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Abstract
Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that 
are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to com-
prehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as 
non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and 
quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address 
the oil palm’s Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are 
being applied to identify potential biomarkers involved in metabolism and cellular development through determination of 
protein expression changes that correlate with oil production and disease. This review highlights key elements in proteom-
ics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. 
We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm 
in the effort to improve the oil crop.
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1  Proteomics in Oil Palm Research

Rising number in the world population from 6.6 to 7.6 bil-
lion since the past decade has escalated the demand for 
food. In the context of palm oil, the market has also surged 
since it provides essential ingredients for food and non-food 
applications. To address this critical issue, the unequivocal 
solution is by increasing the yield of palm oil per unit area 
of land (from the current average production of 3 tons of oil 
per hectare per year to projected production of 18.5 tons of 
oil per hectare per year) [1]. To achieve this, the palm oil 
industry need to adopt policies for oil palm to be grown sus-
tainably to obviate negative environmental impacts. There-
fore, it is inevitable that we must address the current issue 
by improving the yield in existing plantations to increase 

global production of palm oil [2]. To meet these challenges, 
‘omics’ technologies have been practiced in the oil palm 
research to understand the yield-limiting and yield-reducing 
factors in the effort to enhance the yield and quality of palm 
oil [1]. However, to this respect, tremendous advances have 
been made over past years, particularly in oil palm genomics 
[3–10]. Transcriptomics information generated are simply 
not sufficient and biologically comprehensive enough to 
reveal the actual state of the plant system biology at any spe-
cific stage and condition. Therefore, proteomics is becoming 
an increasingly important tool for various applications in the 
oil palm research to simultaneously explain the oil palm bio-
logical processes of interest, such as yield and oil quality, the 
oil palm growth and development and its natural responses 
towards environmental stresses like diseases (Fig. 1).

The first step to integrate the proteomics approach into 
the oil palm research is to generate reference proteome maps 
for different oil palm species and fruit developmental stages. 
For that purpose, Lau, Hassan, Daim and co-workers had 
developed protein extraction protocols tailored for the fruit 
mesocarp, leaf and root tissues [11–13]. Together with the 
transcript sequences for Elaies guineensis and Elaies oleifera 
[7], the proteomics technologies are used to improve the cur-
rent understanding of the palm oil biosynthesis machinery in 
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the search for potential protein biomarkers for yield and oil 
quality. Difference gel electrophoresis (DIGE) analysis was 
used in several studies to determine the control mechanisms 
and key proteins that distinguish different agronomic traits 
related to lipid biosynthesis. For instance, Ooi and co-work-
ers detected 41 unique and differentially expressed proteins 
in the fruit mesocarp of high- and low-yielding oil palms 
that were not related to lipid biosynthesis [14]. The find-
ings showed that regulation of lipid biosynthesis involved a 
myriad of metabolic pathways. The findings were strongly 
supported by Lau et al. [15, 16] using shotgun quantitative 
proteomics technologies. They also discovered several dif-
ferentially accumulated proteins from other metabolic path-
ways such as glycolysis that would have contributed to the 
regulation of fatty acid biosynthesis. In a post-translational 
modification (PTM) study done by Lau and co-workers, 
selected reaction monitoring (SRM) using targeted peptide 
fragments corresponded to fatty acid proteins, revealed that 
phosphorylation could rationalize the differences in the oleic 
acid content of the studied oil palm species [17].

Protein changes during somatic embryogenesis, which 
involve cell differentiation, has been studied using gel-based 

proteomics to understand molecular events of plant embryo 
development in vitro [18]. These differentially expressed 
proteins were identified in the early stage of embryogenesis 
and they were also stage-specific. Gel-based quantitative 
proteomics was applied in another study to understand the 
biological mechanism for the low level of embryogenesis 
[19]. They discovered three proteins, namely triosephos-
phate isomerase, l-ascorbate peroxidase and superoxide 
dismutase as potential protein biomarkers at both protein 
and transcript levels, respectively.

Proteomics technologies have been actively used to inves-
tigate the interaction between oil palm and the pathogenic 
fungi, Ganoderma boninense. Using gel-based proteom-
ics approach, several studies were carried out to determine 
differentially expressed proteins upon infection of the oil 
palm root system with G. boninense. An optimized protein 
extraction using phenol/ammonium acetate in methanol was 
first developed by Al-Obaidi and co-workers to analyze the 
protein profile of Ganoderma species [20]. Al-Obaidi and 
co-workers had also identified 21 proteins from healthy and 
G. boninense-infected roots that showed differences in their 
expression profiles [21]. Protein profiling of the infected 

Fig. 1  Current and potential applications using the proteomics technologies
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root proteins at different time points had indicated that 12 
proteins were differentially expressed, 7 days after infec-
tion with G. boninense [22]. Further comparison between 
pathogenic and non-pathogenic Ganoderma species revealed 
24 differentially expressed proteins that corresponded to the 
Ganoderma species inoculations [23]. These proteins could 
explain the disease susceptibility of the oil palm. In the 
effort to develop early detection method for G. boninense, 
proteins in the leaf tissues of oil palm were profiled using a 
combination of gel electrophoresis and shotgun proteomics 
[24]. Majority of the 51 proteins identified were involved 
in photosynthesis, carbohydrate metabolism, immunity and 
defense. Table 1 summarized all the proteins that had been 
indicated as differentially expressed throughout the various 
stages of palm oil production and during the Ganoderma 
infection.

2  Challenges in Plant‑Based Proteomics

A complete proteomics pipeline is made up from several 
stages, starting from protein extraction, digestion, separa-
tion and quantitation of peptides, and protein identification 
with mass spectrometry. Proteome of a cell or tissue at any 
given time is highly dynamic and complex. Combination 
of different approaches have been employed to study sub-
group of proteins and entire proteomes largely because of 
the proteome complexity and wide dynamic range. Protein 
and peptide separation techniques have been essentially 
being scrutinized using two complementary approaches; 
gel-based and non-gel based (or gel-free or shotgun). These 
approaches vary in terms of the peptide generation, sepa-
ration and detection. Ultimately, each of these approaches 
only covers specific protein subgroups but not the whole 
proteome. The gel-based approach is the cornerstone of pro-
teomic analysis. Gel electrophoresis is a powerful technique 
to separate complex protein mixtures to yield qualitative 
and quantitative high resolution snapshots of intact proteins 
(two-dimensional) and polypeptides (one-dimensional), 
resulting in a quick overview of protein isoform varieties 
and detection of any post-translation modification.

The limitations of the gel-based approach, however, 
include the inability of the gel technique to resolve hydro-
phobic proteins or proteins with extreme sizes and isoelec-
tric points. Thus, mass spectrometric analysis of these pro-
teins is often not optimal unless further proteomics tools are 
employed. Gel-free or shotgun proteomics has been devel-
oped continuously mainly because of the need to reduce 
technical variations for high-throughput workflow that is 
not achievable using gel electrophoresis. In the gel-free or 
shotgun approach, liquid chromatography is coupled to an 
ionization source, which is typically the nanoelectrospray 
for peptides. Peptide ion separation will occur using only 

reversed-phase column or with combination of different 
columns for high resolution separation. Fragmentation of 
peptide ions occur normally through collision with gas mol-
ecules and the enormous amount of data from the acquired 
tandem mass spectra are then used for protein database 
searches using protein search engines such as Mascot for 
the protein identities.

One of the core challenges in plant proteomics is the low 
protein concentration specially in circumstances where the 
amount of tissues are limited, as cell wall and vacuole make 
up most of the cell mass. Only 1–2% of the total cell volume 
make up the cytosol, which is the center of majority cel-
lular processes [25]. Specialized procedures are essential to 
induce plant cell wall disruption to release the proteins. In 
addition, plant extracts also contain numerous non-protein-
aceous compounds such as polyphenols, pigments, polysac-
charides, nucleic acids and lipids. Several major crops had 
been reported to contain high amounts of compounds that 
interfere with downstream proteomics analysis. For instance, 
oxidative enzymes (polyphenol oxidase), phenolic com-
pounds, latex and carbohydrates are abundant in banana, 
Musa spp. and stalk tissues [26–28]. These interfering com-
pounds are co-purified with the precipitated proteins, render-
ing them difficult to solubilize. Solubilization of proteins 
is decisive in order to resolve them for further downstream 
analysis using techniques such as Western blot and mass 
spectrometry.

The existence of a high dynamic range of protein abun-
dances in plant tissues confers additional complications to 
the protein analyses. For example, 40% of the total protein 
content of green tissues consists of ribulose-1,5-bisphos-
phate carboxylase oxygenase or RuBisCo [29] while storage 
proteins are the most abundant proteins in seeds [25]. The 
presence of those highly abundant proteins complicates the 
detection of low abundance proteins by means of protein 
electrophoresis and mass spectrometry. Normally, these low 
abundance proteins such as the regulatory proteins are the 
proteins that we are interested in [30]. Various fractiona-
tion techniques have been developed to deal with this wide 
dynamic range, which can be up to 12 orders of magnitude 
[31]. They are generally divided into electrophoresis- or 
chromatography-based fractionations to separate a subset of 
proteins [32]. For instance, isoelectric focusing that exploits 
the charge differences of proteins has been utilized to frac-
tionate proteins to capture the less abundant proteins [33, 
34]. Other approaches are based on the principle of affin-
ity chromatography such as ATP and metal affinity [35], 
hydroxyapatite affinity- [36] and immobilized metal affinity-
chromatography [37]. The latter technique is extremely use-
ful in the enrichment of phosphorylated proteins in phospho-
proteomics study.

Palm oil, which derived from the fruit mesocarp, can 
comprise up to 90% of the dry weight of oil in the fruit 



476 B. Y. C. Lau et al.

1 3

Table 1  Differentially expressed proteins that have possible involvement in palm oil production and Ganoderma disease defence

Protein Possible role References

Oil production Sucrose synthase Increase glucose supply for pyruvate 
and acetyl-CoA precursors

Loei et al. [16], Lau et al. [15]
α-Amylase isozyme 3D Loei et al. [16]
Glyceraldehyde-3-phosphate dehydro-

genase
Convert glucose to pyruvate and acetyl-

CoA
Hexokinase-2
Pyruvate kinase isozyme A and G
Transaldolase Cofactor for reductive fatty acid bio-

synthesis
Pyruvate dehydrogenase E1 α-subunit Convert pyruvate to acetyl-CoA
Pyruvate dehydrogenase E1 β-subunit
E2 dihydrolipoyllysine-residue acetyl-

transferase
E3, dihydrolipoyl dehydrogenase
Fructose-bisphosphate aldolase Involve in assimilation of carbon Lau et al. [15]
Acyl carrier protein (ACP) Involve directly in various stages of 

fatty acid biosynthesis
Loei et al. [16]

3R-hydroxymyristoyl-ACP dehydratase
Enoyl-ACP reductase Loei et al. [16], Lau et al. [15]
3-Oxoacyl-ACP reductase
Acetyl-coenzyme A carboxylase car-

boxyl transferase subunit β
Stearoyl-ACP desaturase
Acetyl-coenzyme A carboxylase biotin 

carboxylase subunit
Lau et al. [15]

β-Ketoacyl-ACP reductase
β-Hydroxyacyl-ACP-dehydrogenase
β-Ketoacyl-ACP-synthase
Lipase Hydrolyze fatty acids
40S and 60S ribosomal proteins of 

varying isoforms
Diversion of ATP and NADPH toward 

lipid biosynthesis
Loei et al. [16]

Elongation factors Loei et al. [16], Lau et al. [15]
Component proteins from photosystem 

II (PSBA, PSBD, PSBO, PSBQ, 
PSBQ2)

Chlorophyll a-b binding proteins of 
light-harvesting complex (CB4, 
CB4A, CB13, CB22)

Malate dehydrogenase Channel ATP to anabolic fatty acid 
biosynthesisCytochrome c oxidase subunit 6B

Cytochrome b5
Cytochrome b-c1 complex subunit 

Rieske
ATP synthase subunitβ
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mesocarps [14], apart from the plant-based interfering com-
pounds mentioned earlier. Therefore, preparation of proteins 
from oil palm requires labor intensive workflow in order to 
be compatible with downstream proteomics analysis. Com-
prehensive protocols in the preparation of oil palm proteins 
from fruit mesocarps, young and mature leaves; and roots 
for gel-based and gel-free proteomics analysis have been 
developed in recent years. Lau and co-workers had described 
an approach employing different solvent systems to remove 
the excessive oils from the oil palm fruit mesocarps prior to 
protein extraction with phenol [11]. Phenol extraction was 
also employed in works done by Daim, Al-Obaidi, Silva and 

co-workers to investigate proteins from the oil palm leaf 
[13], Ganoderma-infected root [21], callus, embryos and 
explants [18] using gel electrophoresis-based mass spec-
trometry analysis. In addition, Daim and co-workers first 
precipitated the extracted leaf proteins with trichloroacetic 
acid/acetone before the phenol extraction to improve the 
number of gel spots and quality [24]. The high quality of 
proteins extracted with phenol in both works may be attrib-
uted to the fact that phenol precipitates only proteins (in 
phenol phase) and contaminants such as polysaccharides, 
polyphenol and carbohydrates are removed in the organic 
phase. In reducing the leaf protein complexity and quality 

Table 1  (continued)

Protein Possible role References

Pathogen defence Ribulose bisphosphate carboxylase/
oxygenase

Reduction in photosynthesis to maintain 
the growth of cell during infection

Daim et al. [13, 24], Al-Obaidi et al. [20]

ATP synthase β subunit Restrict growth of oil palm cell during 
infection

Oxygen-evolving enhancer protein 1 Reduction in chlorophyll biosynthe-
sis resulted in yellowish marks on 
infected leaves

Malate dehydrogenase Indication of early infection during 
plant-phytopathogenic interactions

Al-Obaidi et al. [20]

Stromal 70 kDa heat shock-related 
protein

Indication of stress such as infection

Cyclophilin Defence response
Protochlorophyllide reductase B Unknown
Ras-related protein RABB1a Unknown
Putative membrane protein ycf1 Unknown
Ferredoxin NADP reductase Plant defence reaction Daim et al. [13, 24]
Maturase k Reduction in transcription level 

indicates decrease in metabolites and 
energy level during infection

Hydroxyproline-rich glycoprotein-like Plant defence reaction
Putative WAK receptor-like protein 

kinase
Plant defence reaction

Mannose-binding lectin Plant defence reaction
E3 ubiquitin-protein ligase BRE1-like 1 Unknown
Putative pumilio homolog 10
Cytochrome C oxidase subunit II PS17 Generate energy for early defence 

mechanism
2-Cys peroxiredoxin Recognition and activation of plant 

defence through rapid production of 
reactive oxygen species

Superoxide dismutase
Ascorbate peroxidase
β-1,3-Glucanase Response to infection Syahanim et al. [22]
Glutathione-S-transferase Detoxifying contaminants through 

conjugation
Nucleoside diphosphate kinase Response to infection and involve in 

early infection signalling event
Thioredoxin H2 Antioxidant activity against free 

radicals
Early flowering protein 1 Unknown
Ferritin
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for two-dimensional gel electrophoresis, Tan and co-workers 
had applied both trichloroacetic acid/acetone precipitation 
and polyethylene glycol fractionation [38]. Trichloroacetic 
acid followed by acetone precipitation was also successfully 
applied in the extraction of proteins from oil palm root for 
gel-free mass spectrometric analysis [12].

3  Functional Proteomics Analysis

Early developments in quantitative proteomics were pro-
pelled by studies on yeast and mammalian cell lines [39]. 
Quantitative changes are needed to elucidate changes in 
protein expression. Staining of proteins on gels with spe-
cific stains such as Coomassie is routine to determine their 
intensities but often than not, this approach is tedious and 
error-prone. The intensities of the liquid chromatography 
peak detected using ultraviolet–visible spectrophotometric 
detector are usually not proportionate to the amount of pro-
teins in a given sample. The reason is that different types of 
protein absorb different ultraviolet wavelengths which give 
the chromatograms. For examples, aromatic amino acids 
(tryptophan, tyrosine and cysteine) absorb ultraviolet wave-
length at 280 nm while peptide backbone absorbs ultraviolet 
wavelength at 215–235 nm. Thus, stable isotope approaches 
were introduced into mass spectrometry-based proteomics to 
allow a more accurate and reliable determination of relative 
variations in peptide abundances. There are several strate-
gies used today in quantitative proteomics and all of these 
methods have their advantages and disadvantages. Com-
monly, investigations using quantitative proteome analysis 
approach rely on non-mass spectrometry-based quantitation 
techniques [25] such as DIGE and mass spectrometry-based 
quantitation techniques [40].

Determination of protein ratios using gel-based meth-
ods has the potential to be erroneous because of gel-to-gel 
inconsistencies of the separated protein profiles. DIGE 
addresses these difficulties and that explain the reason for 
this technique to be most commonly employed in non-mass 
spectrometry-based proteomics quantitation, as well as 
quantitative analysis in plant proteomes. In DIGE, up to two 
different protein samples and a reference standard (contain-
ing equal amounts of both protein samples) are labelled with 
fluorescent dyes such as CyDyes (Cy3, Cy5, Cy2). The two 
protein samples are then pooled prior to separation with gel 
electrophoresis [41, 42]. Protein ratios between the two dif-
ferent samples are calculated by measuring the fluorescence 
for each protein spot and thus revealing the quantitative data 
for protein isoforms or differentially regulated proteins [43]. 
DIGE has been commonly used in plant proteomics studies. 
For example, in investigations of elicitation effects in plant 
symbiotes and plant pathogen interactions [44–47] as well 
as studies on environmental stresses [48–50]. Gomez and 

co-workers [51] also demonstrated that DIGE coupled to 
MALDI-TOF analysis could be used to identify differentially 
expressed proteins in organisms lacking assembled genomes. 
Ooi and co-workers had also applied DIGE technique to 
determine 41 unique differentially accumulated proteins in 
the oil palm fruit mesocarps at critical oil production stages 
[14]. Pro-Q Diamond, a fluorescent dye that binds to the 
phosphate moiety of phosphorylated proteins has also been 
successfully employed to specifically label and quantify 
phosphorylated protein isoforms in plant [52–57].

The mass spectrometry-based quantitative methods 
include both label free quantitation [58, 59] and chemi-
cal isotope labelling [60, 61]. Mass spectrometry signals 
from different liquid chromatography runs are known to be 
inconsistent due to technical variations for instance, and 
therefore generate significant error in quantitative proteom-
ics studies. Despite that fact, label-free methods involving 
liquid chromatography is becoming increasingly prevalent 
as it circumvents the need for costly protein labelling and is 
generally suitable for all types of organisms as well as most 
workflows [43, 62]. Label-free quantitation compares the 
chromatographic peak areas of extracted ions. Extracted ion 
chromatograms exploit the additional separation dimensions 
for higher confidence in the quantitative signals instead of 
simply comparing the mass spectrometry signals between 
different analytical liquid chromatography runs. In principal, 
peptide areas are aligned according to their mass to charge 
ratio (m/z) and elution time tags in several liquid chromatog-
raphy runs. The chromatographic peaks are then integrated 
with peak integration software such as Xalign [63] and Msa-
lign [64]. In order to be able to do that, the liquid chroma-
tography runs must be reproducible, which sometimes can 
be a challenging task. Reiland and co-workers had used this 
approach to determine the dynamic regulation of protein 
phosphorylation in Arabidopsis [65].

Spectral counting is an alternative approach that is prac-
tical, label-free and measures protein abundance in a semi-
quantitative manner [66]. Conversely, this method does not 
integrate chromatographic peaks nor align the retention time 
of peptides [67] although it agrees with Extracted Ion Chro-
matogram peak area measurements [68]. Instead, statistical 
tools such as G-test and t-test are used to count the total 
number of tandem mass spectra identified for all the peptides 
from a particular protein to generate the quantitation data 
[43]. While this method is reproducible, it requires many 
biological and technical replicates for each sample analyzed. 
This can be difficult when several experimental conditions 
and/or time points are analyzed. This approach had been 
successfully employed to quantify proteins in several studies 
in plant systems [69–72].

Usage of differential labelling techniques could cir-
cumvent these limitations in label-free quantitation engag-
ing liquid chromatography. These approaches rely on the 
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assumption that both labelled and unlabeled peptides exhibit 
the same chromatographic and ionization properties but are 
distinguishable by a mass-shift signature [67]. Specific iso-
tope labelled amino acids (13C or 15N) [73] in the metabolic 
protein labelling technique known as stable isotope labelling 
(SIL) with amino acids in cell culture (SILAC), and chemi-
cal labels such as in isobaric tags for relative and absolute 
quantitation (iTRAQ) have been used to quantitate changes 
in plant proteomes [74, 75]. Labelling methods used in rela-
tive quantitation proteomics studies are classed into two cat-
egories depending on whether the labels are tagged directly 
to the peptides or not directly.

Isotope-coded affinity tag (ICAT) was one of the first 
differential isotope labelling containing a specific chemical 
reactive group which bound specifically to cysteinyl resi-
dues, an isotope mass tag with light or heavy isotopes and 
a biotin tag for affinity purification [76]. Peptide pairs with 
8 kDa mass-shifts are detected during mass spectrometry 
scans and their ion intensities are relatively compared for 
quantitation. As tagged cysteine-containing peptides are 
purified by affinity chromatography, the sample complex-
ity is reduced. However, the obvious disadvantage is that 
only cysteine-containing peptides are captured by the affinity 
column. Thus, this impaired the identification and quantita-
tion of proteins with more than one significant peptide as 
about one in seven proteins do not contain cysteine [67]. 
A study by Majeran and co-workers had revealed that non-
MS-based (2-DE), ICAT and label-free quantitative tech-
niques are complementary [77]. ICAT had been utilized to 
determine the localization of Arabidopsis thaliana organelle 
proteins [78]. In addition, since ICAT labels specifically to 
thiol groups, this method has been widely used to study the 
redox-status of proteins in plants [79, 80].

iTRAQ was developed at first for peptide level label-
ling [67]. The different between iTRAQ and ICAT is that 
in ICAT, tagged proteins from different samples are pooled 
before trypsinization to eliminate vial-to-vial variations. In 
iTRAQ, the chemical tags label the peptides instead. The 
iTRAQ isobaric tags have slight differences in their molec-
ular structures and thus generate various fragment ions 
(also known as reporter ions) in tandem mass spectrometry 
scans. The overall molecule mass is kept constant at 145 Da 
(iTRAQ-4plex) and 304 Da (iTRAQ-8plex) by the presence 
of a mass balance group (carbonyl).

The iTRAQ reagents label the peptide N-terminals and 
amino groups of lysine side chains. The advantage is that 
iTRAQ approach allows comparison of four (iTRAQ-4plex) 
to eight samples (iTRAQ-8plex) in a single experiment. 
Relative quantitation is ascertained only after peptide frag-
mentations in MS/MS scans by measuring the intensity of 
the reporter ions in the mass region of m/z 114–118 and m/z 
114–121, for 4plex and 8plex, respectively [43, 67]. iTRAQ 
method is able to give accurate quantitation spanning two 

orders of magnitude for low-complexity samples. However, 
peptide co-fragmentation happens when two or more closely 
spaced peptides in MS/MS are selected instead of the single 
peptide [81, 82]. With a high accuracy mass spectrometer, 
peptide co-fragmentation effect could be reduced. Tandem 
mass tags (TMT) are another widely used isobaric tags to 
label peptides for relative protein quantitation proteomics. 
As with iTRAQ, the tags share identical chemical structure 
but have stable isotopes, 13C and 15N incorporated in differ-
ent combinations in the mass reporter region. The chemical 
structure of TMTs enable the introduction of five heavy iso-
topes in the reporter and balancer groups to generate six iso-
baric tags. Fragmentation of each of the six tags (of a TMT 
6-plex, for instant) gives reporter ions at m/z 126, 127, 128, 
129, 130 and 131. TMTs react with free amino-terminus 
peptides and epsilon-amino functions of lysine residues [83].

iTRAQ and TMT reagents have been successfully 
employed in several quantitative plant proteomics studies. 
Plant responses towards pathogens had been investigated 
using this approach [84–87] as well as the signaling role 
played by trimeric G proteins in plants [88, 89]. Other stud-
ies utilized the iTRAQ to investigate the proteomes of grape 
berries [90] and oil palm mesocarp at different stages of 
ripening [16]. Quantitative shotgun proteomics using the 
iTRAQ was also employed to characterize the changes in 
the Arabidopsis phosphoproteome during the Pseudomonas 
syringae pv. tomato DC3000 infection [74]. Meanwhile, 
TMTs have been used mainly in stress-related studies. The 
TMT quantitative proteomics was used to discover the up- 
and down-regulation of 63 proteins and 39 proteins, respec-
tively that involved in rice (Oryza sativa) cold-responsive 
pathway. In another study using the TMT tags, significantly 
differentially expressed proteins were found in the rice shoot 
after root chilling treatment, which include abscisic acid-
responsive and drought-associated proteins. Liu and co-
workers had also reported 22 up-regulated proteins involved 
in the antioxidant defense pathway, cell wall polysaccha-
ride remodeling and cell metabolism process, in response to 
copper (Cu) stress in cell wall of Elsholtzia splendens [91]. 
Proteome-wide iTRAQ analysis has recently been employed 
in oil palm studies to reveal differentially expressed proteins 
involved in important metabolic processes such as fatty acid 
biosynthesis throughout different fruit developing stages [15, 
16]. Table 2 listed some of the key advantages and disadvan-
tages of the proteomics techniques commonly used in crop 
proteomics research.

4  Data Mining

Model plants are customarily used to investigate the physi-
ological processes of cells, tissues, organelles or whole 
organisms. Simplicity of study design, biological relevance 
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and economics has an important impact on the plant mod-
els employed [25]. The green plants or Viridiplantae have 
only 100 species of completed and publicly available plant 
genomes in 2014 according to CoGepedia (http://genom 
evolu tion.org) and plaBi (http://plabi pd.de/) [107]. Pres-
ently, there are over 369,000 known species of flowering 
plants but the model plants only represent about 0.1% of the 
known species. The existing plant genomes are the classical 
A. thaliana (thale cress), economically important crop plants 
such as Glycine max (soybean), Hordeum vulgare (barley), 
Medicago truncatula (barrel medic), Populus trichocarpa 
(poplar), Vitis vinifera (wine grape), O. sativa (rice), Sor-
ghum bicolor (sorghum) and Zea mays (maize), as well as 
other plants like the Brachypodium distachyon (purple false 
brome) [108]. However, none of these plant genomes are 
completely annotated [40] as the genome annotation tools 
remain decidedly lacking [109]. Moreover, only O. sativa, 
S. bicolor, Z. mays and B. distachyon are monocotyledons 
while the rest of the organisms are dicotyledons. Given that 
oil palm species is a monocotyledon, from the technical out-
look, those plants mentioned earlier are unlikely to be suit-
able as a model organism in any proteomics study.

Complete genome sequences also form the foundation 
for comprehensive system biology studies by providing the 
potential of a complete parts list of protein and RNAs of 
the studied organism [109]. Encouragingly, a comprehen-
sive genome sequencing project led by the Malaysian Palm 
Oil Board and St. Louis based Orion Genomics, USA for 
the two key oil palm species, E. oleifera and E. guineen-
sis was completed in 2010. A total of nearly 35,000 genes 
were predicted from assembled sequences and transcriptome 
data of 30 tissue types [7]. Uthaipaisanwong and co-workers 
had also successfully characterized the oil palm chloroplast 
genome sequence [110]. There are 41,887 non-redundant 
partial sequences of E. guineensis proteins currently avail-
able in NCBI protein database (as of 16th November, 2017). 
This information can significantly support the oil palm pro-
teomics study.

Protein identification and characterization with mass 
spectrometry efforts could also be significantly amelio-
rated with the availability of expressed sequence tag (EST) 
sequences [111]. A large collection of 37,743 E. guineensis 
ESTs had been deposited in the NCBI database. The EST 
databases are indispensable as those sequence tags can be 
translated into the six reading frames to identify proteins 
(homology based) using appropriate software. Nonetheless, 
the size and quality of EST databases have profound effects 
on the outcome of the protein identification. The usual 
limitations of EST databases are that more often than not, 
most proteins are either not or poorly denoted by short EST 
sequences that only partly cover the whole protein sequence. 
Bases misread, insertion or deletion errors during sequenc-
ing of ESTs can lead to high error rates (about 0.3%) in EST Ta
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e 
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sequences, thus reducing the accuracy of peptide matching 
[112, 113]. Successful protein identifications with only pep-
tide mass fingerprints employing EST databases are not fea-
sible due to the limitations with EST databases. In addition, 
EST sequences are rarely sufficient in providing significant 
protein coverage and a satisfactory number of matching pep-
tides [114].

Reliance on complete plant genomes can be lessened 
as annotating the biological function of proteins can be 
facilitated by a homology based approach. According to 
Carpentier et al. [40] and Remmerie et al. [25], there is a 
requirement for cross-species analysis. When using other 
species for protein identification with mass spectromet-
ric data, orthologue sequences are preferable as they are 
more likely to share similar functions [115]. Homologous 
sequences originate from a sequence in a common ances-
tor. The sequences are considered different or orthologues 
when they diverged by a speciation (inter-species) event. 
Paralogous sequences are sequences that came from a com-
mon ancestor and are present in the same genome. However, 
duplication event (intra-species) transpired in the sequences 
produce paralogous sequences which may or may not share 
similar functions [116].

Database dependent- and independent strategies are the 
two approaches used to execute confident cross-species pro-
tein identification. In the former approach, search engines 
such as Mascot (http://www.matri xscie nce.com/) are used 
to search peptide sequence data that contains precursor ion 
mass and a list of product ion masses against a taxonomically 
confined database [117]. Only a massive amount of peptide 
masses generated can guarantee its success as this increases 
the matching probability of several peptides to the homolo-
gous protein. This has been demonstrated for pea chloro-
plast proteins [118] and maize proteins [119]. In a database 
independent strategy, fragmentation spectra are utilized to 
obtain de novo peptide sequences [120]. MSBLAST, which 
uses a combination of BLAST search and peptide de novo 
sequences, had been adapted for tandem mass spectrometry 
data to increase the accuracy and hit rate of protein identifi-
cation [121]. Combination of top-down and bottom-up mass 
spectrometry is the concept of TBNovo for de novo peptide 
sequencing to increase sequence coverage [91]. Essentially, 
tandem mass spectrum from a top-down analysis is utilized 
as a scaffold while bottom-up tandem mass spectra are 
aligned to the scaffold. DeepNovo is another model for de 
novo peptide sequencing which is able to perform complete 
protein sequence assembly without any reference databases 
[19]. The deep neural network model learns the features of 
tandem mass spectra, fragment ions and sequence patterns 
of peptides to do de novo sequencing. Analyzing modi-
fied (in peptide sequences) proteins without completed and 
annotated genomes has proved to be a daunting effort. The 
identification of modified peptides and its modification sites 

are essentially based on single amino acid identifications 
and become largely irrelevant when the peptide sequence 
is not available in any plant database. Application of a de 
novo sequencing strategy is able to facilitate the identifica-
tion of modified peptides and may even help to locate the 
modification site, albeit with requirements for high quality 
tandem mass spectrometry spectra and certain preferable 
fragmentation techniques such as electron capture dissocia-
tion or electron transfer dissociation [25, 40].

Information on protein localization also helps in under-
standing the function of proteins and their biological 
inter-relationships. The Subcellular location database for 
Arabidopsis proteins (SUBA4) provides the hypothetical 
localization of many proteins that were identified in vari-
ous sub-plastidial compartments in A. thaliana [122, 123]. 
LocSigDB is another database that contains 533 protein sub-
cellular locations signals based on 518 experimentally con-
firmed and published research works [124]. The localization 
signals are for eight distinct subcellular locations in mainly 
eukaryotic cell, such as ‘Nuclear localization signal’ and 
‘Mitochondrial targeting signal’. Plant Proteome Database 
(PPDB) was launched in 2004 for A. thaliana and maize (Z. 
mays) [125]. PPDB was developed to accommodate plant 
plastids, but over time, the database expanded to cover the 
entire proteomes of those two plants. The database consists 
of cell type-specific proteomes (maize) or specific sub-orga-
nelle proteomes such as chloroplasts, thylakoids and nucle-
oids as well as whole leaf proteome (maize and A. thaliana). 
More than 16,414 A. thaliana proteins, prominently from 
the plastids, have been assigned with subcellular locations. 
Table 3 listed other open-source software available to ana-
lyze large proteomics data.

5  Significance of Post‑translational 
Modifications

Almost all proteins are modified in some way following 
protein biosynthesis. Many physiological responses result 
from differential protein modifications rather than changes in 
protein expression levels. These modifications do not create 
novel proteins but rather a new ‘protein species’ since the 
translated protein sequence remains unaltered [146, 147]. 
The modifications occur through covalent binding of func-
tional groups such as phosphates, sulphates, carbohydrates 
and lipids [148]. This event, which is known as PTM, is 
one of the key mechanisms that changes the properties of a 
protein in cells and greatly enhances the structural diversity 
and functionality of proteins. This is feasible because PTMs 
provide a larger repertoire of chemical properties than is 
possible using the 20 amino acids specified by the genetic 
code. Protein PTMs could result in alterations in activity, 
localization, production, interactions with other proteins and 

http://www.matrixscience.com/
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half-life [149–151]. Modifications are often permanent, but 
some modifications, such as phosphorylation, are reversible 
and can be used to switch protein activity ‘on’ and ‘off’ 
in response to intracellular and extracellular signals. For 
example, in a signal transduction process, kinase cascades 
are activated or inactivated through reversible addition and 
removal of phosphate groups. The esterification of an amino 
acid side chain through the addition of a phosphate group 
introduces a strong negative charge, which can subsequently 
modify the conformation of the protein and alter its stabil-
ity, activity and potential to interact with other molecules. 
Genomic sequencing has revealed that protein kinases are 
probably coded by 2–3% of all eukaryotic genes [152]. PTM 
is therefore a dynamic phenomenon with a central role in 
many biological processes. Generally, in regulatory path-
ways, the status of serine, threonine and tyrosine is regulated 
by protein kinases and phosphatases [153, 154]. Interference 
with the activities of the kinases and phosphatases indirectly 
disrupts these regulatory pathways and may cause disease 
[155, 156].

The complexity of the proteome is increased significantly 
by PTMs, particularly in eukaryotes where many proteins 
exist as a heterogeneous mixture of alternative modified 
forms. Ideally, it would be possible to catalogue the pro-
teome systematically and quantitatively in terms of the types 
of PTMs that are present, and specify the modified sites in 
each case. However, such attempts are complicated by the 
sheer diversity involved and the transient nature of certain 
modifications. Every protein could potentially be modified 
in hundreds of different ways, and might contain multiple 
modification target sites allowing different forms of modifi-
cation to take place either singly or in combinations. Thus, it 
remains the case that most PTMs are discovered unintention-
ally when individual proteins, complexes, or pathways are 
studied. It is impossible to predict modifications accurately 
from the genome sequence. Even when a definitive modifica-
tion motif is present; it is not necessarily the case that such 
or any modification will happen.

Until recent years, the analysis of PTMs at the proteomics 
level has received limited consideration due to the lack of 
appropriate techniques [148]. However, improved separa-
tion methods can resolve different post-translational vari-
ants, and gels can be stained with reagents that recognize 
particular types of modified proteins. Mass spectrometry is 
at present the method of choice to characterize chemical 
additions and substitutions. Mass spectrometry analysis can 
be used to identify peptides carrying chemical adducts and 
can deduce their positions in the protein sequences.

Signaling proteins and regulatory molecules, which play 
a vital role in functioning, are typically presence in lower 
amount in the cell. They are also often regulated by phos-
phorylation. Since the stoichiometry of phosphorylation is 
usually low, the modified target protein may be present in 

limiting amounts and may be difficult to detect and quantify. 
Ultimately, even if adequate amounts of a particular vari-
ant are available, a large quantity of the sample is required 
for the full characterization of modifications compared to 
the relatively simple matter of protein identification. Cur-
rently, affinity-based techniques are employed to improve the 
chances of detecting their targets by isolating sub-proteomes 
with particular types of modification [157].

Investigations into PTMs and differentially expressed pro-
teins are essential to comprehend cellular responses towards 
changes in environmental conditions [158]. It is clear that 
plants induce a complex array of pathways and protein phos-
phorylation cascades during biotic and abiotic stresses [159]. 
There are over 200 possible PTMs that have been identified 
and reported [160–162]. Until recently, more than 90,000 of 
individually modified amino acid residues were found [163], 
emphasizing the importance of these PTMs in a functional 
proteome. Phosphorylation is the most common and exten-
sively studied PTM using mass spectrometry approaches 
[30, 148, 149, 164–170]. The justification is that phospho-
rylation is one of the primary mechanisms in cellular process 
regulation [171].

Mass spectrometry-based approach has enabled absolute 
and relative quantitation of peptides and their PTMs. Inter-
nal standard peptides are employed for absolute quantitation 
for certain proteins and their defined PTMs [172]. Relative 
quantitation is performed with either the peptide intensity 
profiling (PIP) or SIL using stable isotope-encoded chemi-
cal precursor molecules or alkylating reagents [149, 173].

In an oil palm phosphoproteomics study by Lau et al. 
[17], 3-enoyl-ACP reductase was deactivated through phos-
phorylation to direct the metabolic flux towards the produc-
tion of palmitoyl-ACP during the final phase of the fatty 
acid biosynthesis. Palmitoyl-ACP is a crucial precursor for 
the biosynthesis of unsaturated oleic acids. Furthermore, the 
study discovered that subunit biotin carboxylase of acetyl-
CoA carboxylase was also deactivated through phosphoryla-
tion at the same phase. The deactivation would have stop the 
production of malonyl-ACP, which is the carbon precursor 
for the initial stage of fatty acid biosynthesis in the oil palm.

5.1  Tracking the Phosphopeptides

A wide array of approaches can be used to scrutinize phos-
phorylation changes in cell or tissues. Radiolabeling is a 
classical technique that uses radiolabeled 32P-orthophos-
phate to detect phosphoproteins. Radioactivity can be very 
inconvenient, harmful and detrimental in the long term, 
both to the users and samples [174, 175]. Alternatively, 
after separation by two-dimensional gel electrophoresis 
[176], phosphoproteins can be directly visualized on the gel 
using phosphospecific fluorescent stains and phosphospe-
cific antibodies, which are non-radioactive [52, 53, 56, 177, 



486 B. Y. C. Lau et al.

1 3

178]. Immuno- or Western blot is the most common method 
used to assess the phosphorylation state of a protein using 
phosphospecific antibodies (for phosphorylated tyrosine, 
serine and threonine) transferred from a one-dimensional 
or two-dimensional gel electrophoresis [179, 180]. In direct 
staining, phosphospecific stains such as a fluorescent phos-
phosensor dye, Pro-Q Diamond (Invitrogen) bind directly 
to the phosphate moiety of phosphoproteins [56, 57, 181]. 
The advantages of this stain are in its compatibility with 
other staining methods and the ensuing mass spectrometry 
analysis. This is particularly crucial when trypsinizations 
are performed directly on the gel pieces. A similar phospho-
specific staining kit called Phos-tag had been used previ-
ously in which a  Zn2+ ion chelator with high selectivity was 
coupled to a fluorophore [182]. The suitability of these stains 
in phosphoproteome analysis had been described in previous 
reports. Agrawal and Thelen [55] identified 70 non-redun-
dant phosphoproteins that belonge to the major functional 
classes from a Pro-Q Diamond stained two-dimensional gel 
containing rapeseed (Brassica napus) proteins. However, 
while phosphoproteins could be detected, the stains would 
not indicate the phospho-sites, which is vital in the char-
acterization of phosphorylation events. Special techniques 
are used to investigate membrane phosphoproteins due to 
the limitations in two-dimensional gel electrophoresis tech-
nique. Integral membrane proteins tend to aggregate during 
the isoelectric focusing migration and thus, it is not possible 
to separate them in the second dimension of two-dimen-
sional gel electrophoresis.

The low abundance of phosphorylated proteins in cellular 
extracts and their relatively low degree of phosphorylation 
pose major challenges [183–185]. In mass spectrometric 
analysis, non-phosphorylated peptides often compete with 
the phosphorylated peptides for ionization. As a result, many 
phosphoprotein peaks are difficult to detect, either because 
they have low signal to noise ratio or they are not ionized 
at all. Therefore, to tackle this obstacle, enrichment tech-
niques, which are commonly applied prior to separation 
using liquid chromatography, have been used. Immobilized 
metal affinity chromatography (IMAC) is one of the meth-
ods that are used to enrich phosphopeptides from complex 
mixtures based on affinity of positively charged metal ions 
 (Fe3+,  Al3+,  Ga3+ or  Co2+) towards phosphate moieties. Imi-
nodiacetate and nitrilotriacetate are the prototypical metal-
binding ligands used in IMAC stationary phases [186–189]. 
The Fe(III)–NTA complex is perhaps the most frequently 
utilized to enrich phosphopeptides although the use of other 
metal–ligand complexes had also been reported [190, 191]. 
Most recently, Zr(IV)–phosphonate immobilized on various 
stationary phases had also been employed for phosphopep-
tide enrichment by several groups [192–196]. The phospho-
peptides can be eluted by different salt- and/or pH gradients 
prior to mass spectrometry analysis. Nonetheless, several 

challenges arise when using IMAC. Leaching of ions from 
the column during enrichment steps, non-specific binding 
of peptides that contain the acidic amino acids glutamic and 
aspartic acid and higher specificity for multiply phosphoryl-
ated peptides are amongst those complications [186].

Metal oxide affinity chromatography (MOAC) is another 
valuable technique to isolate phosphopeptides from com-
plex mixtures with high selectivity and recoveries [186, 
197–199]. The metal oxides are often more stable at high 
temperatures and broad pH range [200]. Titanium oxide 
 (TiO2) is the most popular metal oxide resin used as a selec-
tive affinity support to capture phosphorylated peptides 
[201–206]. At acidic pH,  TiO2 has a positively charged sur-
face [207] that permits very selective enrichment of phos-
phopeptides from complex samples by their affinities (phos-
phate groups) toward porous  TiO2 particles (Titansphere) 
[208]. Water-soluble phosphates are desorbed under alkaline 
conditions. Strong cation exchange and titanium dioxide-
type columns have both been used in phosphopeptide enrich-
ment and SILAC for quantitation to study phosphorylation 
changes [209].

Technical variations and bias in quantitative analyses are 
often reported to occur after phosphopeptide enrichment 
[43]. Nonetheless, successful identification and quantita-
tion of phosphopeptides has been reported using a combi-
nation of enrichment strategies and label-free quantitation as 
in the case of Arabidopsis phosphopeptides from a plasma 
membrane fraction following sucrose treatment [58] and a 
hypersensitive response study in tomato plants [59]. In addi-
tion, iTRAQ labelling has been successfully used to quan-
tify phosphorylated peptides in Arabidopsis cells as their 
defense response to P. syringae induction (elicidators) [74]. 
As a rule of thumb, it is more effective to perform chemical 
labelling prior to any enrichment strategies due to the fact 
that enrichment steps confer technical bias in quantitative 
analyses [43].

Hydrophilic interaction chromatography can also be used 
as in the pre-separation stage of peptides prior to phospho-
peptide enrichment such as IMAC or  TiO2 affinity purifica-
tions, in addition to MudPIT LC. Hydrophilic interaction 
liquid chromatography (HILIC) separates polar biomol-
ecules by the binding of the polar biomolecules to the neu-
tral, hydrophilic stationary phase in hydrophilic interaction 
chromatography through hydrogen bonds. These bonds can 
be broken by reducing the organic composition in the mobile 
phase and the peptides eluted based on their polarities [210].

PTM occurrences can also be detected through neutral 
loss-triggered tandem mass spectrometry  (NLMS3) and 
SRM approaches. In a phosphoproteomics study, the phos-
phate group of a phosphopeptide is relatively labile and tend 
to break away during collision-induced fragmentation, in 
the form of a phosphoric acid  (HPO3 or  H3PO4). Hence, the 
fragmentation of phosphoamino residue-containing (serine, 
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threonine and tyrosine) precursor ions generates neutral 
losses of 80 Da  (HPO3) or 98 Da  (H3PO4) [211]. Usually, 
the mechanism for loss of  H3PO4 from phosphoserine and 
phosphothreonine containing peptide ions is the result of 
a β-elimination reaction [212]. In a β-elimination reaction, 
the hydrogen atom on the α-carbon of the phosphorylated 
amino acid residue is transferred to the phosphate oxygen. 
As a result, dehydroalanine-(69 Da) or dehydroaminobu-
tyric acid-(83 Da) containing product ions from phosphoryl-
ated serine or threonine residues, respectively, and  H3PO4 
are produced. Loss of  H3PO4 is more dominant for serine 
phosphorylated peptides and in a lesser extent in threo-
nine phosphorylated peptides. This might be caused by the 
steric hindrance of the β-methyl group in the side chain of 
threonine [213]. Tyrosine phosphorylated peptides give a 
much lower extent of neutral loss and these are in the form 
of  HPO3. Mass spectrometry-based strategies such as the 
 NLMS3 and SRM are essentially built on the detection of 
the characteristic neutral loss generated during the CID 
fragmentation of phosphoamino-containing peptides. In the 
 NLMS3 mode of operation, the diagnostic neutral loss of 
 H3PO4 (98 Da) from the precursor ion in a tandem MS scan 
automatically triggers the  MS3 fragmentation of the neutral 
loss precursor ion. The aim of the  MS3 is to compensate for 
the lack of sequence-specific information in the  MS2 spec-
tra of phosphorylation-modified peptides [213] although a 
study by Villen and co-workers indicated that the collection 
of  MS3 scans did not improve the informative spectra of the 
peptides identified [214].  MS3 operates in a data-dependent 
manner, in which the  MS3 is triggered by the presence of 
an intense product ion peak with the mass of a neutral loss. 
This strategy has been extended to detect phosphopeptides 
in the oil palm mesocarps by Lau et al. [17]. These neutral 
loss species from the product ions were calculated on the 
basis of the product ion mass and charge state, resulting 
in the neutral product ions of m/z 48.99 or m/z 32.66, rela-
tive to the doubly or triply charged phosphorylated product 
ion. A common problem with a neutral loss scan to detect 
phosphopeptides is that unassigned peptides may generate 
ions with a mass similar to the neutral losses as well [214, 
215]. There are also instances when a phosphopeptide fails 
to generate the specified neutral loss and therefore are not 
detected [216].

SRM is an ideal complementary technique to reliably 
target and quantitate low abundancephosphopeptides of 
interest [217–221]. SRM is predominantly performed on a 
triple quadrupole mass spectrometer as the availability of 
additional mass filter (third quadruple, Q3) is exploited to 
isolate targeted fragment ion for  MS2. However, in the study 
by Lau and co-workers, a quadrupole-TOF was used to scan 
the targeted precursor ion for any loss of neutral loss spe-
cies (98 Da) instead [17]. Absence of the Q3 mass filter in 
the quadrupole-TOF implies that only neutral loss species at 

98 Da correspond to the loss of  H3PO4 can be detected after 
collision-induced fragmentation of the selected precursor 
ions in Q2. The ideal prerequisites to targeted SRM experi-
ments are the prior knowledge of the primary sequence, type 
of phosphorylation, sequence motif and predicted fragmen-
tation pathways to identify the potential phosphopeptides 
(for example, a neutral loss of 98 Da from phosphoserine 
and phosphothreonine peptides but not phosphotyrosine 
peptide).

5.2  Prediction of Post‑translational Modifications

Automated prediction of PTM sites is one of the main 
interest areas for bioinformatics investigations. In vivo and 
in vitro determinations of modified proteins and their PTM 
sites are not only time-consuming and tedious, but often 
restricted to the availability and optimization of enzymatic 
reactions in order to determine the type of modifications 
and sites [222–224]. Tandem mass spectrometry spectra 
offer the most informative fingerprints of modified peptides. 
The spectra encode not only peptide sequences, but also the 
masses and sequence positions of modifications. For these 
reasons, computational techniques have been employed to 
manage the massive amounts of fragmentation spectra, mod-
ified protein determination and individual PTM site identi-
fication with high accuracy as well as efficiency [225]. The 
current PTM prediction tools basically are classed into four 
major groups based on their types of classification schemes 
[226].

The first group comprises general PTM related resources 
such as PROSITE [227] which predicts types of PTMs based 
on their sequence pattern consensus. Several signature rec-
ognition methods are combined to probe a query protein 
sequence against observed protein signatures. The Scansite 
tool predicts kinase-specific and signal transduction relevant 
motifs [228]. Conserved sequence motifs represent imprints 
of important biochemical properties or biological functions 
of those proteins.

The second group consists of various neural network pre-
diction tools. These tools cover phosphorylation related pre-
diction servers such as NetPhos [229] and NetPhosK [222, 
230]. NetPhosK is the most popular since the server allows a 
preferred ‘threshold’ value to be indicated during prediction.

The third group of the prediction tools encompasses 
different support vector machine based prediction tech-
niques. These methods are constructed on the basis that 
adjacent residues to the phospho-sites represent the main 
determinant for kinase specificity [224, 231]. For instant, 
PredPhospho [232] aims to predict phosphorylation sites 
and the type of kinase that acts at each site. AutoMotif-
Server [233] also predicts PTM sites in protein sequences 
using support vector machine classifier with both linear 
and polynomial kernels. KinasePhos 2.0 is the web server 
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to identify protein kinase-specific phosphorylation sites 
based on amino acid residue sequences and coupling pat-
terns [234]. PHOSIDA is also capable of predicting phos-
phosites [235].

The final group consists of remaining types of machine 
learning based PTM prediction tools. Prediction of PK-
specific phosphorylation site (PPSP) adopted the Bayesian 
decision theory to predict kinase-specific phosphorylation 
sites and has been reported to produce precise prediction 
of the probable phosphorylation sites for about 70 pro-
tein kinase groups [226]. PPSP_balanced model worked 
remarkably for all types of protein families. Ascore, a 
probability-based score that was developed by Beausoleil 
and his colleagues, used the presence and intensities of 
site-determining ions in tandem mass spectrometry spectra 
to calculate the probability of exact phosphorylation site 
localization [236]. Ascore re-evaluates the results from 
search engine on phosphopeptide and designates a confi-
dence value to each of the phosphorylated site. Phospho-
Score is another algorithm which acts similarly to Ascore. 
PhosphoScore considers both the match quality and the 
normalized intensity of observed spectra peaks compared 
to a theoretical spectrum. PhosphoScore was employed 
successfully in the studies done by Ruttenberg et al. [237]. 
PTMap is a sequence alignment software used to identify 
protein PTMs and polymorphisms [238]. The selection 
of peak, adjustment of inaccurate mass shifts and precise 
localization of PTM sites are the features that improved 
searching speed and accuracy of PTMap. This software is 
the first algorithm that contains a scoring system which 
concentrates on unmatched peaks to eliminate false posi-
tives, thus increasing the accuracy and sensitivity of the 
PTM identifications. Table 4 summarized some of the 
main in silico tools to study several common PTMs.

There are numerous database which provides information 
on PTMs. dbPTM database [251] gathers various informa-
tion such as the catalytic sites, protein domains and pro-
tein variations, in addition to these software or tools. These 
databases include a majority of experimentally validated 
PTM sites from SwissProt and Phospho.ELM. Phospho.
ELM comprises over 40,000 amino acid serine, threonine 
and tyrosine non-redundant phosphorylation sites from ver-
tebrates, Drosophila melanogaster and Caenorhabditis ele-
gans [252]. Similarly, PHOSIDA (http://www.phosi da.com) 
comprises more than 80,000 phosphorylated, N-glycosylated 
or acetylated sites from nine different species [235]. For each 
of the phosphosites, PHOSIDA lists matching kinase motifs, 
predicts secondary structures, conservation pattern, and its 
dynamic regulation upon stimulus. Unfortunately, none of 
these species are plants. PhosphoSitePlus (http://www.phosp 
hosit e.org) has 130,000 non-redundant modification sites, 
primarily on phosphorylation, ubiquitination and acetyla-
tion [253].Ta
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6  Conclusions

In the post-genomics era for perennial oil crop improvement 
such as oil palm, it is crucial to first map the entire set of 
the proteins using the emerging proteomics technologies. 
Given the lack of protein-level information of the oil palm 
genes sequenced so far, a systematic effort using the tools 
of proteomics is essential to elucidating biological functions 
of interest based on these genomic sequences. Knowing the 
key controlling mechanisms for metabolic processes such 
as fatty acid production and plant defense towards pathogen 
through proteome-wide protein quantitation is significantly 
important. Subsequent PTM analysis and protein–protein 
interaction mapping can eventually help to predict the reg-
ulatory networks under different planting environments. 
These information are crucial to strategize breeding pro-
grams and to discover biological significant markers for oil 
palm fruit growth and development, to improve the yield 
and quality as well as to enhance the plant immunity towards 
various environmental stresses, in particular, diseases that 
has obstructed the optimal production of palm oil.
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