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Abstract
Cancers are a great threat to humans. In cancer therapy, surgical removal of the tumor combined with radiotherapy and 
chemotherapy is the most routine treatment procedure and usually the most effective. However, radiotherapy and chemo-
therapy drugs that kill cancer cells efficiently also kill normal cells, thus exhibiting large side effects. Cancer-targeted drugs, 
which aim to specifically recognize proteins or signaling pathways associated with tumor proliferation and migration, have 
achieved marked progress in recent years. Azurin is a copper-containing redox protein secreted by Pseudomonas aeruginosa. 
Azurin and its derived peptide p28 preferentially enter a variety of cancer cells and induce apoptosis or cell cycle arrest. 
Mechanistic studies revealed that azurin and p28 target the p53 and receptor tyrosine kinase signaling pathways as well as 
other pathways. Two phase I trials of p28 have been carried out, with findings that p28 is safe and exhibits anticancer activity 
in both adult and pediatric patients. In this review paper, we provide an up-to-date summary of progress on the anticancer 
mechanisms and therapeutic strategies for azurin and p28.
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1 Introduction

Malignant tumors (cancers) are a great threat to humans, 
and comprise the second leading cause of death after car-
diovascular disease. Cancers and their complications greatly 
reduce the quality of life of patients and their families and 
increase medical and healthcare spending. Therefore, it is 
of much value to explore efficient anticancer drugs. For 
cancer treatment, surgical resection of the tumor combined 
with radiotherapy and chemotherapy is currently the most 
common treatment strategy, and often the most effective. 
However, traditional radiotherapy and chemotherapy drugs 
kill both cancer cells and normal cells simultaneously, and 
often show strong toxicity and side effects. With the aim of 
specifically recognizing proteins or signal transduction path-
ways related to tumor proliferation and migration, cancer-
targeted drugs, which are expected to achieve the dual goals 

of tumor treatment and reduced side effects, have undergone 
rapid development in recent years [1–6].

Azurin is a copper-containing redox protein secreted by 
Pseudomonas aeruginosa [7]. Based on their ability for 
selective entry into and induction of apoptosis or cell cycle 
arrest in many cancer cells, azurin and its derived peptide 
p28 have attracted much attention in the last two decades 
[8–16]. At present, two phase I clinical trials of p28 have 
been completed, with findings that p28 is safe and exhibits 
anticancer activity in both adult and pediatric patients [17, 
18]. Because azurin and p28 target many different signaling 
pathways [19], such as the p53 and receptor tyrosine kinase 
pathways, azurin and p28 may not easily induce resistance 
and have the potential to become new anticancer drugs. In 
this review paper, we summarize recent progress on the anti-
cancer mechanisms and therapeutic strategies for azurin and 
p28.

2  Properties of Azurin and p28

2.1  Amino Acid Sequences and Structures

Azurin (UniProt ID P00282) is a copper-containing redox 
protein secreted by P. aeruginosa [7] that contains 128 
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amino acids and a copper ion (Fig. 1). According to the 
SCOP classification, the three-dimensional structure of 
azurin belongs to the all-β folding class, which mainly com-
prises two groups of β-strands (4 strands per group) arranged 
in a sandwich structure (Fig. 1b) [20]. p28 is a fragment 
(Leu50-Asp77) of the azurin protein (Fig. 1a), encompass-
ing a β-strand, an α-helix, a turn, and an irregular structure 
(Fig. 1b). It is worth noting that the structure of the p28 
segment is separated from the sandwich structure of azurin. 
Although p28 is folded into a stable three-dimensional struc-
ture within azurin, it does not mean that the p28 fragment 
forms the same structure as an isolated peptide. In fact, 
molecular dynamics simulations showed that the α-helix of 
p28 was unstable after isolation [21, 22].

2.2  Preferential Entry into Cancer Cells

Azurin preferentially enters a variety of human cancer cells 
[23]. Truncation experiments revealed that the region of 
azurin mediating its penetration through the cell membrane 
is mainly composed of amino acids 50–77 (termed p28). 
Furthermore, fusion of p28 to cargo proteins, such as glu-
tathione S-transferase and green fluorescent protein, enabled 
internalization of cargo proteins into macrophages, mela-
noma cells, or breast cancer cells [23]. Competition experi-
ments and studies with inhibitors suggested that azurin may 
enter cells by a receptor-mediated endocytic process involv-
ing caveolin-1, the Golgi complex, and ganglioside GM-1 
[23–25]. The membrane receptors that mediate azurin or 
p28 internalization often show higher expression levels in 
cancer cells compared with normal cells. Therefore, relative 
to normal cells, the contents of p28 in tumor cells are about 
3–6-fold higher [24]. Although p28 is the main segment that 
mediates azurin cell penetration, hydrophobic residues adja-
cent to the p28 segment in space may also be involved. For 
example, alanine mutation of Phe114 significantly reduced 
the cell-penetrating activity of azurin [25].

2.3  Inhibition of Cancer Cell Proliferation 
and Tumor Growth

Besides cell membrane penetration, azurin and p28 can 
inhibit proliferation or induce apoptosis in various cancer 
cell lines (Table 1). For example, only 29% of MCF-7 breast 
cancer cells survived after treatment with 53 μM azurin for 
72 h [26] and the cell number of ZR-75-1 breast cancer cells 
was reduced by 44% after treatment with 100 μM p28 for 
72 h [27]. Many azurin/p28-sensitive cancer cells express 
p53 protein and the levels of p53 protein are elevated after 
treatment with azurin or p28. On the contrary, azurin or p28 
do not effectively induce apoptosis or cell cycle arrest in 
control p53-null cells [22, 26–32]. Therefore, azurin and p28 
mainly inhibit cell proliferation or induce apoptosis through 
the p53 signaling pathway. The p53 protein is a transcrip-
tion factor that plays key roles in mediation of DNA dam-
age repair, apoptosis, and cell cycle progression through 
transcriptional regulation of downstream gene expression 
[33, 34]. It was demonstrated that azurin/p28-stabilized p53 
enters the nucleus and induces expression of proapoptotic 
genes like Bax and Bcl-2 [26, 32] and cell cycle inhibitors 
like p21 and p27 [27]. Meanwhile, studies on mouse models, 
including MCF-7 breast tumor mice, 4T1 breast tumor mice, 
and Dalton’s lymphoma mice, showed that azurin and p28 
can efficiently inhibit tumor growth [27, 35, 36].

3  Mechanism of the Anticancer Action 
of Azurin

3.1  Regulation of Redox Homeostasis

Reactive oxygen species (ROS), such as superoxide  (O2
−), 

hydroxyl radical  (HO·), and hydrogen peroxide  (H2O2), 
mediate redox signaling for numerous cellular functions 
[37]. High levels of ROS in cells usually cause cell death 
[38, 39]. Therefore, modulation of ROS levels may provide 

Fig. 1  Amino acid sequences 
and three-dimensional struc-
tures of azurin and p28. a 
Amino acid sequence of azurin. 
The region corresponding 
to p28 is shown in orange. b 
Three-dimensional structure 
of azurin (PDB ID 2xv2). The 
region corresponding to p28 is 
shown in orange. The copper 
ion is shown as a purple sphere 
(Color figure online)
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strategies for cancer treatment. Because azurin is a redox 
protein, treatment of macrophages with azurin generates a 
higher level of ROS. However, the cytotoxicity of azurin is 
not related to its redox activity because several redox-neg-
ative azurin mutants also generated ROS and induced mac-
rophage apoptosis [40, 41]. Mechanistic analyses revealed 
that azurin and its mutants form complexes with p53 and 
increase its protein level, suggesting that azurin regulates 
redox homeostasis by a p53-mediated mechanism [40–42].

3.2  Stabilization of p53 Protein

Much evidence has indicated that the anticancer activity of 
azurin depends on the presence of p53 protein. For example, 
azurin readily induces apoptosis in cancer cells expressing 

functional p53, but to a much lesser extent in p53-null cells 
[26, 32]. The p53 protein levels in cancer cells are elevated, 
suggesting that azurin functions through the p53 pathway. 
MDM2 is a major E3 ubiquitin ligase that regulates p53 deg-
radation by binding to its N-terminal transactivation domain 
(p53-TAD) [43]. Although azurin interacts with p53-TAD, 
the estimated dissociation constant of azurin/p53-TAD com-
plex (Kd ~ 7 μM) is much larger than that of MDM2/p53-
TAD complex (Kd ~ 34 nM) [44, 45]. Furthermore, azurin, 
MDM2, and p53 can form a ternary complex [46]. Thus, 
azurin is unable to inhibit MDM2 binding to p53-TAD. 
The interactions between azurin and the p53 DNA-binding 
domain (p53-DBD) were also characterized by molecular 
docking and Raman spectroscopy, revealing that azurin can 
bind to the flexible L1 and s7–s8 loops of p53-DBD and 

Table 1  Responses of cancer cell lines to treatment with azurin or p28

( +) indicates a positive response and (–) indicates no response
a The responses are inferred from the results described in the cited references

Cancer Cell line p53 status Responsea References

Breast cancer MCF-7 WT Azurin ( +), p28 ( +) [22, 25–27, 30, 75, 76]
MDA-MB-231 R280K Azurin ( +), p28 ( +) [22, 26, 29, 30, 75]
MDA-MB-157 Null Azurin ( +) [26]
MDD2 Dominant-negative Azurin ( +), p28 (–) [22, 26, 30]
SK-BR-3 R175H Azurin ( +) [75]
SUM-149 M237I Azurin ( +) [53, 54]
T-47-D L194F p28 ( +) [30]
ZR-75 WT p28 ( +) [27, 29]

Cervical cancer HeLa WT Azurin ( +) [25]
Colon cancer HCT-116 WT p28 ( +) [30]

HT-29 R273H Azurin ( +), p28 (–) [25, 30]
Dalton’s lymphoma DL WT Azurin ( +) [35]
Fibrosarcoma HT-1080 WT p28 ( +) [30]
Glioblastoma LN229 K164E p28 ( +) [29, 30]

U87 WT p28 ( +) [29, 30]
Leiomyosarcoma HTB-88 G245S p28 ( +) [30]
Lung cancer A549 WT Azurin ( +) [51]
Melanoma UISO-Mel-2 WT Azurin ( +), p28 ( +) [24, 32]

UISO-Mel-6 Null Azurin (–), p28 (–) [22, 30, 32]
Mel-23 Δ178–183 Azurin ( +), p28 ( +) [22, 24, 29, 30]
Mel-29 WT Azurin ( +), p28 ( +) [22, 24, 29, 30]

Neuroblastoma IMR-32 WT p28 ( +) [29]
SK-N-BE2 C135F p28 ( +) [29, 30]

Oral squamous carcinoma YD-9 WT Azurin ( +) [31]
Osteosarcoma MG-63 Null Azurin (–) [31]

TE-85 R156P p28 (–) [30]
Ovarian cancer ES-2 S241F p28 (–) [30]
Pancreatic cancer MIA-Paca2 R248W p28 (–) [30]
Prostate cancer LNCaP WT p28 ( +) [29]

DU-145 P223L, V274F Azurin ( +), p28 ( +) [29, 30, 60]
Rhabdomyosarcoma RD R248W p28 (–) [30]
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increase its structural stability [47–49]. The structural sta-
bility of p53-DBD may be related to the protein level and 
anticancer function of p53.

3.3  Modulation of Cell Membrane Properties

Cell-surface receptors regulate the structural properties of 
the cell membrane by modulating cell attachment to the sur-
rounding extracellular matrix, cell shape, cell migration, and 
membrane stiffness [50]. Therefore, the activity of anticancer 
drugs is related to the expression level of these cell-surface 
receptors. Bernardes et al. [51] found that azurin reduces the 
expression level of integrin β1 and disturbs its distribution 
on the cell membrane of A549 lung cancer cells. Recently, 
azurin was found to decrease the level of caveolin-1 and the 
order of the cell membrane in MCF-7 breast cancer cells 
and HeLa cervical cancer cells [25]. Direct physical inter-
actions between caveolin-1 and azurin were confirmed by 
immunoprecipitation [25]. Changes to the surface structure 
of cancer cells by azurin treatment render the cells more vul-
nerable to anticancer drugs, such as epidermal growth fac-
tor receptor-specific inhibitors (e.g., gefitinib, erlotinib) and 
chemotherapeutic drugs (e.g., paclitaxel, doxorubicin) [25, 
51]. Cadherins are crucial molecules that regulate cell–cell 
adhesion, and overexpression of P-cadherin is associated 
with increased cell invasion in many breast cancer cells 
[52]. Bernardes and colleagues showed that azurin decreases 
P-cadherin expression and inhibits P-cadherin-induced cell 
invasion [53, 54]. The modulation of cell membrane prop-
erties by azurin may also be associated with the intracel-
lular signaling responses of non-receptor tyrosine kinases, 
because the phosphorylation levels of FAK, Src, Akt, and 
PI3K are usually attenuated [51, 53].

3.4  Interference with the Eph‑Ephrin Pathway

Eph receptors comprise the largest family of receptor tyros-
ine kinases. The signaling pathways between Eph receptors 
and their ephrin ligands are known to be involved in cancer 
progression [55]. Therefore, Eph receptors are potential tar-
gets for cancer therapy [56–59]. Azurin shows remarkable 
structure similarity to ephrins and binds to EphB2 with an 
affinity (Kd = 6 nM) that is 5-fold higher than the affinity 
of ephrinB2 for EphB2 (Kd = 30 nM) [60]. Consequently, 
azurin efficiently competes with ephrinB2 for binding to 
EphB2 and interferes with tyrosine phosphorylation of 
EphB2. Truncation experiments identified a C-terminal 
segment (amino acids 88–113) of azurin that mediates the 
interactions between azurin and EphB2. Further experi-
ments showed that azurin peptide (88–113) treatment leads 
to reduced cell viability in LN-229 glioblastoma cells and 
growth inhibition in MCF-7 breast cancer cells [60].

4  Mechanism of the Anticancer Action 
of p28

4.1  Stabilization of p53 Protein

The anticancer activity of p28 is also dependent on the 
p53 status in cancer cells [27, 28]. Similar to azurin, p28 
does not compete with MDM2 for binding to p53 [27]. 
However, Yamada et al. [22] found that p28 interacts with 
p53-DBD. Utilizing a variety of biophysical characteriza-
tion methods, the dissociation constant for p28/p53-DBD 
complex was reported to range from 7  μM to 0.7  nM 
[61–63]. p53-DBD is a hub domain that interacts with 
COP1, an E3 ubiquitin ligase that negatively regulates 
p53 and is overexpressed in many cancers [64–67]. GST 
pull-down experiments showed that p28 reduces COP1 
binding to p53-DBD in a concentration-dependent man-
ner, suggesting that p28 competes with COP1 for bind-
ing to p53-DBD [22]. Fluorescence resonance energy 
transfer-derived distance information was used to guide 
molecular docking and molecular dynamics simulations. 
In the simulated models, p28 binds to a pocket adjacent to 
Trp146 on p53-DBD [61], confirming that p28 competes 
with COP1 for binding to p53-DBD [22]. Recently, the 
dissociation constant for p53/COP1 complex measured by 
atomic force microscopy and surface plasmon resonance 
was determined as approximately 10 nM [68], and is thus 
in a comparable range to the Kd value of p28/p53-DBD 
complex. Therefore, one possible mechanism for the stabi-
lization of p53 by p28 is through the COP1-mediated ubiq-
uitination pathway, wherein p28 inhibits COP1 binding to 
p53-DBD. Besides wild-type p53, p28 also binds to p53 
mutants and activates p53 mutants in a series of cancer 
cell lines [30, 63]. The affinity of p28 for p53 mutants was 
found to be positively correlated with the β-sheet content 
and negatively correlated with the random coil content 
of p53 [63]. Rational designs of p28 can be performed to 
achieve high affinity for various p53 mutants.

4.2  Inhibition of Angiogenesis

Vascular endothelial growth factor (VEGF) is a type of 
cytokine that promotes angiogenesis, and is often overex-
pressed in solid tumors or blood cancers [69]. The interac-
tion between VEGFA and its receptor VEGFR-2 is a key 
regulator of angiogenesis in tumors [70]. Mehta et al. [71] 
found that p28 inhibits VEGF-induced migration, capillary 
tube formation, and neoangiogenesis in multiple xenograft 
models. Although p28 penetrates human umbilical vein 
endothelial cells and co-localizes with VEGFR-2, unlike 
other antiangiogenic agents that inhibit VEGFR-2 kinase 
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activity, p28 decreases downstream phosphorylation of 
FAK and Akt, resulting in abnormal distribution of cell 
migration-related proteins, such as F-actin, paxillin, and 
PECAM-1 [71]. Therefore, p28 may inhibit angiogenesis 
in a different manner from other antiangiogenic agents. 
Further studies on the interactions between p28 and 
VEGFR-2 will be valuable to clarify the antiangiogenic 
effect of p28 on endothelial cells. Inhibition of angiogen-
esis suppresses tumor growth in Mel-6 (p53 null) mela-
noma cell xenografts in athymic mice [71], while p28 has 
little effect on proliferation of these melanoma cells [30].

5  Therapeutic Strategies Based on Azurin 
and p28

Azurin and p28 preferentially enter cancer cells, and sub-
sequently induce apoptosis or cell cycle arrest, or inhibit 
angiogenesis in tumors. Based on these anticancer activities, 
several therapeutic strategies have been designed.

5.1  Therapeutic Drugs

Azurin and p28 exhibit anticancer activity that has been ver-
ified in various cancer cells and mouse-based tumor models. 
Thus, azurin and p28 can be directly applied as anticancer 
drugs. Escherichia coli Nissle 1917 has been extensively 
used to treat acute diarrhea and possesses tumor-targeting 
activity [72]. Continuous expression of azurin in Nissle 1917 
was shown to enable efficient inhibition of B16 melanoma 
and 4T1 breast tumor growth in mouse models [36]. Simul-
taneous expression of azurin with other anticancer agents 
has also been examined. For example, Ghasemi-Dehkordi 
et al. [73] designed a vector to express azurin and Mam-
maglobin-A and induce immune responses against breast 
cancer tumors, while Mehta et al. [74] designed a bacterial 
carrier that simultaneously expresses azurin and p53 under 
the control of a hypoxic promoter. Recently, two phase I 
clinical trials of p28 have been completed, with findings 
that confirm the anticancer activity and safety of p28 in 
human cancer patients. One clinical trial was carried out 
in 15 adult patients with metastatic solid tumors [17]. After 
p28 treatment, seven patients demonstrated stable disease for 
7–61 weeks, three showed partial response, and one showed 
complete response. The other clinical trial was performed in 
children with brain tumors [18]. The results showed that p28 
is safe and well tolerated, although its activity is not very 
high for central nervous system malignancies.

5.2  Cancer‑Targeted Drug Carriers

The preferential entry of azurin and p28 into cancer cells 
enables them to function as cancer-targeted drug carriers. 

Azurin and p28 have been fused with several anticancer 
proteins/peptides to increase their activity. Granzyme B 
is released by the immune system and activates pro-apop-
totic pathways. Paydarnia et al. [75] designed a granzyme 
B-azurin fusion protein and showed that the resulting protein 
induces significant apoptosis in several breast cancer cell 
lines. Upon fusion with p28, the NRC peptide and apoptin 
show higher anticancer activities toward breast cancer cells 
[76, 77]. Shahbazi et al. [78] fused HPV16 E7 protein with 
p28, and demonstrated that the resulting fusion protein effi-
ciently targets cervical cancer cells and exerts immune activ-
ity. Furthermore, conjugation of the C-terminus of azurin to 
radiotherapy drugs enables ephrin receptor-targeted deliv-
ery, thereby improving the efficacy of radiation treatment 
for cancers overexpressing ephrin receptors [79]. p28 can 
also be conjugated to other cargos, such as liposomes and 
nanoparticles, enabling cancer-targeted drug delivery and 
release [5, 14].

5.3  Anticancer Drug Sensitizers

Besides directly inducing apoptosis and growth inhibition 
of cancer cells, azurin and p28 also disturb the membrane 
structure and inhibit cell migration, thus enhancing the sen-
sitivity of cancer cells to anticancer drugs. For example, 
Bernardes and colleagues found that combined application 
with azurin enhances the sensitivity of A549 lung cancer 
cells to gefitinib and erlotinib [51], as well as the sensitivity 
of MCF-7 breast cancer cells, HeLa cervical cancer cells, 
and HT-29 colon cancer cells to paclitaxel and doxorubicin 
[25]. Yamada et al. [29] found that combined application 
with p28 improves the activity of DNA damage drugs and 
antimitotic drugs in a variety of cancer cells. Oral squamous 
carcinoma cells are resistant to many anticancer drugs. Choi 
et al. [31] showed that azurin treatment provides a way to 
enhance sensitivity to anticancer drugs, because the activi-
ties of 5-fluorouracil and etoposide in YD-9 oral squamous 
carcinoma cells are significantly increased after azurin 
treatment.

6  Conclusions and Future Perspectives

Cancer development is a complex process that involves 
many different factors. Consequently, it is difficult to achieve 
an ideal therapeutic effect using a single anticancer drug. 
Investigations on azurin and p28 during the last two dec-
ades have demonstrated that azurin and p28 are multi-target 
anticancer agents that can interfere with several different 
signaling pathways. Thus, azurin and p28 can induce apop-
tosis and cell cycle arrest by stabilizing p53 protein, inhibit 
downstream phosphorylation signaling pathways by binding 
with various receptor tyrosine kinases, and modulate the 
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cell surface structure by interacting with lipid raft compo-
nents. Therefore, azurin and p28 can be applied as anticancer 
agents alone or synergistically with other anticancer drugs. 
Furthermore, after conjugation to liposomes or nanoparti-
cles, p28 has the potential to achieve cancer-targeted drug 
delivery. Although binding affinities have been measured 
for azurin/p28 and several of their binding partners, struc-
ture information on azurin/p28 in complex with these bind-
ing partners is extremely limited. It is urgently required to 
obtain the structures of p28/p53-DBD complex and azurin/
p53-DBD complex to further understand the functions of 
azurin and p28 as well as perform rational designs for p28 
to improve its activity. In addition, the discovery of azurin-
like anticancer proteins will provide valuable information 
toward understanding the activities of azurin and p28 and 
clues toward improving these activities [80, 81].
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