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Abstract
Due to the heterogenous lipid environment in which integral membrane proteins are embedded, they should follow a set of 
assembly rules, which govern transmembrane protein folding and topogenesis accordingly to a given lipid profile. Recom-
binant strains of bacteria have been engineered to have different membrane phospholipid compositions by molecular genetic 
manipulation of endogenous and foreign genes encoding lipid biosynthetic enzymes. Such strains provide a means to inves-
tigate the in vivo role of lipids in many different aspects of membrane function, folding and biogenesis. In vitro and in vivo 
studies established a function of lipids as molecular chaperones and topological determinants specifically assisting folding 
and topogenesis of membrane proteins. These results led to the extension of the Positive Inside Rule to Charge Balance 
Rule, which incorporates a role for lipid-protein interactions in determining membrane protein topological organization at 
the time of initial membrane insertion and dynamically after initial assembly. Membrane protein topogenesis appears to be 
a thermodynamically driven process in which lipid-protein interactions affect the potency of charged amino acid residues 
as topological signals. Dual topology for a membrane protein can be established during initial assembly where folding 
intermediates in multiple topological conformations are in rapid equilibrium (thus separated by a low activation energy), 
which is determined by the lipid environment. Post-assembly changes in lipid composition or post-translational modifica-
tions can trigger a reorganization of protein topology by inducing destabilization and refolding of a membrane protein. The 
lipid-dependent dynamic nature of membrane protein organization provides a novel means of regulating protein function.
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Abbreviations
TMD	� Transmembrane domain
EMD	� Extramembrane domain
PE	� Phosphatidylethanolamine
PG	� Phosphatidylglycerol
CL	� Cardiolipin
PS	� Phosphatidylserine
PC	� Phosphatidylcholine
LacY	� Lactose permease
PheP	� Phenylalanine permease
GabP	� γ-Aminobutyric acid permease
MelB	� Melibiose permease

CscB	� Sucrose permease
mAb4B1	� Monoclonal antibody 4B1
SCAMTM	� Substituted cysteine accessibility method 

applied to TMD orientation
ßMCD	� ß-Methyl cyclodextrin
MLV	� Multilamellar vesicle
FRET	� Förster resonance energy transfer

1  Introduction

The work of Günter Blobel firmly established the basic 
principles governing the targeting and initial insertion of 
proteins into the membrane utilizing the translocon machin-
ery [1]. Extensive studies have detailed the finer points of 
membrane protein assembly to give a picture of the initial 
steps of insertion of proteins into the membrane as well as 
their translocation across the membrane [2, 3]. These studies 
have progressed in parallel with detailing the driving forces 
and interactions responsible for final folding of proteins in 
the lipid bilayer. Most of the latter studies have focused on 
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membrane protein sequence determinants which are required 
for proper and uniform insertion of hydrophobic transmem-
brane domains (TMDs) into and exclusion of hydrophilic 
extramembrane domains (EMDs) from the hydrophobic core 
of the lipid bilayer [4]. This primarily protein centric focus 
has resulted in less attention paid to the role of the diverse 
nature and dynamic properties of the cellular lipidome, 
which may exceed the complexity of the proteome of any 
given cell [5].

TMD insertion into and EMD exclusion from the lipid 
bilayer can be easily modeled based on physical principles 
governing the partitioning of these domains (depending on 
their length and hydrophobicity) between an aqueous and 
an organic phase [6]. Less defined is the molecular basis 
for the orientation of TMDs and EMDs with respect to the 
plane of the lipid bilayer. The Positive Inside Rule [7] was 
formulated originally by the statistically based observation 
that over 80% of membrane protein EMDs exposed to the 
cytoplasm carry a net positive charge. Experimental manipu-
lation of EMD charges further supports this general rule [7, 
8] and the functioning of positively charged amino acids as 
retention signals. However, the Positive Inside Rule does 
not explain the cytoplasmic orientation of the remaining 
20% of EMDs that are net negative or neutral. It is also not 
clear why positively charged residues are retained in the 
cytosol and appear to be more potent topological determi-
nants than negatively charged residues under physiological 
conditions. The strong inward negative membrane potential 
across many membranes has been suggested as the orien-
tation force favoring cytoplasmic orientation of positively 
charged EMDs [7, 9, 10]. However, acidophiles have a posi-
tive inward membrane potential and still obey the Positive 
Inside Rule at least statistically by orienting net positively 
charged EMDs toward the cytoplasm [11]. An early study 
of the effect of progressively increasing the membrane con-
tent of negatively charged phospholipids suggested that 
interaction of positively charged amino acids in EMDs 
with negatively charged lipid headgroups favored orienta-
tion of net positively charged EMDs toward the cytoplasm 
during initial translocon-dependent membrane insertion of 
proteins [12]. As will be discussed, this appears not to be 
the basis for the Positive Inside Rule. Furthermore, neither 
the current understanding of translocon-dependent protein 
insertion into membranes nor the Positive Inside Rule can 
explain co-existence of membrane proteins with dual or mul-
tiple topologies in the same or different cell membranes, 
changes in topological organization of membrane proteins 
post-assembly in response to changes in the membrane 
lipid composition and posttranslational modification, or the 
positive inside negative outside bias in positioning EMDs. 
Although the translocon/insertion machinery may perform 
some of the initial co-translational catalysis, the presence 
of equal or different amounts of oppositely oriented protein 

conformers within the same membrane is well beyond the 
control of the translocon.

In order to fully understand the process of membrane pro-
tein synthesis and assembly, studies must also be focused on 
what happens to protein chains after they leave the translo-
con and distribute themselves across the lipid bilayer. The 
lipid bilayer is a diverse and dynamic mixture of amphip-
athic molecules held together by non-covalent hydrophobic 
forces [5, 13]. Due to the dynamic nature of the lipid bilayer 
during the cell cycle with respect to overall composition, 
distribution of lipid species laterally along and between the 
monolayers, and between multiple organelle membranes, 
the temporal effect of neighboring lipids on organization of 
membrane proteins must be considered. Finally, the potential 
for changes in topology induced by post-assembly modifi-
cation of membrane proteins within a changing lipid envi-
ronment must be addressed. Based on extensive studies in 
whole cells, isolated membranes and reconstituted proteoli-
posomes, we have postulated the Charge Balance Rule [14, 
15] as an extension of the Positive Inside Rule to incorporate 
the role of lipid-protein interactions in dynamic organization 
of membrane proteins.

2 � Complexity of the Lipidome

Three major phospholipids (phosphatidylethanolamine 
(PE), phosphatidylglycerol (PG), and cardiolipin (CL)) 
comprise about 95% of the lipids found in the inner 
membrane of a simple organism such as Escherichia coli 
[13]. The remaining 5% is made up of precursors to the 
major phospholipids as well as some modified phospho-
lipids. The inner leaflet of the outer membrane is almost 
exclusively composed of PE while the outer leaflet is a 
monolayer of the lipid A component of lipopolysaccha-
ride. The overall phospholipid composition of E. coli 
is about 70–80% of zwitterionic PE with the remain-
der being mostly anionic PG plus CL. Unrecognized in 
many in vitro studies is that the inner membrane content 
is roughly 50–60% PE given the high PE content of the 
outer membrane. Eukaryotic membranes are considerably 
more complex since they contain sterols, sphingolipids, 
complex glycolipids and the additional phospholipid head-
groups of choline and inositol. Additional complexity 
comes from variation in fatty acid composition within each 
lipid class ranging from 12 to 26 carbons with different 
degrees of saturation and asymmetric distribution of fatty 
acids esterified to the glycerol backbone, which could be 
physiologically important [16]. Therefore, the diversity of 
lipid species in a simple organism such as E. coli is in the 
1000’s while diversity in higher organisms is considerably 
higher. Furthermore, lipid composition in all cell types is 
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not uniform either laterally along the membrane, between 
the two leaflets of the lipid bilayer, between different mem-
branes, or temporally during the cell cycle.

The properties of a membrane bilayer are a complex 
sum of the properties of its individual species, which 
ultimately affects the structure and function of embedded 
and peripheral membrane proteins at the time of initial 
membrane insertion as well as after proteins traffic to 
their final location [5]. Although the physical and chemi-
cal properties of single lipids and lipid mixtures have been 
extensively studied (see Fig. 1), it is not clear how these 
properties translate into physiological function. There-
fore, the use of simple lipid mixtures in studies carried out 
solely in vitro has the potential to result in inaccurate or 
incomplete information about a specific lipid’s role. How-
ever, given the complexity of lipid compositions, in vivo 

manipulation of membrane lipid composition results in 
complex pleiotropic effects that are difficult to sort out.

The combined results from in vivo, in situ and reconsti-
tuted systems can result in definitive understanding of the 
role of specific lipid-protein interactions in determining pro-
tein structure and function. Our approach to understand the 
role of specific lipids in various cellular processes has been 
to alter membrane phospholipid through generation of null 
mutations in genes encoding enzymes responsible for the 
committed steps to synthesis of the major phospholipids of 
E. coli (Fig. 2). Surprisingly, cells completely lacking PE, 
PG plus CL or CL are viable under set growth conditions but 
display several phenotypes that are related to the absence of 
the respective lipids [17]. The molecular basis for selected 
phenotypes was further investigated in whole cells [18], 
isolated membranes [19] and proteoliposomes composed of 
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Fig. 1   Summary of glycerolipid physical and chemical properties [5]. 
Glycerolipid headgroups range from net charged (anionic or cationic) 
to neutral (either uncharged or zwitterionic). R1 and R2 denote acyl 
chains of fatty acids esterified to diacylglycerol (DAG). Depending on 
the shape of the molecular when considering the ionized headgroup 
and the fatty acid composition, these lipids can either be bilayer 
(cylindrical shaped) or non-bilayer (prism shaped) prone. PE can 
assume either a cylindrical shape when both fatty acids are fully satu-

rated or a prism shape when at least one fatty acid is unsaturated. CL 
is non-bilayer in the presence of divalent cations, which is the physi-
ological state. Temperature and fatty acid composition affect both the 
fluidity (lower with saturated fatty acids and at lower temperatures) 
and the bilayer to non-bilayer transition, which occurs as temperature 
is raised. Although cellular membranes are bilayer to maintain barrier 
function, the presence of non-bilayer prone lipids introduces lateral 
stress and local disorder within the lipid bilayer (Color figure online)
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defined lipid compositions and purified proteins [20]. Fur-
ther analysis of the phenotypes of these null mutants has 
uncovered roles for specific phospholipids in membrane pro-
tein folding and topological organization, DNA replication, 
cell division, protein translocation across membranes, solute 
transport, energy transduction, and organization of phospho-
lipids into domains [13]. Most significant for this review is 
the role of membrane lipid composition in the organization 
of membrane proteins after exit from the translocon and 
insertion into the lipid bilayer.

3 � Requirement of PE for Secondary Active 
Transporter Function

Null mutants of the pssA gene of E. coli lack phosphatidylser-
ine (PS) synthase, which catalyzes the committed step (Fig. 2) 
to PE biosynthesis [13, 28]. The mutant lacks all amino-con-
taining phospholipids (i.e. PS and PE). The phospholipid to 
protein ratio is unchanged with an increase in the remaining 
anionic phospholipids PG and CL and their anionic precursors. 
The mutant requires medium supplemented with all the amino 

acids. Lack of growth on µmolar but growth on mmolar lactose 
as a carbon source is consistent with the earlier observation 
that the lactose permease (LacY) [29], when reconstituted in 
proteoliposomes, required PE to support energy-dependent 
uphill transport of lactose but not energy-independent down-
hill transport [30, 31]. A similar requirement for uptake of 
phenylalanine (PheP) [32], γ-aminobutyric acid (GabP) [33], 
melibiose (MelB) [34] and sucrose (CscB) [35, 36] suggested 
a general PE requirement for secondary active transporters. 
Although there are some effects on energy metabolism in PE-
lacking cells [37, 38] (especially when grown in a chemically 
defined, less rich medium [39]), subsequent studies ruled out 
altered energy metabolism as the basis for the lack of uphill 
transport [20, 40].

4 � PE as a Lipochaperone

Lack of recognition of LacY synthesized in PE-lacking 
cells [19, 41, 42] by a monoclonal antibody (mAb4B1) 
specific for a conformational epitope (domain P7, Fig. 3) 
missing in mutants of LacY not competent for active 
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Fig. 2   Synthesis of native and foreign lipids in E. coli. The enzymes 
with their respective genes named catalyze the following steps for syn-
thesis of native phospholipids noted in blue: 1. CDP-diacylglycerol 
synthase; 2. phosphatidylserine synthase; 3. phosphatidylserine decar-
boxylase; 4. phosphatidylglycerophosphate synthase; 5. phosphatidyl-
glycerophosphate phosphatases encoded by three genes; 6. cardiolipin 
synthases encoded by 3 genes; 7. phosphatidylglycerol:pre-membrane 
derived oligosaccharide (MDO) sn-glycerol-1-P transferase; 8. diacyl-
glycerol kinase. The enzymes with their respective genes named and 

their source catalyze the following steps for synthesis of phospholip-
ids foreign to E. coli noted in red: 9. phosphatidylcholine synthase 
(Legionella pneumophila [21, 22]); 10. phosphatidylinositol synthase 
(Saccharomyces cerevisiae [23]); 11. glucosyl diacylglycerol synthase 
(Acholeplasma laidlawii [24]); 12. diglucosyl diacylglycerol synthase 
(Acholeplasma laidlawii [25]); 13. lysyl t-RNA:phosphatidylglycerol 
lysine transferase (Staphylococcus aureus [26]). Figure (modified) and 
legend reprinted by permission from Springer Nature [27]: Copyright 
2018 (Color figure online)
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transport suggested a structural defect in LacY assembled 
in cells lacking PE [43, 44]. These initial studies led to 
detailed investigation of how lipid-protein interactions 
determine protein structure at the time of initiation fold-
ing as well as dynamically post-assembly.

LacY, although completely delipidated when extracted 
from membranes using sodium dodecyl sulfate, retains 
significant amounts of secondary and tertiary structure. 
LacY from wild type cells when subjected to sodium 
dodecyl sulfate-polyacryamide gel electrophoresis and 
Western blotting retains sufficient conformational mem-
ory to be recognized by the conformationally specific 
mAb4B1. LacY from PE-lacking cells is not recognized 
by mAb4B1. However, transfer of unreactive LacY from a 
sodium dodecyl sulfate-polyacryamide gel to a solid sup-
port pre-blotted with PE restores recognition by mAb4B1. 
This method, coined an Eastern-Western blot, was used 
to screen the properties of phospholipids that restore 
native conformation of the epitope within domain P7 of 
LacY synthesized in PE-lacking cells. Anionic PG and 
CL alone were ineffective, as were PEs containing only 
unsaturated fatty acids (such as dioleyl PE) in the absence 
of PG and CL. These unsaturated fatty acid derivatives 
of PE are prone to non-bilayer hexagonal II phase forma-
tion at room temperature unless they are mixed with PG 
and CL to form a lamellar bilayer phase, which supports 
refolding of domain P7. Phosphatidlycholine (PC) species 
containing only unsaturated fatty acids with or without the 
presence of anionic phospholipids do not support refold-
ing of domain P7. This result is consistent with previous 
findings that similar PC containing mixtures used to recon-
stitute purified LacY in proteoliposomes only supported 
downhill but not uphill transport of substrates. The P7 

domain epitope was also restored in membranes isolated 
from PE-lacking cells by in  situ synthesis of PE [19]. 
Taken together the lamellar state of PE is necessary dur-
ing initial folding of LacY, which retains conformational 
memory in at least domain P7 after complete delipidation 
and can support refolding of misfolded LacY. Moreover, 
solubilization of PE-deficient membranes in the presence 
of added PE followed by Western blot analysis did not 
result in restoration of mAb4B1 recognition, indicating 
that renaturation in the presence of PE rather than expo-
sure of denatured LacY to PE is required to reform the 
native epitope. Since the conformation of epitope P7 is 
dependent on PE during folding but not after proper fold-
ing (i.e. native LacY delipidated by SDS), these experi-
ments established PE as a lipochaperone.

5 � Experimental Basis for the Charge Balance 
Rule

5.1 � Generation of Mutants in Phospholipid 
Metabolism

The experiments using mAb4B1 recognition of the P7 
domain as function of lipid environment for LacY strongly 
suggested a lipid requirement for native protein folding. In 
order to investigate the influence of membrane lipid compo-
sition on protein structure and function, a set of fully viable 
E. coli “lipid mutants” was developed in which native and 
introduced foreign lipid content can be systematically con-
trolled at steady state, titrated in a dose-dependent manner 
or varied temporally during the cell growth [13, 14, 45]. The 
pssA null mutant when transformed by a plasmid expressing 
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Fig. 3   Topological organization of LacY as a function of membrane 
lipid composition. TMDs (Roman numerals) and EMDs (Arabic 
numerals) are sequentially numbered from the N-terminus to C-ter-
minus with EMDs exposed to the periplasm (P) or cytoplasm (C) as 
in wild type cells. Net charge of EMDs is shown. Topology of LacY 
is shown after initial assembly in PE-containing cells (+PE) or after 

initial assembly in PE-lacking (–PE). The interconversion of topo-
logical conformers and the ratio of native to inverted conformer are 
reversible in both directions depending on the dynamic level of PE 
in membranes. Figure (modified) and legend reprinted by permission 
from Springer Nature [27]: Copyright 2018 (Color figure online)
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PS synthase constitutively or under regulation of the tet 
promoter (controlled by anhydrotetracycline in the growth 
medium) displays wild type phospholipid composition or a 
dose-dependent level of PE (from 2 to 70%), respectively. 
Introducing foreign genes (Fig. 2) in the null pssA mutant 
results in full replacement of PE by PC and about 30–40% 
mono- and diglucosyl diacylglycerol or O-lysyl-PG of total 
glycerophospholipids. The only common property of these 
lipids is the ability to buffer the high negative charge density 
of the membrane surface due to PG and CL, rather than any 
common physical or structural property.

5.2 � Development of Methods to Measure 
Membrane Protein Topological Organization

We first focused on LacY because of its reported depend-
ence on PE for full function, the availability of a large array 
of genetic and biochemical tools [46], and eventually a 
detailed crystal structure [47, 48]. To probe organization of 
LacY in the cytoplasmic membrane of whole E. coli cells, 
we utilized the substituted cysteine accessibility method 
applied to TMD orientation (SCAMTM) [49] to determine 
the orientation of LacY with respect to the plane of the lipid 
bilayer (Fig. 4). This method is based on the accessibility 

to a membrane impermeable sulfhydryl reagent of single 
cysteine replacements in EMDs of a cysteine-less derivative 
of LacY. Figure 3 displays the expected topological organi-
zation of LacY when expressed in cells containing wild type 
levels of PE [14, 15, 45]. However, in the pssA null mutant, 
LacY assumes a vastly different organization with the N-ter-
minal 6-TMD bundle completely inverted with respect to the 
plane of the membrane bilayer and the last 5-TMD bundle. 
The low hydrophobicity TMD VII (contains two asparate 
residues) acts as a hinge point for this inverted structure and 
is now exposed to the periplasm.

5.3 � The Positive Inside Rule Appears to be Violated 
in PE‑Lacking Cells

Native LacY assembled in wild type E. coli strictly fol-
lows the Positive Inside Rule (Fig. 3). All cytoplasmically 
exposed EMDs have a net positive charge even though they 
contain a mixture of basic and acidic amino acids. The 
periplasmically exposed EMDs are either net negative or 
neutral and contain no positive residues. Nevertheless, the 
Positive Inside Rule is violated in cells lacking PE by posi-
tioning net positively charged EMDs facing the periplasm. 
Changes in the charge distribution of residues within the 
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maleimidylstilbene-2,2′-disulfonic acid (AMS) (bottom panel) to pro-
tect external cysteines during subsequent MPB lableing. Both halves 
are either kept intact (–) or disrupted (+) by sonication or deter-
gent treatment to expose the interior cysteine followed by treatment 
with MPB to specifically label the previously inaccessible internal 

cysteine residue. Labeling by MPB that can be blocked completely 
by pretreatment with AMS is an independent verification of an out-
side facing residue (bottom panel). Labeling by MPB that cannot be 
blocked by such AMS treatment is an independent verification of a 
residue that is facing the  interior. The target protein is immunopre-
cipitated and resolved by sodium dodecyl sulfate-polyacrylamine gel 
electrophoresis and biotinylated protein is detected using avidin-horse 
radish peroxidase with the predicted and observed results shown on 
the right. A protein with dual topology would display an increase 
in the amount of labeled protein after disruption in the upper panel 
and reduced amount of labeling detected after disruption in the lower 
panel. The modified figure and legend were reprinted by permission 
from Springer Nature: [49] Copyright 2019 (Color figure online)
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cytoplasmically exposed EMDs led to a clearer understand-
ing of how protein charged residues determine TMD orien-
tation as a function of membrane lipid composition [15]. 
Changing the net positive charge (either adding a positive 
or removing a negative residue) within the cytoplasmic 
EMD surface (EMD NT, C2, C4 or C6) of the N-terminal 
6-TMD bundle in a position independent manner prevented 
inversion of LacY in the absence of PE. Inversion of LacY 
in the presence of PE required an addition of six negative 
charges distributed along the cytoplasmic surface of the 
N-terminal bundle. Increasing the hydrophobicity of TMD 
VII by replacing one aspartic residue by isoleucine pre-
vented inversion in PE-lacking cells. However, the thermo-
dynamic barrier to exposing a now more hydrophobic TMD 
to an aqueous environment could be overcome by increasing 
the negative charge of the N-terminal bundle cytoplasmic 
surface in PE-containing cells [15]. The more hydrophobic 
TMD VII does not pose a barrier to exposure to aqueous 
exposure [35] presumably due to the higher translocation 
potential of negative residues in the absence of PE.

At intermediate levels of PE (using tet promoter regu-
lated pssA), the ratio of native to inverted LacY was pro-
portional to the membrane PE content [50]. Therefore, 
not only altering the net charge of EMDs [15, 36], but 
also membrane lipid composition can result in a mixture 
of topological conformers for a membrane protein. These 
results provide a mechanistic basis for the existence of 
proteins that assume multiple topological organizations 
in the same or different membranes.

These results strongly suggest that the presence of PE, 
which dilutes the high negative membrane surface charge 
density contributed by PG and CL, suppresses the mem-
brane translocation potential of acidic residues. Also, 
generation of a mixture of topological conformers of a 
membrane protein is dependent on lipid-protein interac-
tions and most likely not dependent on the protein inser-
tion machinery because precise timing of these events on 
both sides of the membrane is well beyond the control of 
the membrane insertion and folding machineries. How this 
is accomplished is not clear, but a possibility is the pres-
ence of PE increases the effective pKa of acidic residues 
rendering them more neutral. In the absence of PE, acidic 
residues express their full potential as translocation signals.

5.4 � Generalizing the Role of PE to Net Neutral 
Lipids

The effect of lipid composition is not structurally specific for 
PE. Expression of the foreign zwitterionic (but net neutral) 
lipid PC [21], neutral mono-[24] or diglucosyl diacylglycerol 
[25] or cationic O-lysyl-PG (unpublished result, M. Bogda-
nov and W. Dowhan) in PE-lacking cells fully substitutes 
for PE in maintaining native LacY topological organization. 

The effectiveness of uncharged lipids in maintaining native 
topology rules out a direct interaction between acidic amino 
acid residues and PE as the mechanism by which PE sup-
presses the translocation potential of acidic residues. The 
inversion of LacY induced by increasing the anionic lipid 
content of the membrane surface rules out interaction of 
positively charged protein residues with acidic lipid head-
groups as the basis for the Positive Inside Rule [12].

LacY reconstituted into proteoliposomes composed of 
native E. coli phospholipids displays full energy-dependent 
active transport of substrate against a concentration gradi-
ent [30, 40]. Active transport does not occur when PE is 
replaced by dioleoyl PC [30], a favorite phospholipid used 
to study membrane proteins reconstituted into proteoli-
posomes. The molecular basis for this defect was thought to 
be due to need for the ionizable ethanolamine headgroup of 
PE. However, PC supports uphill transport when expressed 
as a foreign lipid in vivo [51] as did palmitoyl oleoyl PC, 
PC derived from E. coli and neutral glycolipids in vitro [40]. 
Therefore, zwitterionic phospholipids and net neutral lipids 
support uphill transport dependent on their fatty acid com-
position and the common property of the apparent dilution 
of the high negative charge due to PG and CL.

5.5 � Extension of the Positive Inside Rule 
to the Charge Balance Rule

The above studies form the basis for the Charge Balance Rule 
that incorporates the influence of lipid environment on the 
topological organization and function of membrane proteins 
[15, 52–54]. The effect of net neutral lipids on topology 
explains why positive residues are dominant over negative 
residues as topological determinants and why some net nega-
tive EMDs (containing a mixture of negative and positive 
residues) are exposed to the cytoplasm. Also, final topologi-
cal arrangement is a thermodynamic balance between short-
range lipid-protein charge effects and long-range protein 
properties, as evidenced by the effect of changes in the hydro-
phobicity of TMD VII on final topological organization. 
LacY is not unique in its cooperative response to changes in 
EMD charges and the lipid environment. Very similar results 
were obtained in studies of PheP, GabP and CscB [32, 33, 
35, 36]. Recent studies with CscB [36] further established 
that there is little dependence on the position of charged 
residues within EMDs as a factor in determining topologi-
cal organization. Both lipid- and protein charge-dependent 
topological dynamics of SecG [55, 56] as well as large-scale 
conformational reversible transmembrane reorientations of 
the colicin Ia [57], a proteorhodopsin [58], transcription fac-
tor Nrf1 [59] and scramblase 1 [60] suggest a mechanism 
driven by the Charge Balance Rule as discussed in detail in  
[54]. Table 1 summarizes studies that support the Positive 
Inside Rule and the Charge Balance Rule. Finally, as further 
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documented below, membrane protein topological organiza-
tion is not fixed at the time of initial assembly but is highly 
dynamic and independent of factors other than the properties 
of a protein and its lipid environment. 

5.6 � Dynamic Organization of Membrane Proteins

Due to the assumed high energy barrier to post-assembly 
topological reorganization of membrane proteins, prevail-
ing dogma is that topological organization is fixed during 
initial translocon-directed bilayer insertion of TMDs. Avail-
ability of the tet promoter regulated pssA gene provided a 
means of testing this assumption [50, 51]. Induction of new 
LacY synthesis was terminated in cells either containing 
(plus inducer) or lacking (minus inducer) PE to establish 
an assembled pool of native or inverted LacY, respec-
tively (Fig. 3). Inducer was then removed from the former 
cells or added to the latter cells. As PE levels declined or 
increased, the amount of native LacY conformer proportion-
ally decreased or increased. PheP undergoes a similar lipid-
dependent post-assembly topological rearrangement [32].

These results indicate that at least for some proteins there is 
a low energy barrier for large in vitro post-assembly topologi-
cal rearrangements, which further supports the importance of 
lipid-protein interactions in determining membrane protein 
organization. Such large transmembrane rearrangements of 
hydrophilic EMDs can be facilitated by charged amino acid 
residues that stabilize water defects within the lipid bilayer 
[95] thus lowering the free energy barrier for flipping [96].

6 � In Vitro Verification of the Charge Balance 
Rule

Topological organization may be influenced by other cellular 
factors such as the translocon at the time of initial assembly 
or protein chaperones once proteins are initially folded. How-
ever, in vitro studies strongly indicate that such additional 
factors are of secondary importance in establishing and main-
taining membrane protein topology. The ratio of native to 
inverted conforms of LacY, when initially reconstituted into 
liposomes, is directly proportional to the PE content with the 
remaining phospholipid being a mixture of PG and CL [86] 
exactly mimicking in vivo results [50]. The native orientation 
under the reconstitution conditions employed is inverted with 
respect to that in cells with the cytoplasmic domains exposed 
on the surface of proteoliposomes. Energy-dependent uphill 
transport and proper folding of LacY is dependent on the 
presence of PE, PC (dependent on fatty acid composition) or 
monoglucosyl diacylglycerol [40].

6.1 � Lipid‑Dependent Topological Rearrangement 
In Vitro

In order to determine whether post-assembly changes in 
topology can be demonstrated in vitro, a novel method of 
changing liposome lipid composition [97] was adapted to 
change the lipid composition of proteoliposomes (termed 
fliposomes) after initial assembly. ß-Methyl cyclodextrin 

Table 1   Summary of studies supporting the positive inside rule and the charge balance rule

Testing membrane protein assembly rules Positive inside rule Charge balance rule

Statistically Genome wide [61–63] Bacterial small multidrug resist-
ance (SMR) proteins [64, 65]

In vivo Chimeric construct [66]
SMR proteins [67–70], LacY [36]
Hybrid chimeric and mutant constructs [71–75]
Preprolactin [76]
Asialoglycoprotein receptor subunit H1 [75, 

77–80]
P-glycoprotein [81–83]
Chloroplastic Toc34 [84]

LacY [18, 24, 52]
GabP [33]
CscB [35]
PheP [32, 35]

Sequence position and lipid specificity Chimeric constructs [9, 12, 85] LacY [15]
PheP [35]
CscB [35, 36]

In vitro (liposomes) None that we know of LacY [20, 86]
OEP7 [87]
Toc34 [88]
GltPh Pyrococcus horikoshii [89]
Proteorhodopsin [58]
Sperm ATPase [90]

Single-molecule force microscopy None that we know of LacY [91, 92]
In real-time None that we know of LacY [86, 93]
Crystallographically Database [94] None
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(ßMCD) catalyzes the rapid exchange of phospholipids 
between the outer leaflets of liposomes and multilamellar 
vesicles (MLV) without fusion or disruption of liposome 
integrity. Initially, steady state experiments were con-
ducted in which LacY resided in PG/CL proteoliposomes 
either containing or lacking PE [86]. The proteoliposomes 
were mixed in the presence of ßMCD and MLVs con-
taining either PG/CL or PE, respectively. Topological 
organization was measured before and after mixing using 
SCAMTM, which established the same topological reor-
ganization, dependent solely on a change in lipid composi-
tion, as observed in vivo.

To establish whether such topological inversion can occur 
on a physiologically significant time scale, the rate of lipid 
induced topological changes was measured using Förster 
resonance energy transfer (FRET) [98] (Fig. 5). An acceptor 
chromophore (IAEDANS, 5-({2-[(iodoacetyl)amino]ethyl}
amino)naphthalene-1-sulfonic acid) was placed in a cyto-
plasmic EMD within the C-terminal 6-TMD helical bundle 
of LacY, whose topology is insensitive to the lipid envi-
ronment (Fig. 5a). A FRET donor (tryptophan) was engi-
neered in either the NT, C6 or P7 EMD. Only orientation of 
EMDs NT and C6 are sensitive to lipid environment with 
these EMDs being close enough to the chromophore to elicit 
energy transfer only in the native conformation. The rate 
of lipid transfer between proteoliposomes and MLVs was 
monitored with FRET between trace amounts of fluorescent 
phospholipids in the vesicles (Fig. 5b). As shown in Fig. 5c, 
transfer of PE to PE-lacking proteoliposomes containing 
LacY is rapid at room temperature followed by a slower but 
still rapid increase in FRET when assessing EMD NT or 
C6. As expected, there is little change in FRET from EMD 
P7. A similar result was obtained with a rapid decrease in 
FRET transfer when PE was diluted in proteoliposomes by 
addition of PG. Rates were easily analyzed for experiments 
carried out at room temperature but were too fast to analyze 
at 37 °C. Therefore, such interconversions of topological 
proceed at a physiologically significant rate, independent of 
other cellular factors.

6.2 � Effect of Post‑translational Modification 
on Membrane Protein Topology

According to the Charge Balance Rule, a change in the 
net charge of an EMD post-assembly should also induce 
a change in topological organization. To test this hypoth-
esis, LacY was engineered to contain a protein kinase-
dependent phosphorylation site in EMD C6 [93]. Multi-
ple negative charges were introduced into the EMDs of 
the N-terminal helical bundle so that the native topology 
predominated in the presence of PE but was one negative 
charge short of inducing the inverted topology [15]. Rapid 
phosphorylation of this LacY derivative in PE-containing 
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Fig. 5   Monitoring lipid-dependent topological changes in fliposomes. 
a. Schematic native structure of LacY showing the position of an 
engineered tryptophan residue in either EMD NT (residue 14), C6 
(residue 205) or P7 (residue 250) relative to the chromophore at 
position V331C. b. LacY engineered to display high FRET inten-
sity in the native conformation (upper left) or low FRET intensity in 
the inverted conformation (lower left) was reconstituted into small 
unilamellar vesicles (SUV) with or without PE, respectively. The 
SUVs contained trace amounts rhodamine labeled PE. Multilamel-
lar vesicles (MLV) containing PG and CL with a trace amount of 
6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl-PG (NBD-
PG) or PE with a trace amount of NBD-PE were added to the SUVs 
containing native or inverted LacY, respectively. Transfer of lipids 
between SUVs and MLVs was initiated by addition of ß-methyl 
cyclodextrin (ßMCD)-loaded MLVs to the SUV suspension. The rate 
of lipid transfer was monitored by FRET between rhodamine- and 
NBD-labeled lipids. The rate of LacY topological change was moni-
tored by FRET between a tryptophan residue and a chromophore in 
the C-terminal six TMD bundle of LacY. c. Time scale for change 
in FRET upon addition of PE to proteoliposomes containing LacY in 
the absence of PE. Control indicates lack of changes in FRET when 
SUVs and MLVs both lack PE. b was reproduced from Ref. [98] by 
permission of the National Academy of Sciences, USA. c was con-
structed based on data presented in [98] (Color figure online)
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proteoliposomes induced rapid topological rearrange-
ment of LacY on the same time scale as lipid-induced 
rearrangements.

Studies of phosphorylation-induced changes in protein 
topology in model proteoliposomes that reflect the lipid 
composition of various eukaryotic membranes confirmed 
the potential of such changes in these membranes but 
also revealed a more complex dependence on lipid com-
position [93]. The diversity of lipid species in eukaryote 
membranes was accompanied by an increased complexity 
of lipid effects on the rate and extent of protein flipping. 
Protein flipping rates (native to inverted conformer) and 
extent of flipping increased along the secretory pathway 
in proteoliposomes mimicking the lipid composition of 
the endoplasmic reticulum to the Golgi and finally plasma 
membrane. Flipping rates (including mitochondria) were 
in the same range as in E. coli phospholipids except for a 
significantly lower rate in endosome lipids and endoplas-
mic reticulum lipids unless the latter was supplemented 
with cholesterol. The extent of flipping was 40–60% 
except for only 20% in endosome lipids versus 85% in E. 
coli lipids. The effect of cholesterol was complex in that 
it exhibited some properties of a neutral lipid mimicking 
PE but also increased lipid order in the presence of sphin-
gomyelin while decreasing order in its absence. Differ-
ences in lipid order did not correlate with any effects on 
rate or extent of flipping. Given that LacY may not reflect 
the properties of many eukaryotic proteins yet undergoes 
significant topological changes in mixtures of eukaryotic 
lipids strongly indicates that such transitions can occur in 
eukaryotic membranes and represent an additional mode 
of cellular regulation.

There are other post-translational modifications that 
change the net charge of extramembrane domains and there-
fore have the potential to alter the topology of membrane 
proteins. Acylation of lysine, deamidation of glutamine or 
asparagine, adenylylation of hydroxyl residues, succinylation 
of lysine and sulfation of tyrosine decrease the net positive 
charge of EMDs. Glycosylation of membrane proteins has 
been proposed to prevent topological changes post-assembly 
due to the increased thermodynamic barrier to moving a 
hydrated carbohydrate through the bilayer. However, the 
ability of half of LacY to undergo such a transition suggests 
that many N-glycosylated membrane proteins could undergo 
topological changes as was demonstrated for transcription 
factor Nrf1 [59].

There are at least two examples where phosphorylation 
of a membrane protein appears to alter its topology. CD38, 
which exists in multiple topology states, synthesizes cyclic 
ADP-ribose and nicotinic acid adenine dinucleotide phos-
phate, which are messengers for Ca+2-mobilization. CD38 
contains a single TMD and exists in two orientations with its 
catalytic site in one of its EMDs [99, 100]. Phosphomimic 

changing the serine residues to aspartate in the cytoplasmic-
facing N-terminal domain results in flipping of this domain 
to the opposite side of the membrane. Scamblase 1, which 
transfers aminophospholipids between leaflets of the lipid 
bilayer, also exists in two dynamic topologically different 
conformers during differentiation of primary monocytes 
to macrophages, which could coincides with the change in 
the PS asymmetric distribution between the two leaflets of 
the plasma membrane also observed during monocyte-to-
macrophage differentiation [60]. The protein is also sub-
ject to phosphorylation so that a combination of changes in 
membrane lipid composition and phosphorylation may be 
responsible for its dynamic organization. Table 2 summa-
rizes reports of proteins that undergo topological rearrange-
ments either during initial synthesis or after final assembly.

7 � Discussion

It is now clear that topological organization of membrane 
proteins is governed by both the protein sequence and its 
lipid environment. Membrane proteins can undergo topolog-
ical rearrangements either at the time of initial translocon-
directed membrane insertion or dynamically post-assembly 
in response to changes in the local lipid environment and 
posttranslational modification. The generation of membrane 
proteins with dual topology or the determination of TMD 
orientation need not involve the translocon machinery or 
other cellular factors other than the protein sequence and 
its lipid environment. We postulate that during folding of 
a membrane protein the distribution among multiple top-
ological conformers, which are in rapid equilibrium with 
each other, is determined by the lipid composition (Fig. 6). 
Co-translational folding in the membrane would follow the 
energy landscape resulting in higher energy minima for the 
inverted conformation at high PE and the native conforma-
tion at low PE. At intermediate PE levels both conformers 
would co-exist dependent on the equilibrium established 
during folding. Further folding of conformers populated 
during early folding would result in a high energy bar-
rier between conformer states preventing interconversion 
among the final conformers. Post-assembly changes in the 
lipid environment or protein modification may destabilize 
the conformer mixture allowing partial unfolding and rapid 
redistribution to the new mixture of stable conformer states. 
The Charge Balance Rule provides a mechanistic basis for 
the stable existence of multiple topological conformers for 
homodimers such as EmrE [113] or monomeric proteins that 
reside in either the same of different membranes [99, 100]. 
The Charge Balance Rule explains why positive charge is 
dominant over negative charge as a topological determinant 
and provides a means for inclusion of acidic residues on 
the cytoplasmic face of membrane proteins for functional 
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or structural purposes without affecting topology governed 
by the Positive Inside Rule.

Post-assembly changes in topology have important 
regulatory implications since such changes can alter or 
modulate protein function either along the internal pro-
tein trafficking pathway or within a specific cellular loca-
tion. Under normal conditions such topological changes 
provide an unrecognized means of cellular regulation that 
includes attenuating exposure of epitopes on either side 
of a membrane. Mutations that eliminate or introduce new 
topogenic signals or protein modification sites could result 
in an alternate topology and function for a protein at its 
final cellular location. The aberrant lipid-protein interac-
tions during polytopic protein biogenesis can contribute to 
inherited topological disorders [114], which could arise at 
the co-translational level of assembly, as recently demon-
strated [115]. The generation of dual topology proteins or 
the determination of TMD orientation need not involve the 
translocon machinery or other cellular factors other than 
the protein sequence and the lipid environment.

There remain several unanswered questions. What is 
the precise mechanism by which lipid composition affects 
the effective net charge of EMDs? Are the rules for mem-
brane protein assembly different or the same between dif-
ferent organisms? Experiments in proteoliposomes suggest 
that the membrane potential is not the driving force for 
the Positive Inside Rule. So what forces determine this 
charge-dependent orientation of EMDs? Does asymmet-
ric distribution of lipids across the membrane bilayer also 
affect protein topological organization? Do topological 

Table 2   Experimental evidences for co- and post-translational and post-insertional membrane protein topological dynamics and instability

Co-translational/co-insertional Post-translational Post-insertional

In vivo
Triggered by change of lipid composition
LacY [15, 18]
PheP [32]
GabP [33]
CscB [35, 36]
Hepatitis B virus envelope protein [101]
Triggered by changing of positive inside bias
Hybrid chimeric constructs [73, 77]

Governed by molecular chaperones
Hepatitis C protein NS4B [102–104]
Triggered by change of positive inside bias
Lep constructs [69]
Governed by topogenic sequences
Aquaporin 1 [105, 106]
Erythrocyte Band 3 [107, 108]

Triggered by change of lipid com-
position

LacY [15, 18]
PheP [32]
Triggered by change of positive 

inside bias
EmrE [70]

In vitro
Triggered by change of lipid composition
GltPh Pyrococcus horikoshii [89]
Proteorhodopsin [58]
Sperm ATPase [90]
LacY [20]

None that we know of Triggered by change of lipid com-
position

LacY [20, 40, 92, 98]
Colicin Ia channel [57]
Triggered by membrane depolariza-

tion
Colicin Ia channel [109, 110]
Colicin A channel [111]
Governed by insertion–deinsertion 

cycle of SecA
SecG [56, 112]

∆G Native Inverted%PE

%Inv
0

075

100

Fig. 6   Dual minima energy folding funnel for LacY as a function of 
membrane lipid composition. The folding of LacY to its lowest free 
energy state (∆G) proceeds via a funnel-shaped energy landscape 
whose shape is defined by the physicochemical properties of the lipid 
environment (green, 75% PE; red, intermediate  % PE; blue, 0% PE). 
The conformational space available to the population of folding pro-
tein conformers at a given lipid composition is defined by the fun-
nel circumference (x-axis) and the internal ∆G (y-axis) of each fold-
ing intermediate. As LacY folds to lower energy conformations, it 
populates thermodynamic traps whose depth and shape determine 
the percent of the final native or inverted conformation at steady 
state. Membrane lipid composition affects a late folding event, which 
is postulated here to define a rapid equilibrium (horizontal arrow) 
between subsequent pathways leading to either the native, inverted 
or mixed conformation separated by a high thermodynamic barrier. 
Figure and legend reproduced from [50] by permission of Ameri-
can Society for Biochemistry and Molecular Biology (Color figure 
online)
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differences originate co-translationally during membrane 
insertion or are they induced by changes in lipid composi-
tion as eukaryotic proteins move through different orga-
nelles to their final destination? Answers to these questions 
will further establish the mechanism underlying the exten-
sion of the Positive Inside Rule to the Charge Balance Rule.
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