
Vol.:(0123456789)1 3

The Protein Journal (2019) 38:693–703 
https://doi.org/10.1007/s10930-019-09867-y

Expression and Characterization of Human Vascular Endothelial 
Growth Factor Produced in SiHa Cells Transduced with Adenoviral 
Vector

N. C. Parra1 · R. Mansilla1 · G. Aedo1 · N. S. Vispo2 · E. E. González‑Horta3 · I. González‑Chavarría3 · C. Castillo3 · 
F. Camacho1 · O. Sánchez1 

Published online: 28 September 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The vascular endothelial growth factor (VEGF) is an essential factor to pathologic angiogenesis. Disruption of VEGF/VEGF 
receptor interaction in cancer patients inhibits the development of new and pre-existing tumor blood vessels. Consequently, 
VEGF becomes an important therapeutic target for handling solid tumors. In this work, human VEGF was produced in the 
culture supernatant of SiHa cells transduced with a replication-defective adenoviral vector (pAdhVEGF121) encoding this 
molecule. The 35 kDa VEGF121 homodimer was obtained from clarified culture media as a glycosylated protein. VEGF121 
expression levels were strictly dependent on the adenoviral viral load used. VEGF121 was produced with purity over 98% 
after a single step chromatography by immobilized metal affinity chromatography. Additionally, VEGF121 binds Bevacizumab 
antibody with a KD of 7 nM. Biological characterization by mitogenic assay in HUVEC and ECV-304 cells showed that 
VEGF121 stimulates cell proliferation in a dose-dependent manner in both cells. Finally, the neovascularization activity of 
VEGF121 was demonstrated by vascular permeability assays in matrigel plug-bearing mice, showing significantly increased 
vasculature leakage after treatment with VEGF121. Consequently, transduction of SiHa cells with adenovirus is a suitable 
alternative for manufacture heterologous proteins of therapeutic interest.
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1  Introduction

The vascular endothelial growth factor-A (VEGF or VEGF-
A) and its receptors play a fundamental role in angiogen-
esis. VEGF is a 40 kDa glycoprotein that is secreted to 

the extracellular compartment. The structure of VEGF is 
homodimeric, formed by two disulfide-linked monomers 
arranged in an antiparallel direction, displaying two bind-
ing sites at each extreme of the molecule [1]. In mammals, 
VEGF belongs to a family of five members: VEGF-A, 
VEGF-B, VEGF-C, VEGF-D, and PlGF (Placental growth 
factor). The biological functions of VEGF proteins are 
mediated by a family of tyrosine kinase receptors, known 
as the VEGF receptors (VEGFR) [1–3]. The human VEGF-
A gene is arranged in 8 exons and is expressed as multiple 
isoforms due to differential splicing. The four principal iso-
forms describe are hVEGF121, hVEGF165, hVEGF189 and 
hVEGF206 [4–7]. VEGF121 lacks exons 6 and 7 responsible 
for the heparin-binding domain and freely diffuse through 
the extracellular matrix [5].

VEGF is a key regulator of vasculogenesis and angio-
genesis during embryogenesis [8, 9]. However, in adults, 
physiological angiogenesis occurs only during wounds heal-
ing and the menstrual cycle [10–12]. When VEGF regula-
tory control is lost, angiogenesis contributes to numerous 

N. C. Parra and R. Mansilla have contributed equally to this work.

 *	 O. Sánchez 
	 osanchez@udec.cl

1	 Recombinant Biopharmaceuticals Laboratory, Department 
of Pharmacology, School of Biological Sciences, 
Universidad de Concepción, P.O. Box 160C, Concepción, 
Chile

2	 School of Life Sciences & Biotechnology, Yachay Tech 
University, San Miguel de Urcuquí, Hacienda San José s/n y 
Proyecto Yachay, Urcuquí, Ecuador

3	 Biotechnology and Biopharmaceuticals Laboratory, 
Department of Pathophysiology, School of Biological 
Sciences, Universidad de Concepción, Concepción, Chile

http://orcid.org/0000-0002-9744-8674
http://crossmark.crossref.org/dialog/?doi=10.1007/s10930-019-09867-y&domain=pdf


694	 N. C. Parra et al.

1 3

pathological conditions, such as rheumatoid arthritis [13] 
psoriasis [14], atherosclerosis [15], macular degeneration 
[16] and tumorigenesis [17].

VEGF induces cell proliferation and promotes survival 
and migration of endothelial cells. These biological effects 
are essential for tumorigenesis as angiogenesis is required 
for tumor growth and progression [17–20]. Cancer cells 
secrete VEGF promoting new blood vessels formation for 
nutrient and oxygen supply [21–23] Particularly, VEGF121 
isoforms overexpression has been detected in colorectal can-
cer and in a cancer mouse model VEGF121 overexpression 
but not VEGF165 overexpression induced tumor growth [24].

The interest of expressing biologically active VEGF121 
by recombinant DNA technology lies in the function of this 
molecule and its different uses: (i) To study and develop-
ment of new therapies based on inhibiting VEGF/VEGFR 
interaction [25–29] and (ii) advanced treatments of patients 
with diabetic foot and ischemic diseases [30–36].

Recombinant VEGF has been expressed on different 
systems, including Escherichia coli [37–39], yeast [40, 41], 
insect cells [42] Chinese hamster ovary cells (CHO) [43]. 
Nevertheless, VEGF purification in these expression systems 
requires multiple-steps purification protocols increasing the 
final product cost [37, 44]. VEGF yields obtained on these 
systems are in the range of mg/l. However, VEGF expression 
has focused on VEGF165 isoform.

In this work, we expressed VEGF121 in SiHa cells trans-
duced with adenoviral vectors. The use of replication-
defective adenoviral vectors for transient gene expression of 
human proteins in mammal cell cultures is based on the fact 
that it is an efficient and safe method for gene transfer and 
protein expression in vitro and in vivo [45–51]. We analyzed 
the biological activity of purified VEGF121 based on pro-
liferation and induction of vascular permeability. VEGF121 
proliferative properties were analyzed on human umbilical 
cord endothelial cells (HUVEC) and ECV-304 cell line. The 
neoangiogenic activity was studied by in vivo murine model 
of vascular permeability.

2 � Materials and Methods

2.1 � Generation of Ad‑VEGF Adenoviral Vector

The AdEasy vector system was used to generate the repli-
cation-defective vector pAdhVEGF121 [52]. Briefly, a syn-
thetic 500 bp sequence encoding human VEGF plus a 6xHis 
tag was cloned into XhoI/EcoRV sites of the shuttle vector 
pAdtrack-CMV. The resulting plasmid was transformed into 
the E. coli BJ5183 strain along with the pAdEasy vector to 
generate a defective adenoviral vector by in vivo recom-
bination. The resulted plasmid (pAdhVEGF121) has two 
cytomegaloviruses (CMV) promoters, one for the green 

fluorescent protein (GFP) and the other for VEGF. The ini-
tial viral pool was prepared by transiently transfecting the 
pAdhVEGF121 plasmid into HEK-293 cells. Adenovirus 
stocks were further amplified in HEK-293 cells and har-
vested by a freeze-thaw lysis protocol. Virus concentration 
was calculated as gene transfer units (GTU) by GFP expres-
sion in HEK-293 cells.

2.2 � VEGF121 Production in SiHa Cells

SiHa cells were grown in a 24-well plate in DMEM medium 
supplemented with 10% fetal bovine serum (FBS). After 
reaching 80% of confluence, cells were infected with the 
replication-defective adenovirus at the following multiplicity 
of infection (MOI): 0.5, 10, 20, 40, 80, 160 GTU/cell. Six 
hours later, media was removed, cells were washed twice 
with PBS, and 2 ml of DMEM serum- free were added per 
well. After 72 h, supernatants were harvested, and VEGF 
expression was analyzed by SDS-PAGE, Western blot with 
an anti-Histidine antibody (Sigma, USA). VEGF121 were 
quantified by the NovexR Human VEGF solid-phase sand-
wich ELISA (ThermoFisher Scientific, EEUU).

2.3 � VEGF121 Purification from the Culture Medium

The expressed protein was purified by immobilized metal 
affinity chromatography (IMAC) using an ÄktaPurifier liq-
uid chromatography system in the following manner. Cell 
culture supernatant was centrifuged and filtrated through a 
0.2 μm filter to remove debris and floating cells. Clarified 
medium was applied to a 5 ml Ni-Sepharose fast flow col-
umn (GE, USA), previously equilibrated with 5 volumes of 
equilibrium buffer (0.5 mM PMSF, 100 mM NaH2PO4, imi-
dazole 5 mM pH 7.4). After washing with equilibrium buffer 
containing 100 mM imidazole, the VEGF121 protein was 
eluted by raising the imidazole concentration to 250 mM. 
Protein purification was monitored by UV absorption at 
A280 nm. Each collected fraction was analyzed by 12% 
SDS-PAGE/Coomassie staining. VEGF121 was detected by 
Western blot with an anti-His antibody (Sigma, USA). The 
eluted fraction was dialyzed in 10 mM NaH2PO4, pH 7.4.

2.4 � N‑Deglycosylation of VEGF121

The purified VEGF121 was deglycosylated by PNGase F 
(New England Biolabs). VEGF121 samples were mixed with 
denaturing glycoprotein buffer and incubated 5 min at 100 
°C. The denatured VEGF121 were incubated at 37 °C over-
night with PNGase F in the buffer provided by the manu-
facturer and 1% NP40. VEGF was analyzed by SDS-PAGE/
Coomassie blue staining and Western blot.



695Expression and Characterization of Human Vascular Endothelial Growth Factor Produced in SiHa…

1 3

2.5 � Anti‑VEGF121 Antibody Binding Affinity 
Measurement

The Monolith NT.115 device (NanoTemper Technologies 
GmbH, Germany) was used for analyzing binding affinity by 
microscale thermophoresis (MST). Bevacizumab antibody 
was labeled with NT-647 probe and used at a concentration 
of 6 nM. VEGF121 was titrated from 3 pM to 100 nM. The 
experiments were performed in binding buffer (Tris–HCl 
50 mM, pH 7.4, NaCl 150 mM, MgCl2 10 mM and 0.05% 
Tween-20). Samples were incubated for 1 h at room tem-
perature before loaded into MST hydrophobic capillaries. 
The data were analyzed with NT Affinity Analysis software.

2.6 � In Vitro Proliferation Assay

VEGF121 biological activity was analyzed by MTT prolif-
eration assays in Human umbilical vein endothelial cells 
(HUVEC) and ECV-304 cells. HUVEC cells were cultured 
in M-199 medium supplemented with 10% FBS and ECV-
304 cells in DMEM medium supplemented with 10% FBS. 
HUVEC and ECV-304 cells were seeded in 96-well plates 
at 1 × 104 cells/well and 2 × 104 cells/well, respectively. After 
24 h, cells were washed once with PBS and incubated for 6 h 
in serum-free medium before adding (0, 10, 20, 40, 80, 160, 
320, 640 and 1280 ng/ml) of VEGF121 for 48 h. Then, 10 μl of 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
at 5 mg/ml was added to each well and placed at 37 ° C for 4 h. 
Media were removed and formazan crystals were solubilized 
by adding 100 μl of DMSO. The plate was stirred for 15 min 
at 37 °C and measured the absorbance at 570 nm. EC50 value 
was calculated by the GraphPad Prism 6 software.

2.7 � In Vivo Neovascularization Assay

VEGF121 was mixed with Matrigel (BD Bioscience, USA) at 
30 ng/ml and injected subcutaneously into the laterodorsal 
abdominal region of female CF1-BALB/c mice of 4 weeks 
of age. After 6 days, PEG IRDye 800CW contrast agent (LI-
COR Biosciences, USA) was injected through the tail vein 
of Matrigel-VEGF121 carrier mice. 24 h post-injection, the 
leakage of dye from capillaries was quantified by near-infra-
red fluorescent imaging (NIRF) using the Pearl® Impulse 
Small Animal Imaging System (LI-COR Biosciences, USA).

3 � Results

3.1 � VEGF Expression in Adenoviral‑Transduced SiHa 
Cells

The replication-defective adenoviral vector pAdhVEGF121 
was constructed by cloning the synthetic VEGF121 gene 

in pAdtrack followed by recombination with the pAdEasy 
vector in E. coli BJ5183 strain (Fig. 1a). pAdTrack-hVEGF 
and pAdEasy-hVEGF plasmids were digested with PacI to 
check cloning and recombination events. A single band of 
4.5 kbp in pAdEasy-hVEGF digested with PacI indicated 
correct recombination between pAdTrack-hVEGF and 
pAdEasy (Fig. 1b). The recombinant viral genomes were 
transfected into the complementing cell line HEK-293. 
Replication-defective viruses manifest by comet-like fluo-
rescent plaques around 7 days after transfection (Fig. 1c).

To determine VEGF121 expression conditions, SiHa 
cells were infected at MOI of 5, 10, 20, 40, 80 and 160 
GTU/ml. Transduction efficiency and cytopathic effect 
were evaluated by fluorescence microscopy (GFP expres-
sion) and phase contrast microscopy, respectively. Sev-
enty-two hours post infection, the number, and fluorescent 
intensity of cells increased in a GTU dose-dependent man-
ner; however, cytotoxicity and cell death also increased 
(Fig. 2a). For each MOI tested, we analyzed VEGF121 
expression by SDS-PAGE and Western blot, detecting 
two protein bands, at 17 kDa and at 19 kDa. A linear 
relationship was also observed between the amount of 
VEGF121 secreted in the supernatants and the adenovirus 
load used to infect SiHa cells (Fig. 2b, c). Among 10–80 
GTU/cell, the expression levels of VEGF121 underwent 
an eightfold increase. Therefore, we select 80 UFC/cell 
for next experiments as the optimal MOI that allows a 
balance between the fewer cytopathic effect and increased 
VEGF121 expression.

3.2 � VEGF121 Purification and Biochemical 
Characterization

The recombinant VEGF121 was purified by IMAC. The 
chromatogram illustrates the elution profile of VEGF121 
on the IMAC column (Fig. 3a). Initial sample, non-binding 
fraction, washed fraction and eluted fraction were ana-
lyzed by 12% SDS-PAGE/Coomassie staining (Fig. 3b). 
VEGF121 was purified as a homodimer of approximately 
35 kDa with an estimated purity of 98% by densitometry 
with the Image J software. The protein was recognized by 
anti-poly-histidine antibody (Fig. 3c). 12 mg of purified 
VEGF121 were obtained from 100 ml of culture medium 
using this purification procedure.

The glycosylation state of VEGF121 was analyzed 
with PNGase F enzyme. We demonstrated that the upper 
band of 19 kDa detected on Western blots correspond to 
N-glycosylated forms of VEGF121 monomers, whereas 
the lower band of 17 kDa contains non-N-glycosylated 
VEGF121. Additionally, a third immunoreactive band of 
around 15 kDa was identified (Fig. 3d). Furthermore, it 



696	 N. C. Parra et al.

1 3

was demonstrated by MST that VEGF121 can bind Beva-
cizumab antibody with a KD of 7 ± 1 nM (Fig. 4).

3.3 � VEGF121 Induces In Vitro Cell Proliferation 
in HUVEC and ECV‑304 Cells

The biological activity of VEGF121 was studied by its 
growth-stimulating effect on cells by MTT assays. The 
effect of recombinant VEGF121 on HUVEC and ECV-304 
cells proliferation was dose-dependent (Fig. 5a, b). An 
increase in VEGF121 concentration caused HUVEC and 
ECV-304 cells increased proliferation. The half maximal 
effective concentration (EC50) of VEGF121 to induce cell 
proliferation was estimated at 11.02 ng/ml and 13.03 ng/
ml for HUVEC and ECV-304 cells, respectively.

3.4 � VEGF121 Increase In Vivo Neovascularization 
in Matrigel‑Bearing Mice

VEGF121 induced neovascularization was demonstrated 
by a matrigel plug assay in mice using IRDye® 800CW 
PEG as a contrast agent to visualize and quantify vascular 
permeability. NIRF-800 images showed that mice treated 
with VEGF121 exhibited greater probe accumulation out-
side the vasculature than the placebo group, as a result 
of dye extravasation out of the matrigel plug (Fig. 6a, b).

4 � Discussion

VEGF is a glycosylated protein that forms homodimers by 
interchain disulfide bonds. VEGF121 homodimeric form 
is essential for its biological activity. VEGF is an asym-
metric antiparallel homodimer with two receptor binding 

Fig. 1   Generation of replication-defective adenoviral vectors. a Con-
struction of the recombinant adenoviral expression vector pAdTrack-
hVEGF-A121. A synthetic 500 bp band encoding human VEGF and 
a 6xHis tag was cloned in pAdtrack-CMV. b Restriction enzyme 
analysis of pAdTrack-hVEGF-A121 (Lane 1), pAdEasy (Lane 2), 
and homologous recombination product (Lane 3) with PacI. c 

pAdhVEGF121 was transfected in HEK-293 cells and GFP expres-
sion was visualized by fluorescence microscopy. Comet-like fluores-
cent plaques became apparent at 7 days (red circle). The microphoto-
graphs were acquired with an Olympus IX81 DSU microscope (× 40 
magnification)
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interfaces found at each pole of the homodimer. Each of 
the two binding interfaces must be able to contact a recep-
tor monomer, triggering receptor dimerization and activa-
tion [1]. In the present work, we reported the expression 
of biologically active VEGF121 by SiHa cells transduced 
with replication-defective adenovirus. We select this 
cell line because they express the Coxsackievirus/Ade-
novirus receptor (CAR) needed for effective adenoviral 
transduction [53–55]. Non-reducing SDS-PAGE/Western 
blot results demonstrated that VEGF121 was secreted to 
the culture medium mainly as a homodimer with a near 
molecular weight of 35–37 kDa (58% of total protein, 
Fig. 3c, Lane 1). This result agrees with the molecular 
weight of VEGF121 obtained from other sources, including 
yeast and bacteria [37, 40]. We did not detect monomer 
forms but higher-molecular-mass complexes (Fig. 3c, Lane 
1). Expressions of VEGF121 in Pichia pastoris and bacu-
lovirus/insect cells has also resulted in multiple VEGF 
bands, which was interpreted as covalently linked high-
molecular-mass molecules [56, 57]. VEGF isoforms have 
been obtained in various conformations even in E. coli, 

with roughly equal proportions of monomeric and dimeric 
VEGF121 forms [58].

Additionally, we demonstrated that VEGF121 was 
secreted as a glycosylated protein. After N-deglycosyla-
tion with PNGase F enzyme, VEGF121 migrated in SDS-
PAGE as a band of around 17 kDa corresponding to the 
non-N-glycosylated VEGF121 form. However, we detected 
a second immunoreactive band of approximately 15 kDa. 
We hypothesize that the 15 kDa band represent the N- and 
O-non-glycosylated form of VEGF121 and the 17 kDa band 
represents the N-deglycosylated VEGF121 that still contains 
O-linked oligosaccharides in two solvent-exposed serine 
residues (S74 and S95). Therefore, we believe that VEGF121 
is secreted as an N- and O-linked glycoprotein. While this 
hypothesis was not demonstrated, the presence of two acces-
sible serine residues at position 74 and 95 in the molecular 
surface of VEGF121 homodimer supports this hypothesis.

In this work, we did not perform a comparative analysis 
between glycosylated VEGF derived from SiHa cells and 
non-glycosylated variants. There is no evidence that VEGF 
glycosylation is required for dimerization neither binding to 

Fig. 2   Viral load effects on cytotoxicity and VEGF121 expression. a 
SiHa cells were infected at MOI of 0, 10, 20, 40, 80 and 160 GTU/
ml. Adenovirus infection resulted in a dose-dependent increase of 
cytopathic effect and GFP expression. b VEGF121 expression in 
SiHa cells infected at different MOI. Proteins were separated in 12% 
SDS-PAGE gel under reducing conditions and immunodetected 

with an anti-Histidine antibody. At 20 MOI, two bands of VEGF121 
were detected, at 17  kDa and 19  kDa. However, at higher viral 
load VEGF121 overexpression also increases giving rise to a satura-
tion effect that affects the visualization of these 2 bands. c VEGF121 
expression levels at different viral load were quantified by NovexR 
Human VEGF solid-phase sandwich ELISA
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its receptor [59]. However, VEGF glycosylation is essential 
for molecule secretion; demonstrated by reduced secretion 
when glycosylation sites were mutated in mouse VEGF164 
and human VEGF165 [59, 60]. Regarding its biological activ-
ity, it was demonstrated that VEGF glycosylation is not 

required for mitogenic activity [61]. Besides, in vessel per-
meability assays, there were no differences between VEGF 
with mutated glycosylation sites and wild-type VEGF [62].

VEGF121 expressed in the supernatant of SiHa cells was 
purified by a single step of IMAC chromatography. We 

Fig. 3   Purification and characterization of VEGF121. a Chroma-
togram of immobilized metal affinity chromatography using a Ni-
Sepharose Fast Flow column. b SDS-PAGE analysis of samples from 
the affinity chromatography steps. Lane 1: Culture medium of SiHa 
cells (starting material); Lane 2: Flow-through; Lane 3: Proteins from 
the washing step at 100 mM Imidazole; Lane 4: VEGF121 elution at 
250  mM Imidazole. Bands were quantified by densitometry to esti-
mate purity. c SDS-PAGE and Western blotting analysis of VEGF121 

produced in SiHa cells, respectively. Lane 1: Non-reducing condi-
tions. Lane 2: Reducing conditions. d N-Deglycosylation assay of 
VEGF121 by treatment with PNGase F enzyme. VEGF121 (90  μg) 
was untreated (lane 1) or treated with PNGase F overnight (lane 2) at 
37°C and analyzed by SDS-PAGE on a 12% gel under reducing con-
ditions followed by Coomassie blue staining and Western blot with an 
anti-Histidine antibody
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Fig. 4   The VEGF121/Bevacizumab binding analyze by MST. a MST 
data for VEGF121 interaction with Bevacizumab. b Binding curve 
between VEGF121 and Bevacizumab. VEGF121 at concentrations from 
3 pM to 100 nM was titrated against 6 nM of Bevacizumab labeled 

with the fluorescent probe NT-650. MST experiments were per-
formed at a LED power of 60%. Plotting of the change in thermo-
phoresis and concomitant fitting of the data yielded a Kd of 7+ 1 nM. 
Error bars = s.d.; n = 2

Fig. 5   Cell growth stimula-
tion of HUVEC and ECV-304 
cells by VEGF121. HUVEC and 
ECV-304 cells were treated 
with increasing amounts of 
purified VEGF121 (0, 10, 20, 40, 
80, 160, 320, 640 and 1280 ng/
ml), and cell proliferation was 
quantified by MTT assay. Error 
bars = s.d.; n = 3

Fig. 6   VEGF121-induces vascular permeability by matrigel plug 
assays.VEGF121 (30  ng/ml) was mixed with matrigel and implanted 
on the back of CF1-BALB/c mice. The IRDye 800CW PEG probe 
was i.v injected 6 days later. Vascular permeability was measured 
by near-infrared fluorescence. a Representative NIRF-800 images 
of matrigel alone (upper panel) and matrigel-VEGF121-bearing mice 

(lower panel) 24  h after NIRF dye inoculation. Extensive leakage 
of the fluorescent probe outside the matrigel plugs was observed on 
VEG121-bearing mice. b Relative quantification of NIRF fluorescence 
of matrigel-VEGF121-bearing mice. The statistical analysis was per-
formed according to a t-test. Error bars = s.d; n = 3. Error bars = s.d; 
n = 3
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obtained 12 mg of VEGF121 from 100 ml of clarified cul-
ture media. The single-step purification method reported 
in this paper is simple, fast, and does not require difficult 
renaturation methods. VEGF121 was expressed and purified 
from inclusion bodies in E. coli with high yield and purity 
[37, 63]. However, this procedure involves denaturation/
renaturation steps. Conditions for refolding the denatured 
proteins to its native functional form are cumbersome and 
have to be standardized by trial-and-error methods, being 
time-consuming and expensive for scaling-up [64].

Bevacizumab is a therapeutic humanized antibody that 
blocks angiogenesis by inhibiting VEGF. This antibody 
recognizes a conformational epitope [1, 65], and bind to 
VEGF with a KD of 4.45 nM [66]. By MST, we determine 
that Bevacizumab binds to the purified VEGF121 with a KD 
of 7 nM. The slight difference between the KD determined 
by MST and reported KD for Bevacizumab, seem to be a 
consequence of different experimental conditions. However, 
this result confirms that the VEGF121 expressed in SiHa 
cells transduced with adenoviral vector keep the conforma-
tional epitope recognized by Bevacizumab, and suggest that 
VEGF121 is secreted properly folded.

VEGF has two major biological activities: (a) it is mito-
genic to vascular endothelial cells and (b) can induce capil-
lary leakage (vascular permeability) [67]. VEGF stimulates 
HUVEC proliferation and promotes its migration. Therefore, 
HUVEC cells are generally used for assaying VEGF biologi-
cal activity [68, 69]. VEGF121 produced in SiHa cells was 
able to induce mitogenic responses in HUVEC in a dose-
dependent manner. The EC50 of VEGF121 was 11.02 ng/ml, 
similar to the EC50 reported to VEGF purified from bacteria 
and yeast [37, 40]. Although HUVEC is the most extensively 
used endothelial cell type to study endothelial functions [68] 
and responds to VEGF, these cells are isolated as primary 
cell culture. Working with primary cultures is complex, and 
it is only possible to keep them in vitro for short periods of 
time, besides there are increased risks of microorganisms’ 
contamination. Thus, working with a cell line [70] that has 
endothelial properties could replace the use of HUVEC.

ECV-304 cell line was first described as a spontaneously 
transformed cell line originated from a Japanese human 
umbilical vein endothelial cell culture. Later, it was found 
to be derived from the human urinary bladder carcinoma 
T24 cell line [71]. However, ECV-304 cells have many fea-
tures of endothelial cells [72], such as increasing cell prolif-
eration in the presence of VEGF [73], a characteristic only 
observed in endothelial cells but not found in T24 cells [74]. 
Hence, ECV-304 cells would serve as an angiogenesis model 
allowing us to characterize endothelial functions [75]. Based 
on this information, we evaluated the mitogenic activity of 
VEGF121 on ECV-304 cells. VEGF121 produced in SiHa 
cells was able to enhance ECV-304 cell proliferation in a 
cell dose-dependent manner, with an EC50 of 13.03 ng/ml. 

This result suggests that ECV-304 cell can be used to evalu-
ate the biological activity of VEGF121, in replace of HUVEC 
primary cell culture.

VEGF induced neovascularization is characterized by 
immature and highly fenestrated blood vessels. There is a 
direct relationship between neovascularization and vascular 
permeability. Classically, neovascularization has been meas-
ured using the Miles Assay [76]. This test uses a spectropho-
tometer to quantify the leakage of a dye from the vasculature 
to the surrounding tissue, with the limitation of the analysis 
of a single time point, which must be selected empirically. 
In this work, we present a modified method to visualize and 
quantify in real-time the vascular leakage using a fluores-
cent dextran-based dye. VEGF121 mixed in the matrigel plug 
injected into mice induced the formation of new and highly 
fenestrated blood vessels, which trigger the leakage of the 
fluorescent probe from the vasculature to the plugs. Thus, 
VEGF121 caused an increase in fluorescence accumulation 
in matrigel plugs.

5 � Conclusions

In this study, we demonstrated functional expression of 
VEGF121 in the culture media of SiHa cells transduced with 
a replication-defective adenoviral vector (pAdhVEGF121). 
VEGF121 expression levels were strictly depended on the 
viral load used, reaching the maximum expression level at 
80 GTU/cell. Expression in SiHa cells resulted in a soluble 
N-glycosylated dimer of 35–37 kDa, and partial formation 
of high molecular weight oligomers covalently linked. The 
purified VEGF121 was recognized by the anti-VEGF anti-
body Bevacizumab, demonstrating that VEGF121 produced 
in SiHa cells keep the conformational epitope recognized by 
Bevacizumab. VEGF121 induced cell proliferation in both 
HUVEC and ECV-304 cell line. Therefore, ECV-304 cells 
can replace the primary culture model HUVEC for assaying 
VEGF bioactivity. Finally, a vascular permeability test with 
mice carrying matrigel plugs and a fluorescent probe made it 
possible to determine that purified VEGF121 promotes capil-
lary leakage. In conclusion, we have successfully developed 
an easy and efficient procedure for VEGF121 expression and 
purification. This molecule could be used for the evaluation 
of therapies against angiogenic tumors and wound healing.
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