential pathogenic 
function, is found to enhance the β-structure propensity of 
MTBD [62]. 2N4R tau contains two cysteine residues and 
twelve histidine residues, which provide coordination sites 
for metal ions. For example, tau binds  Zn2+ and becomes 
more compacted globally [63]; however, structural changes 
around the MTBD may be subtle [64]. Tau interacts with 
various polyanions, such as heparin and poly-Glu. Three-
dimensional (3D) heteronuclear NMR experiments demon-
strate that interaction with heparin reinforces the β-strand 
structure as well as α-helical structure in several regions of 
tau [60].

4  Tertiary Structure of Tau

Due to its intrinsically disordered nature, it is extremely 
difficult to characterize the 3D conformation of tau in the 
free state. Small-angle X-ray scattering studies reveal that 
tau forms extended conformations comparable in size with 
random coils [55, 65]. The average radius of gyration of 
2N4R tau is about 6.5 nm from small-angle X-ray scattering 
measurement or 5.1 nm from single molecule Förster reso-
nance energy transfer (FRET) measurement [65, 66]. Spin 
relaxation rate measurement indicates that the NTD is highly 
mobile, whereas the PRD and MTBD are more rigid [57]. 
This is consistent with single-molecule force spectroscopy 
characterization which shows that the MTBD is more com-
pact than the NTD [67]. Consequently, tau monomer forms 
extensive dynamic intramolecular interactions which can 
be captured by cross-linking mass spectrometry, FRET, and 
paramagnetic relaxation enhancement (PRE) of NMR sig-
nals [57, 58, 61, 68, 69]. Based on the distance information 
from FRET signals, Jeganathan et al. proposed a paperclip-
like folded model for tau monomer, where the C-terminal 
end of tau folds over into the vicinity of the MTBD and the 
N-terminal end folds onto the C-terminal end (Fig. 3a) [68]. 
Although the NTD is outside the FRET distance of MTBD, 
PRE shows that the NTD is in close contact with PRD and 
MTDB [57, 69]. It is noted that the paperclip-like folded 
conformation does not restrain tau as tau remains highly 
mobile throughout [68].

To construct the atomic conformations of tau monomer, 
molecular modeling or simulations have been performed 
using restrains from PRE, residual dipolar coupling, or 
chemical cross-linking [57, 58, 66, 69–71]. The resulted 
conformational ensembles show that tau monomer can adopt 
distinct topology with variable secondary structure elements 
(Fig. 3b). Since different experimental techniques capture 
different structure information, conformational ensembles 
constructed using different experimental information and 

Fig. 2  Secondary structure 
of tau protein. a Secondary 
structure propensity of 2N4R 
tau predicted by PSSpred [183]. 
b Transient secondary structure 
elements in 2N4R tau identified 
from NMR characterization: 
β-structure (red), α-helical 
(green), polyproline II (blue) 
(Color figure online)
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simulation methods may exhibit different secondary and 
tertiary structure properties.

Since the free energy landscape of tau conformational 
transition is not flat, some tau conformations may be trapped 
into local free energy minima. Indeed, distinct tau conformer 
species have been detected and isolated in experiments. Two 
groups of conformations with distinct degree of compactness 
and rotational dynamics have been identified from single 
molecule fluorescence anisotropy characterization using free 
tau molecules [72, 73]. Alternatively, two tau monomeric 
species are isolated by sonication treatment of tau fibrils [74, 
75]. One tau form is inert and the other is seed-competent. A 
consensus of structural investigation on these tau species is 
that exposure of the PHF6* and PHF6 motifs in the MTBD 
is related to the formation of aggregation-prone conforma-
tions. This principle may be applicable to explain factors 
promoting or inhibiting tau aggregation. Pro301 mutation 
in the R3 region promotes tau aggregation. Recently, cross-
linking mass spectrometry revealed that Pro301 mutation 
destabilizes local structures and extends the MTBD [61]. 
Phosphorylation also has remarkable influence on tau con-
formation. NMR derived ensembles indicate that AT8 phos-
phorylation expands tau [69].

5  Structure of Tau Assemblies

Tau forms a variety of assemblies, including soluble oligom-
ers, insoluble filaments, and liquid droplets. Their structures 
and assembling mechanisms have been subjected to exten-
sive studies.

5.1  Structure of Tau Oligomers

Tau forms soluble oligomers with various molecular 
weights. Through a sensitive split-luciferase assay, Weg-
mann et al. detected the formation of tau oligomers in cells 
and they found that stable tau dimers are released and taken 
up by cells [76]. Although tau oligomers are known as the 
major toxic species in vivo, their structures remain elusive 
[77, 78]. Tau contains two cysteine residues. Therefore, 
intermolecular disulfide bond has been found as an impor-
tant factor promoting formation of tau oligomers [79–82]. 
However, disulfide-independent oligomerization of tau has 
also been observed [82–84], where tau monomers are held 
together by electrostatic interactions between the negatively 
charged NTD and the positively charged PRD and MTBD 
[85–87]. Furthermore, several factors can promote tau oli-
gomerization by changing tau conformation or serving as 
bridging molecules [88–90]. The conformations of tau oli-
gomers are heterogeneous, since some oligomers can seed 
monomeric tau aggregation while others cannot grow into 
long filaments [80, 91, 92]. Although the atomic conforma-
tions of oligomeric tau are still lacking, immunodetection 
suggests that the conformations of oligomeric tau are dif-
ferent from those of monomeric tau and aggregated tau as 
monoclonal antibodies raised against tau oligomers show no 
reactivity toward monomeric tau and tau filaments [93–95]. 
This suggestion is further supported by biophysical studies. 
CD characterization shows that tau oligomers contain more 
β-sheets than tau monomer, but the β-sheets in tau oligom-
ers are packed differently from those in filaments [92, 96]. 
Bis-ANS binding experiment shows that some hydrophobic 

Fig. 3  Tertiary and assembly 
structure of tau. a Schematic 
illustration of the paperclip-
like folded conformation of 
tau monomer. Residues within 
FRET distance are indicated 
by arrows. b Conformational 
ensemble of tau monomer based 
on cross-linking data [71]. Five 
conformers are shown by differ-
ent colors. c LLPS of tau under 
the influence of salt concentra-
tion and tau concentration. 
d Packing of β-sheets in the 
filament core of tau from AD 
patients (Color figure online)
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patches buried in tau monomer and fibrils are exposed in 
tau oligomers [96]. Molecular modeling using cross-linking 
restraints may be a promising strategy to construct the con-
formational ensembles of tau oligomers in the future.

5.2  Structure of Tau Filaments

Tau forms amyloid filaments in human brain. Different neu-
rodegenerative diseases show distinct tau isoform composi-
tions and filament structures [14, 97]. Many studies focus on 
tau filaments isolated from AD brains, indicating that the tau 
filament is composed of an amyloid core and a fuzzy coat. 
Limited proteolysis shows that the amyloid core is domi-
nantly formed by the MTBD while the fuzzy coat consists of 
the N- and C-terminal domains [98–100]. Further spectros-
copy characterization reveals that the filament core has clear 
cross-β structure and the fuzzy coat remains unstructured 
[101–104].

Tau NFTs are composed of paired helical filaments and 
straight filaments. Electron microscopy images show that 
the cross-section of tau filament core in AD has a C-shaped 
morphology [105, 106]. Cryo-EM structural studies reveal 
that paired helical filaments and straight filaments are 
made of two identical protofilaments comprising residues 
Val306–Phe378 with different inter-protofilament packing 
(Fig. 3d) [107, 108]. Besides AD, cryo-EM structures of fila-
ment cores from CTE, PiD and CBD have also been deter-
mined [51, 109–111], illustrating that different tauopathies 
have unique tau filament folds. R3, R4, and the N-terminal 
part of R’ are involved in forming the filament cores of all 
tauopathies studied, while R1 and R2 are exclusively present 
in filament cores of PiD and CBD, respectively. Unidentified 
fuzzy cryo-EM densities are present adjacent to the struc-
tured core, some of which turn out to be (poly)-ubiquitin 
chains and the P2 region [51, 112]. Heparin is widely used 
to induce recombinant tau aggregation. Structures of hep-
arin-induced tau filaments have also been determined and 
are found different from those in diseases [113, 114]. These 
results suggest that cofactors and PTMs influence the struc-
tures of tau filaments [115]. However, the detailed mecha-
nism remains unknown and has to be explored in the future.

5.3  Structure of Tau Droplet

The newest identified assembly state of tau is liquid droplet, 
which is formed via liquid–liquid phase separation (LLPS) 
(Fig. 3c). To phase separate, tau molecules undergo exten-
sive intermolecular interactions with each other, polyanions, 
metal ions, or tau-associated protein [116–127]. LLPS of 
tau is suppressed with increased salt concentration, sug-
gesting that electrostatic interactions are critical for the 
formation of tau droplets [116, 117, 119, 123]. The involve-
ment of hydrophobic interactions in driving tau droplets 

formation is also observed when tau droplets are dissolved 
with 1,6-hexanediol [117, 128, 129]. PTMs have a marked 
effect on regulating the LLPS of tau. Acetylation by histone 
acetyltransferase p300 or CREB suppresses LLPS of tau or 
tau/RNA complex [43, 122]. While phosphorylation either 
introduced by MARK2 or SF9 insect cells promotes LLPS 
of tau [117, 118], mouse brain extract phosphorylated tau 
shows a reduced propensity of LLPS with RNA [121].

Structural characterization of tau droplets is challenging. 
Fusion, fission, fluorescence recovery after photobleaching 
and electron paramagnetic resonance spectroscopy indi-
cate that tau droplets are in dynamic liquid state [119, 121, 
122]. The level of β-structure content is increased upon 
LLPS [117, 123, 128]; however, the β-structure content in 
the droplets is still much smaller than that in the amyloid 
fibrils. Although the entire polypeptide chain of tau adopts 
more extended conformations in the droplet state [130], local 
conformation of the PHF6* region may remain unchanged 
[123].

There is mounting evidence showing that protein liquid 
droplets fulfill a range of biological functions and LLPS 
underlies the formation of membraneless compartments in 
living cells [131–136]. Some liquid droplets can convert into 
filaments or promote filaments formation, suggesting that 
LLPS are related to amyloid aggregation in some neuro-
degenerative diseases [137–140]. However, whether LLPS 
of tau is linked to fibril formation remains controversial. 
On one hand, some studies suggest that LLPS of tau medi-
ates and facilitates aggregation. Aggregation enhancing fac-
tors, including polyanions, pro-aggregation mutations, and 
PTMs, promote LLPS of tau and tau droplets can turn into 
aggregates with elongated incubation [43, 118, 141]. On 
the other hand, other studies suggest that LLPS and amy-
loid aggregation of tau are independent processes although 
they occur in overlapping conditions [129]. Recently, Boyko 
et al. showed that tau LLPS greatly accelerates formation of 
fibrillar aggregates induced by heparin [124]. Since the con-
formations of PHF6 and PHF6* in the droplets are almost 
indistinguishable from those in the dilute state [123], LLPS 
may not accelerate tau aggregation by promoting aggrega-
tion-prone tau formation. However, the concentration of tau 
in the droplet is much higher than that in the dilute phase 
[118, 128], LLPS may promote the fibrillation reaction in a 
concentration-dependent regulatory mechanism [124]. Fur-
thermore, phase separation of tau could facilitate the forma-
tion of soluble tau oligomers [142]. Consequently, although 
the connection between LLPS and tau fibrillation remains 
elusive, they may be able to influence each other.
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6  Clues for Aggregation Inhibitor Design

Based on the structural knowledge of tau, aggregation 
inhibitors can be designed by stabilizing tau in the inert 
conformations or blocking the propagation of aggregation 
(Fig. 4). PTMs are critical factors converting tau monomers 
from the inert conformations to the aggregation-prone con-
formations. Therefore, regulating the PTMs of tau is a thera-
peutic approach to tauopathies. Glycogen synthase kinase 
3β (GSK3β) is a major tau kinase. It phosphorylates tau at 
42 sites [143]. Inhibiting the activity of GSK3β by lithium 
reduced the phosphorylation of tau and levels of aggregated 
insoluble tau [144, 145]. Novel GSK3β inhibitors include 
memantine and ifendropil, indirubin, BIO-acetoxime, and 
NP12 [146–148]. The acetyltransferase p300 acetylates tau 
a multiple sites. Salsalate treatment has been found to inhibit 
p300 activity and lower levels of acetylated tau [45]. How-
ever, recent studies showed that salsalate has little effect on 
the disease progression in PSP [149]. The major function 
of tau is to bind to microtubule and promote microtubule 
assembly. Increasing the stability of microtubule reduces tau 
dissociation from microtubules and the consequent aggre-
gation. Microtubule stabilizing molecules tested includes 
davunetide and abeotaxane [150]. Unfortunately, clinical 
trials showed that both drugs are not efficient treatments for 
PSP or AD [151–153].

Tau aggregation can be inhibited by binding to vari-
ous molecules, including molecular chaperones, antibod-
ies, and small molecules [15, 154–165]. Most of these 
molecules bind to the MTBD, mainly around the PHF6* 
and PHF6 motifs. Therefore, shielding these two motifs 

or interrupting their intermolecular interactions may be a 
general mechanism to inhibit tau aggregation. The confor-
mational ensembles of tau monomer and the structures of 
tau filaments provide valuable information for tau aggre-
gation inhibitor design/discovery. Small molecule binding 
sites are found by analyzing the conformational ensembles 
of tau K18 construct [166, 167]. Recently, Baggett and 
Nath identified novel tau aggregation inhibitors through a 
combination of molecular dynamics simulations, ensemble 
docking, and virtual screen of compound libraries [168]. 
Based on the atomic structures of amyloid fibrils formed 
by PHF6 and PHF6*, peptides have been designed to 
inhibit the aggregation of tau by capping the ends of tau 
fibrils [169–173]. Methylene blue (MB) and its derivative 
leuco-methylthioninium (LMTM) are efficient tau aggre-
gation inhibitors [174]. Structural investigations suggest 
that MB and LMTM bind to the MTBD of tau and trap 
it in aggregation-incompetent conformations [32, 166]. 
Although LMTM effectively reduced tau pathology and 
improved cognition in transgenic mouse models of AD, it 
failed to show effects on the primary cognitive endpoints 
in two phase III trials [175–177]. Recently, it was found 
that while MB efficiently inhibits tau fibrils formation, it 
increases the number of granular tau oligomers [90]. This 
study provides a possible mechanistic explanation for the 
poor performance of LMTM in the Phase III clinical trials. 
Recently, Gorantla et al. designed cobalt(II)-complexes for 
effective inhibition of tau and disaggregation of preformed 
tau fibrils, illustrating potential application of metal-based 
therapeutics for tauopathies [178].

Fig. 4  Strategies for aggregation inhibitor design based on tau conformational transition
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Antibodies can be raised to target tau fragments, mon-
omers, oligomers, or filaments. By binding to these tau 
species, antibodies may inhibit the formation or propaga-
tion of aggregation-prone tau, or promote clearance of tau 
aggregates. Antibodies are able to cross the blood–brain 
barrier and reside for much longer in the body than small 
molecules. Consequently, immunotherapies are promis-
ing strategies for tauopathies treatment [179, 180]. Active 
immunization has been shown to reduce pathology of 
tauopathies. Two tau vaccines (i.e., AADvac1 and ACI-
35) have been developed and are currently in clinical tri-
als [181]. However, the risk of adverse immune reactions 
raises safety concerns on active immunization. Alterna-
tively, the effect of passive immunization is transient and 
its specificity is higher. To date, several clinical trials have 
been conducted for various monoclonal tau antibodies in 
patients with AD or PSP [179].

7  Conclusions

As a major target for tauopathies treatment, tau protein 
has been subjected to extensive investigations. Although 
free tau monomer is intrinsically disordered and contains 
low secondary structure propensity, its conformations 
could be divided into two distinct classes: compacted 
inert conformation and extended aggregation-prone con-
formation. Several factors, including post-translational 
modifications, amino acid mutations, and interacting 
molecules, can modulate the conformational ensemble of 
tau monomer, thus inhibiting or promoting tau aggrega-
tion. Recently, 3D structures of tau filaments from several 
tauopathies have been determined by cryo-EM, revealing 
that different tauopathies have unique tau filament folds. 
Structural information on tau monomer and filaments pro-
vides important clues for tau aggregation inhibitor design/
discovery through suppressing the formation of aggrega-
tion-prone conformations or blocking the propagation of 
aggregates. So far, structural knowledge on tau oligomers 
is very limited, although tau oligomers are toxic and can 
be spread between cells. Determining the 3D conforma-
tions of tau oligomers is urgent for a deeper understanding 
of tau aggregation and tauopathies. Novel tau aggregation 
inhibitors may be designed or discovered by targeting tau 
oligomers in the future.
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