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Abstract In previous work from this lab, the information

in natural proteins was investigated with Ribonuclease A

(RNase A) serving as the source. The signature traits were

investigated at three structure levels: primary through

tertiary. The present paper travels further by charting the

primary structure information of about half a million

molecules. This was feasible given abundant sequence

archives for both living and viral systems. Notably, a

method is presented for evaluating primary structure infor-

mation, based on Fourier analysis and spectral complexity.

Significantly, the results show certain complexity traits to

be universal for living sources. Viruses, by contrast, encode

protein collections which are case-specific and complexity-

divergent. The results have ramifications for discriminating

collections on the basis of sequence information. This

discrimination offers new strategies for selecting drug

targets.

Keywords Proteins � Fourier analysis � Spectral entropy �
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Abbreviations

PDB Protein data bank

RNase A Ribonuclease A

QSAR Quantitative structure activity relation

CI Correlated information

WT Wild type

2D Two dimensional

1 Introduction

Amino acid sequences are the blueprints for proteins. Their

information is readily quantified in high-level terms. If a

sequence is restricted to the 20 standard amino acids (G, V,

A, …), and unrestricted diversity-wise, each constituent is

allied with log2 20ð Þ � 4:32 bits of information. A deca-

peptide requires 43.2 bits to specify; a 100-unit molecule

calls for 432 bits. Proteins built from hundreds of amino

acids are more complicated than small systems (tens of

amino acids) because, for openers, their sequences hold

more information.

Yet the issues run deeper when a sequence is tied to a

chemical function, say, glycoside hydrolysis. If the cata-

lytic action necessitates isoleucine (I) in the 23rd position

(in boldface, counting from left):

KVFERCELARTLKRLGMDGYRGISLANWMCLAK

WESGYNTRATNYNAGDRSTDYGIFQINSRYWCN

DGKTPGAVNACHLSCSALLQDNIADAVACAKRV

VRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV

(Seq. 1)

it is only because of details in the preceding 22- and

succeeding 107-member strings, namely:

KVFERCELARTLKRLGMDGYRG (Seq. 2)

SLANWMCLAKWESGYNTRATNYNAGDRSTDYG

IFQINSRYWCNDGKTPGAVNACHLSCSALLQDNI

ADAVACAKRVVRDPQGIRAWVAWRNRCQNRDV

RQYVQGCGV (Seq. 3)

Put another way, the need for I in the 23rd position, and

not G, A, D, etc. hinges on all the other constituents. In

effect, every member of Seq. 1 depends on 129 others; each

is impacted by the information of neighbors near and far.

To be sure, structures such as Seq. 1—which describe
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lysozyme—are nonsensical in appearance [21]. Yet if a

protein researcher understood the assembly rationale, he or

she could infer portions of the sequence upon learning

others. Such comprehension would lower the bits needed

for specifying 130 letters.

Yet the information issues run deeper still. The workings

of lysozyme do not transpire in a vacuum, but rather in an

environment of working proteins. The following are the

respective sequences for adenylosuccinate synthetase, tri-

phosphate epimerase, and Ribonuclease A (RNase A) [13,

23, 25]:

MSGTRASNDRPPGTGGVKRGRLQQEAAATGSRV

TVVLGAQWGDEGKGKVVDLLATDADIVSRCQGG

NNAGHTVVVDGKEYDFHLLPSGIINTKAVSFIGNG

VVIHLPGLFEEAEKNEKKGLKDWEKRLIISDRAHL

VFDFHQAVDGLQEVQRQAQEGKNIGTTKKGIGPT

YSSKAARTGLRICDLLSDFDEFSARFKNLAHQHQS

MFPTLEIDVEGQLKRLKGFAERIRPMVRDGVYFM

YEALHGPPKKVLVEGANAALLDIDFGTYPFVTSSN

CTVGGVCTGLGIPPQNIGDVYGVVKAYTTRVGIG

AFPTEQINEIGDLLQNRGHEWGVTTGRKRRCGWL

DLMILRYAHMVNGFTALALTKLDILDVLSEIKVGI

SYKLNGKRIPYFPANQEILQKVEVEYETLPGWKA

DTTGARKWEDLPPQAQSYVRFVENHMGVAVKW

VGVGKSRESMIQLF (Seq. 4)

MAQPAAIIRIKNLRLRTFIGIKEEEINNRQDIVINVTI

HYPADKARTSEDINDALNYRTVTKNIIQHVENNRF

SLLEKLTQDVLDIAREHHWVTYAEVEIDKLHALR

YADSVSMTLSWQR (Seq. 5)

KETAAAKFERQHMDSSTSAASSSNYCNQMMKSR

NLTKDRCKPVNTFVHESLADVQAVCSQKNVACK

NGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTT

QANKHIIVACEGNPYVPVHFDASV (Seq. 6)

By contrast, the following describe molecules which

have been constructed arbitrarily by the authors and thus

pose no known function:

MHACYRRDTWHFPQSRRHARSEWDLEDVGTHHY

QGCEPKERNFWSEYKKQKQKGQGFALHQYERIQI

KPAWSNIMLDHASINGESDFHHDILTMHFDERCQ

QTFPYHYVGQPPNPWILLRNETCDVTTKEPNFTTD

RQQHFGHNGMHFEQMKDHKFMHQFESEIEDCTF

WWLPWKWPNWYGKPFNHEWPMYAACWIINDH

CIMVRWYDHFRTD (Seq. 7)

MCMNRIIEIREGKPNEMVWPEDCHCRVPRQYECC

QYVQFMVWFLYNGFMDFCGVHYDTGGEDLWLN

HLQIKYPPSESHQTGCVYVCLMVPRFRTESVHAC

HVMWFYWKCDHPLCCQRDGHVRCVWSLAAGQL

RHFPRYQTLTSFPQQLLPPISQIIFISQYVVIEWKIQP

CVFEQMWISVDGADRYQDKLPGYHRREQNKSSD

ELLVMVEYRLKLCVNVI (Seq. 8)

MTMYHPCWKSDRHKQALMNKGPWYPDEKTEIYF

RHLWPITWPGVAFPWEQNKSDGHPTQHKRELGG

YNHNNFWGLGDYIGPVKSVAEDWVFWQCEEMK

QMMAKIAKLVKFGVGWYDQFFTCGDVNWHFVIG

WLYTHMCQIDNNEGGLHHACAASTMPTAFYFAD

DKGFGGIRVPDMPPNPWNSEQVEMKTEWAAKKD

IWDPFEGFWGGHNYYMTEYNIKPPEVPWMPNQA

VVEVKRKMTCCYIGCLGVKYAVDDYCTPWSVQG

KIQN (Seq. 9)

Countless examples can be presented. The point is that

the design rationale for lysozyme applies to (naturally

occurring) Seqs. 4–6 as well. For not only does an amino

acid impact others in a molecule, there are intermolecular

relationships as well. If a researcher understood these, he or

she could infer parts of lysozyme upon learning Seqs. 4–6.

An investigator would surmise as well that {Seqs. 1, 4, 5,

6} and {Seqs. 7, 8, 9} really constitute two distinct sets: for

naturally-occurring and arbitrarily-assembled molecules,

respectively.

At present, databases store the primary structures for

*107 proteins. There appears no limit given the diversity

of molecules and their species of origin. If the average

protein features 300 amino acids, then databases provide

sequence information aplenty:

107 � 300� 4:32 � 1:3� 1010 bits:

At the same time, the number of 300-unit possibilities is

astronomical at 20300 � 10390. Clearly, only nature’s surface

has been scratched and the same statement will apply when

databases have grown ten-fold. At the least, a better

understanding of protein assembly rationales is desirable

because it can save significant labor in the future.

The messages in amino acid chains are the object of

international research. Efforts cut intensely across chemistry,

biology, mathematics, and medicine. For our part, we have

been investigating archetypal systems with the help of infor-

mation theory. Thus far, our reports have looked to RNase A

(Seq. 6) for insights [9, 10]. Ref. [9] focused on the informa-

tion scaling of the RNase A primary structure, in comparison

with sequence isomers. The appendix of that work illustrated

how similar scaling attributes were expressed by proteins

carrying radically different chemical functions. This was

important. It showed that the information distribution of a

particular catalyst (RNase A) with a dedicated and evolved

chemical function was not merely case-specific.

Reference [10] delved more deeply by examining

information in the RNase A secondary and tertiary struc-

ture. As is well known, these structure levels are subsidiary

to the primary and confer the molecule’s chemical action.

The results identified the information specialness of the

wild-type (WT) system, compared with mutants.
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The present paper takes the next steps as the information

properties of multiple systems (i.e. not just RNase A) are

examined. Further, the information specialness of WT (i.e.

naturally occurring) systems is probed more deeply. A

variety of living organisms and viruses furnish the systems

of interest.

Note the crux issue. On one hand, it is easy to construct

arbitrary (non-functional) sequences such as Seqs. 7–9: one

can write letter strings at whim or assemble them using a

random number generator. For the motivated researcher,

there is a real molecule waiting to be synthesized and

studied on the basis of each. Further, nature is generous

with new and raw material for sequencing labs. As a result,

there are ever-growing structure archives.

On the other hand, it is challenging to discriminate

natural and arbitrary sequences, e.g. Seqs. 4 versus 7.

Appeal can always be made to databases and search

engines. Yet pinpointing Seq. 4 as a synthetase in a BLAST

search, while discovering Seq. 7 not to align with database

entries does not further our understanding of design ratio-

nales. For example, how can one discriminate which of the

following is the functional sequence?

MKNKYNVLCRWMKLCNWKMGKHRWGYPRCH

MVTKMADRISGCNEVKWVEPECELRLCNRTHLQ

RWGRLYGCFVIFQILHISWFHIVNVTSTGNQKYKH

NEQMVRYFCEKKMFSNLGNRHGSCCGFEQGMAA

HDNNCPSRHDLGCRKEQHQETTSMMSSPCKPMW

SGPYVPEKYRVSAGNYNGVCRQMHKQPSCHLNM

YNFFLCMAWIIREPKSLYKQKHALCNWNRQEPFK

EANYICMNRDYQWV (Seq. 10)

MNPESRVIRKVLALQNDEKIFSGERRVLIAFSGGV

DSVVLTDVLLKLKNYFSLKEVALAHFNHMLRESA

ERDEEFCKEFAKERNMKIFVGKEDVRAFAKENRM

SLEEAGRFLRYKFLKEILESEGFDCIATAHHLNDLL

ETSLLFFTRGTGLDGLIGFLPKEEVIRRPLYYVKRS

EIEEYAKFKGLRWVEDETNYEVSIPRNRIRHRVIPE

LKRINENLEDTFLKMVKVLRAEREFLEEEAQKLY

KEVKKGNCLDVKKLKEKPLALQRRVIRKFIGEKD

YEKVELVRSLLEKGGEVNLGKGKVLKRKERWLC

FSPEV (Seq. 11)

The answer appears in this paper wherein a rapid and

effective discrimination method is presented. Suffice to say

that functional proteins are special by their recognition and

catalytic capabilities. The protein collection of a cell or

virus is extra-special by its capacity to generate high-

fidelity copies. Clearly the strategies for linking amino

acids are anything but arbitrary.

The present paper looks beyond RNase A and is based on

the information properties of half a million compounds. The

calculations are extensions of ones introduced in Ref. [9].

The results are new insights into proteins as grounded upon

Fourier spectra and two-dimensional (2D) phase plots. Such

tools are timely, having close relatives developed by multi-

ple research groups. In early 2011, Randić et al. [26] con-

tributed an extensive review of the graphical and spectral

representations of natural proteins. These researchers aimed

at providing ‘‘novel mathematical and structural invariants

that can serve as additional mathematical descriptors for

such systems.’’ Along complementary lines, González-Dı́az

et al. [1, 5, 7, 8] established the Markov and entropic fin-

gerprints attendant to kinases and ribonucleases. Looking

substantially beyond proteins, González-Dı́az et al. have

developed Markov and Shannon entropy models for con-

nectivity within complex networks which include drug-

target, host-parasite, cerebral cortex, and legal-social

[24, 27]. Most recently Glisic and co-workers have applied

Fourier spectrum and information methods in the assessment

of viral protein sequences [6]. Bajorath and co-workers have

applied 2D similarity methods toward pinpointing structure

selectivity and molecular fingerprints [31]. Their research

continues a multi-year effort to discriminate natural from

unnatural libraries [2, 29]. We call attention also to the

phylogenetic analysis of Chang and Wang. Their methods

established information insights for diverse sources of pro-

teins [4]. Likewise, Liu and co-workers leveraged Fourier

and spectral techniques toward the prediction of membrane

protein types [18]. In a similar vein, Jiang and co-researchers

established prediction methods grounded on wavelet trans-

forms [14]. Fourier and related analytical tools support

central themes of the present paper.

2 Materials and Methods

Proteins are chains of amino acids with formulae encap-

sulated by letter sequences. The amino acid and letter

correspondence is 1:1 with the left- and right-most entries

representing N- to C-terminal units, respectively. Taken at

face value, each member of a sequence offers the same

amount of information.

Tying a sequence to the Angstrom level brings addi-

tional considerations into play, however. This is because

different letters, say W and A, do not signify electronic

assemblies of equivalent size and complexity. A protein is

threaded by a backbone of a-carbon, carbonyl, and amide

linkages. The electronics are tuned via the side-chain

attachments to the a-carbons. Tryptophan (W) and gluta-

mine (Q) host substantive attachments via 6:5 fused aro-

matic rings and [NH2CO(CH2)2], respectively. The tuning

is modest at alanine (A) sites by way of a single methyl

group. Glycine (G) sites are the sparsest as the a-carbons

feature only hydrogen atoms.
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Electronics and information are intertwined. Thus, when

a sequence is connected to the Angstrom level, the infor-

mation needs to reflect more significant upticks where Ws

and Qs appear, compared with As and Gs. In effect,

sequences such as for lysozyme, adenylosuccinate synthe-

tase, etc. delineate side-chain tuning which modulates the

information in such a way that confers the molecular

activity.

The groundwork for this paper and its predecessors was

laid by previous research in this lab, wherein the correlated

information CI for naturally occurring amino acids was

quantified [11]. Such was based on the atom and covalent

bond structure of each entity and a Brownian computation

model. An average value\CI[and standard deviation rCI

were established for a library constructed around the

twenty standard amino acids. A dimensionless quantity Z
ðiÞ
CI

was formulated for each library member based on its CI

relative to the average, viz.

Z
ðiÞ
CI ¼

CIðiÞ � CIh i
rCI

ð1Þ

The (i)-superscripts in Eq. (1) refer to the various library

members: G, A, I, D, … The results in Ref. [11] establish

dimensionless Z
ðiÞ
CI for every entry of a sequence:

The Z
ðiÞ
CI have nothing to do with the population statistics

of amino acids. Rather, they have everything to do with the

atom and covalent bond assemblies, and the correlations

effected by a-carbon attachments. The signs reflect whether

the information impact is above or below nature’s library

average. The magnitudes are established in units of the

library standard deviation per Eq. (1). For example,

W (tryptophan) offers a nearly ?3r information impact in

a protein while the effects of G (glycine) are substantially

smaller, almost 1.5r below average. The above Z
ðiÞ
CI values

were applied extensively to Ribonuclease A in Ref. [9] and

calculations for the present paper.

The information functions for proteins are straightfor-

ward. A dimensionless function G(k) is constructed by

adding Z
ðiÞ
CI terms in the order presented by a molecule; k is

the counting index while the superscript labels apply to G,

A, V, etc. The N-to-C terminal direction is of no more

chemical significance than C-to-N. For consistency, how-

ever, we elect the former direction in all analyses. In so

doing, G(k) tracks the left-to-right cumulative information

of a protein, taking the Angstrom-scale correlations into

account:

G kð Þ ¼ Z
ðiÞ
CI;1 þ Z

ðiÞ
CI;2 þ Z

ðiÞ
CI;3 þ � � � þ Z

ðiÞ
CI;k ¼

Xk�N

j¼1

Z
ðiÞ
CI;j

ð3Þ

G(k) is composition- and sequence-dependent. Its value

at integer variable k depends on k-number of amino acid

units registered left-to-right. There is a unique G(k) for

every possible sequence.

The upper panel of Fig. 1 illustrates the workings of

G(k), based on the synthetase of Seq. 4. One is struck not

only by the linearity of the function, but also that it trends

significantly below zero. The former trait reflects the linear

scaling of the cumulative information. The latter attests the

predominance of low information amino acids: ones having

Z
ðiÞ
CI \0:

Now perfect linearity of G(k) (i.e. coefficient of deter-

mination R2 = 1) would apply to a molecule built from a

single type of unit, say, A. Fortunately, nature opts for

complicated systems. For a real protein, the side-chain

tuning of each a-carbon uniquely modulates G(k). In turn,

the function fluctuates about straight-line behavior.

Regression analysis leads to a second function L(k): that

for the best-fit line allied with G(k), viz.

L kð Þ ¼ mk þ b ð4Þ

In Eq. (4), m and b are the respective slope and

y-intercept of the regression line. The dotted line in the

upper panel of Fig. 1 illustrates L(k) for the synthetase (Seq.

4) with m � �0:416; b � �8:20; and R2 � 0:997. L(k)

Z
ðWÞ
CI ¼ þ2:63 Z

ðYÞ
CI ¼ þ1:51 Z

ðHÞ
CI ¼ þ1:12 Z

ðCÞ
CI ¼ þ1:10

Z
ðFÞ
CI ¼ þ0:691 Z

ðNÞ
CI ¼ þ0:405 Z

ðDÞ
CI ¼ þ0:308 Z

ðQÞ
CI ¼ þ0:168

Z
ðEÞ
CI ¼ þ0:115 Z

ðMÞ
CI ¼ �0:128 Z

ðTÞ
CI ¼ �0:286 Z

ðAÞ
CI ¼ �0:476

Z
ðRÞ
CI ¼ �0:565 Z

ðSÞ
CI ¼ �0:618 Z

ðKÞ
CI ¼ �0:687 Z

ðVÞ
CI ¼ �0:855

Z
ðPÞ
CI ¼ �1:01 Z

ðLÞ
CI ¼ �1:15 Z

ðIÞ
CI ¼ �1:43 Z

ðGÞ
CI ¼ �1:49

ð2Þ
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enables the information modulations to be isolated via a

third function H(k):

H kð Þ ¼ GðkÞ � LðkÞ ð5Þ

Like its parents G(k) and L(k), H(k) is unique to a

molecule. And importantly, H(k) details the patterns in the

information distribution. H(k) equals zero for ‘‘single-

letter’’ compounds such as polyalanine, polyglycine, and so

on. As seen in Fig. 1, H(k) traces out a mode structure of

diverse frequencies and amplitudes.

Since G(k) and H(k) are evaluated at equidistant

intervals, they accommodate Fourier transformations. To

set the stage, the functions are shifted leftward by one

unit:

Ĝ 0ð Þ ¼ G 1ð Þ
Ĝ 1ð Þ ¼ G 2ð Þ

..

.

Ĝ k � 1ð Þ ¼ G kð Þ

ð6Þ

The results retain the same features as GðkÞ. The shift-

operations apply just as easily to H so as to yield Ĥ.

Every nth element of a discrete Fourier transform then

arrives as follows:

~G nð Þ ¼
XN�1

k¼0

ĜðkÞ exp
2pikn

N

� �
ð7Þ

~H nð Þ ¼
XN�1

k¼0

ĤðkÞ exp
2pikn

N

� �
ð8Þ

In Eqs. (7) and (8), i ¼
ffiffiffiffiffiffiffi
�1
p

while p has its usual meaning

[3].
~G and ~H are unique to a molecule, just as their prede-

cessors G(k) and H(k). At the same time, ~G and ~H are

complex having both real and imaginary parts. Importantly,

they re-formulate a protein’s information in an alternate yet

equivalent way. There is no loss of chemical message in

taking G! Ĝ! ~G and H ! Ĥ ! ~H. One can always

backtrack so as to recover the amino acid sequence.

And there are other characteristics to note. In exercising the

Fourier summations, the information of every constituent of a

protein contributes to a point in ~G nð Þ and ~H nð Þ: The synthe-

tase responsible for Fig. 1 requires 457 amino acids for con-

struction. Every one of the 457 impacts every part of ~G and ~H.

For compression and ease of interpretation, the Fourier

transforms are converted to power spectra. These arrive by

computing the absolute values of ~G and ~H and taking

symmetry into account [19]:

P ~G fnð Þ ¼
1

N2
� ~G nð Þ
�� �� þ ~G N � nð Þ

�� ��� �
ð9Þ

P ~H fnð Þ ¼
1

N2
� ~H nð Þ
�� �� þ ~H N � nð Þ

�� ��� �
ð10Þ

The frequency fn is defined simply as:

fn ¼
n

N
ð11Þ

Figure 2 illustrates the spectra descendent from Fig. 1.

In effect, the power spectra distill the mode structures

which are imbedded in the protein information. In the

Fourier analysis of electric signals, frequency m and time

t serve as conjugate variables [3, 19]. The variables fn and

k play analogous roles in the analyses at hand.

Fig. 1 G(k), L(k) (dotted line), and H(k) for Sequence (4), adenyl-

osuccinate synthetase. The quantities along the horizontal and vertical
scales are dimensionless
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The Fig. 2 data are typical. They show the spectrum

derived from ~G nð Þ (upper panel) to be dominated by a

single band with maximum intensity at fn ¼ 0: By com-

parison, the mode structures at higher frequencies prove

only of minor intensity. These traits reflect (again) the

linear scaling of G(k) in Fig. 1.

The spectrum based on ~H tells a longer story (Fig. 2,

lower panel). Here a modulation structure of diverse fre-

quencies and amplitudes is traced out. As is typical, the

low-frequency modes contribute the majority of intensity.

These bands tie especially to the long-range tuning of

information in the molecule.

Every amino acid sequence, natural and contrived, offers

plots as in Figs. 1 and 2. Thus the investigation of large popu-

lations ([5 9 105 for this paper) generates functions and spectra

in true abundance. It then proves both convenient and enlight-

ening to compress the data further. This obtains by computing

spectral entropy values—measures of the Fourier image com-

plexity. The power spectra are first subject to normalization:

k �
X

n

P ~G fnð Þ ¼ 1 ð12Þ

l �
X

n

P ~H fnð Þ ¼ 1 ð13Þ

The parameters k and l are determined in each case by

the summation details. Two entropy values, quantified in

bits, arrive subsequently:

S ~G ¼
X

n

kP ~G � log2 kP ~G

� 	
ð14Þ

S ~H ¼
X

n

lP ~H � log2 lP ~Hð Þ ð15Þ

In effect, S ~G gauges the complexity of a protein’s

cumulative information while S ~H performs likewise for the

modulation structure. Together, S ~G and S ~H locate a state

point on a 2D phase plot with Fig. 3 illustrating sample

results.

Figure 3 features several points on the S ~G, S ~H-plane. One

point corresponds to the synthetase responsible for the

preceding figures. Another state point is located by applying

the same procedure to Seq. 5 detailing triphosphate epi-

merase. The data show S ~G and S ~H to fall in the range of one

to a few bits. Amino acid sequences pose infinite possibil-

ities. As a consequence, there are infinite possible pairings

of S ~G and S ~H .

Points for two of these infinite possibilities are included

in Fig. 3. The state point for a polyalanine, A100, appears at

zero altitude. The ground floor attests that homopolymers

(G130, W225, etc.) all yield P ~H fnð Þ with zero amplitude and

zero S ~H . Meanwhile, the state point for an impossible

system falls at the origin. The forbidden-status reflects that

Fig. 2 Power spectra based on the synthetase data of Fig. 1

Fig. 3 State points located by information spectral entropy values
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no amino acid in nature’s library evinces Z
ðiÞ
CI ¼ 0; there-

fore a protein with zero G(k)and H(k) can never manifest.

In contrast, arbitrarily-constructed molecules such as

Seq. 9 yield state points somewhere on the S ~G, S ~H plane.

Moreover, every collection, natural and otherwise, defines

a locus of points.

From the project outset, the authors were intensely

curious about the point loci for natural versus arbitrarily-

constructed proteins. What would they look like?

3 Results

Figure 4 illustrates the phase plot for the proteins manufac-

tured by Escherichia coli (E. coli) cells. The sequences—as

with all examined for this paper—were retrieved as FASTA

files from the National Center for Biotechnology Informa-

tion (NCBI) and subjected to the Fourier methodology of the

previous section. The plot shows the placement of just under

5,000 state points, with the locus most concentrated near S ~G,

S ~H � 1:5; 3:0 bits. The ranges prove as follows:

0:502� S ~G� 3:09 bits

0:391� S ~H � 5:18 bits

In effect, these establish complexity boundaries for this

much-studied library of molecules. S ~G, S ~H pairings outside

the boundaries are certainly possible. But they are declined

or avoided outright by the bacteria. Interestingly, the point

locus has an arrowhead shape which is concentrated at the

center while diffuse at the edges. A cleft structure more-

over appears near S ~G � 1:40 bits and S ~H � 2 bits. Note that

the state points for arbitrarily-constructed molecules such

as Seqs. 7–9 fall considerably outside the arrowhead ter-

ritory. The S ~H values appear well within bounds, but the S ~G

land too far to the right. The same statement applies to Seq.

10 of the Sect. 1 and affirms its unnatural status. By con-

trast, Seq. 11 details a lysidine synthetase—and thus nat-

urally occurring molecule; this places a state point in the

middle of arrowhead territory [22].

Immediate questions come to mind. Are the complexity

phase plots for other natural sources different from Fig. 4?

Does a plot for one protein library match another only after

rescaling S ~G and S ~H? Quite a few inquiries motivated the

authors to examine multiple sources.

Some answers appear in Figs. 5 and 6. The first is that

the proteins for diverse living systems—algae, mice,

humans, and fruit-flies—demonstrate highly similar S ~G, S ~H

plots—there is no need to rescale (i.e. compress or dilate)

the coordinate axes. The same complexity territory is

staked out while the arrowhead and cleft motifs are con-

served across the boards. The differences lie in the dis-

persion of points, especially at the arrowhead edges. The

authors investigated the protein libraries for twenty-three

living systems. All yielded S ~G, S ~H plots that closely

mimicked one another as in Fig. 5.

Sharp contrasts were drawn by viruses, however. These

systems encode multiple proteins, yet reside only at the

threshold of life [17]. Figure 6 illustrates data for the

libraries encoded by Influenza A, Human Immunodefi-

ciency (HIV), Hepatitis B, and Simian (monkey) Influenza

viruses. The arrowhead morphology is altered significantly

in all four cases while multiple island structures appear.

The latter owe to local concentrations of state points. The

spectral entropy ranges veer substantially from living sys-

tems. For Influenza A, for example:

0:714� S ~G� 2:12 bits

0:678� S ~H � 5:00 bits

Clearly, viral proteins stake out an information territory

with somewhat fluid boundaries. Even so, the territory

barely encroaches on the state point region of arbitrarily-

constructed molecules such as Seqs. 7–10.

Phase plots can be compared by visual inspection.

Quantitative comparisons arrive by computing overlap

values. Let two protein libraries express spectral com-

plexity distributions UA and UB. Let UA � DS ~GDS ~H and UB �
DS ~GDS ~H signify the fraction of library members with state

points in a small window bounded along the horizontal by

S ~G and S ~G þ DS ~G; let the vertical window boundaries be S ~H

Fig. 4 Complexity phase plot for the E. Coli library. Included are the

state points for other proteins such as presented in text. The

coordinates are determined by spectral entropy values based on

amino acid sequences. The points for arbitrary sequences lie outside

the E. Coli point locus
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Fig. 5 Complexity phase plots

for protein libraries as labeled

Fig. 6 Complexity phase plots

for viral protein libraries
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and S ~H þ DS ~H : Now if UA and UB were identical, their

overlap would be the maximum possible. Thus, when

comparing phase plots quantitatively, a dimensionless

overlap OAB needs to be computed as follows:

OAB ¼

P
S ~G

P
S ~H

UA �DS ~GDS ~H

� 	
� UB �DS ~GDS ~H

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
S ~G

P
S ~H

UA �DS ~GDS ~H

� 	2
r" #

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
S ~G

P
S ~H

UB �DS ~GDS ~H

� 	2
r" #

ð16Þ

Equation (16) has its roots in statistical structure

investigations of liquid phase samples [12]. In directing

Eq. (16) to proteins, one randomly selects an identical

number of state points, say 3,500, for A and B libraries.

The point fractions are then tallied for each window. The

denominator in Eq. (16) ensures that OAB equals 1 at

maximum whilst the minimum possible is 0 for phase plots

that diverge wholesale.

Figure 7 illustrates overlap results for multiple libraries.

In assembling the data, the E. coli plot (Fig. 4) has been

used as the reference: UA ¼ UE: coli while UB is varied. For

clarity, the data are presented as a left-to-right ascendant

distribution. The horizontal error bars mark the average

plus/minus one standard deviation. The errors are estimated

by computing OAB for several randomly-selected popula-

tions of each library.

The trends are striking. The overlap between living sys-

tems and E. coli is substantially greater compared with viral

systems, e.g. Ofruitfly; E: coli


 �
¼ 0:6054� 0:0043whereas

OInfluenza A; E:coli


 �
¼ 0:232� 0:00443. The phase plots for

ostreococcus-tauri, an algae species, and arabidopsis

thaliana (a common weed) demonstrate the greatest overlap

with E. coli (bacteria). Regarding living sources, the protein

libraries for cows and humans (mammals) demonstrate the

least overlap with E. coli. The overlap differences among

living systems prove small but (in most cases) statistically

significant.

Phase plot differences can be quantified a second way

via the correlations between S ~G and S ~H . Where the corre-

lations are substantial, precisely how the information

accumulates in a protein significantly impacts the tuning

modulations. Strong correlations within a phase plot signal

that a large number of the library molecules are custom-

designed. A particular value of S ~G, say, 1.35 bits, demands

a specific S ~H , say, 2.37 bits, with no substitutions tolerated

by the manufacturer. From the protein researcher’s point of

view, if he or she were to learn S ~G for a molecule in the

library, the value of S ~H would arrive as a bonus.

The case of feeble correlations is different. Here the

cumulative information minimally impacts the tuning

modulations. A value of S ~G allows several possibilities for

S ~H , and vice versa. If S ~G ¼ 1:35 bits is paired with S ~H ¼
1:65; 3:05; 3:85; and 4.15 bits, one size of S ~G accommo-

dates several sizes of S ~H . The protein manufacturer is not

so choosy and exacting. And from a researcher’s point of

view, if he or she were to learn S ~G for a library entry, little

information would be furnished about S ~H .

As before, let UA � DS ~GDS ~H quantify the fraction of

points for library A in a small window of area DS ~GDS ~H .

Along similar lines, let UA; S ~G
� DS ~G represent the fraction

of points in the horizontal interval bounded by S ~G and

S ~G þ DS ~G; let UA;S ~H
� DS ~H represent the fraction in S ~H and

S ~H þ DS ~H . The pair-correlations between S ~G, and S ~H can

then quantified in bits via the mutual information [15]:

MIA ¼
X

S ~G;S ~H

UA � DS ~GDS ~H

� log2

UA � DS ~GDS ~H

UA;S ~G
� DS ~G

� 	
� UA;S ~H

� DS ~H

� 	
" #

ð28Þ

Figure 8 illustrates results for the multiple protein

sources. To discern the trends, the data have (again) been

presented as a left-to-right ascendant distribution. As in the

previous figure, error bars mark the average plus/minus one

standard deviation. The errors are estimated by computing

the mutual information for randomly-chosen samples of a

population.

The trends are as striking as in Fig. 7. The mutual

information is substantially greater for viral protein

libraries, compared with living organisms. Regarding the

latter, the collections engineered by nematodes (worms)

demonstrate a slight correlation edge over fruit-flies and

humans. Last place is occupied by the algae species. How

Fig. 7 Phase plot overlap with E. Coli libraries. The data are

arranged left-to-right in order of increasing overlap. The horizontal
error bars mark the average plus/minus one standard deviation
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are viruses distinctive from living organisms? The answers

include that viruses are superior in the custom-tuning of

protein information. Figure 8 illustrates that living systems

lag considerably behind.

The phase plots shown thus far derive from naturally

occurring libraries. What if the libraries are not so natural?

Figure 9 illustrates four examples. The phase plot in the

upper left was constructed by formulating random strings

of amino acids. While the string lengths were programmed

to match those of E. coli proteins, there was no bias in the

amino acid order or composition: V was placed during

computations as often as nineteen other units. For a library

of 5,000 molecules, the spectral complexity phase plot

proves diffuse and exhibits none of the arrowhead and cleft

motifs of natural sources.

The lower left panel applies to a random library as well.

Here the precursors to proteins, namely polynucleotides,

were assembled (virtually) with an absence of order and

composition bias—the UCG codon (allied with serine)

manifested as often as sixty-three other triplets. As is well

known, the genetic code contains biases of its own, e.g. six

codons pair with serine while only one codon is allied with

methionine [16]. These and other inequalities led to phase

plots that are less diffuse than for random amino acid

strings. Yet not surprisingly, random codons do not capture

the complexity morphology of natural protein libraries.

Along related lines, every amino acid sequence presents

multiple permutations or sequence isomers. The right-hand

panels of Fig. 9 show the phase plots obtained via per-

mutations of (arbitrarily-assembled) Seqs. 7 and 9 of the

Fig. 8 Phase plot mutual information. The data are arranged left-
to-right in order of increasing mutual information. The horizontal
error bars mark the average plus/minus one standard deviation

Fig. 9 Complexity phase plots

for unnatural protein libraries.

The panels show the results of

applying four assembly

algorithms described in text
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Sect. 1. These panels further address the question: what is

an unnatural protein? Apparently, such a molecule is

incapable of generating the S ~G, S ~H plots for natural libraries

via re-orderings of the primary structure.

Figure 9 illustrates four (of infinite possible) ways not to

simulate natural phase plots. What method succeeds and

indeed sheds light?

Natural proteins are distinctive in that they contain

information about one another. It is shown in the

‘‘Appendix’’, for instance, how the adenylosuccinate syn-

thetase of Seq. 4 poses 10547 distinguishable rearrange-

ments; a very large number of these, 10394, spell out the

epimerase of Seq. 5. Seq. 4 offers information about Seq. 5

in truly many respects.

The left-side panels of Fig. 10 show the state points

placed by 5,000 random permutations of Seqs. 4 and 5. The

upper right panel shows the phase plot obtained via per-

mutations of the most complex (highest S ~H value) of E. coli

proteins. The molecule is an iron metabolism protein which

attains the highest-altitude in Fig. 4. The lower right panel

contains the phase plot obtained via sequence permutations

of a protein encoded by Influenza A. The patterns are

striking in that all the panels evince the complexity motifs

of natural libraries. A lesson is apparent. For any permu-

tation an amino acid sequence, there is a relocation of

the S ~G, S ~H state point. For a naturally occurring molecule,

the re-locations are restricted to the locus of complex-

ity elected by nature. Permutation isomers thereby offer

yet another way to distinguish natural from arbitrarily-

constructed sequences. The latter are lacking in design

rationales; in turn, they lack information which can

reproduce nature’s complexity. Interestingly, permutation

isomers of virus-encoded proteins lead to S ~G, S ~H plots

appropriate to living organisms. The isomers of viral pro-

teins do not reproduce the phase plots for either the source

virus or other abiotics.

4 Discussion

Tanford and Reynolds [30] have referred to proteins as

nature’s robots. The description is fitting because the

molecules control so much of nature’s chemistry. Robots

operate only according to their internal programming. Thus

the letter sequences studied for this paper form the software

for catalytic action and molecular signaling. As with all

software, there are critical questions. Which programs are

functional versus nonsensical? Which programs are less

than benign for the host device? These questions are

straightforward for everyday programs and computers.

They are vexing for proteins, however, because the pro-

gramming codes are so cryptic.

The results in the previous section are significant then

because they establish additional assembly rationales of

natural—and thus biologically operational—proteins. The

Fig. 10 Complexity phase plots

derived from the primary

structure isomers of natural

proteins
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rationales do not arrive via individual letter groupings per

se. This is because the Fourier methodology weighs mol-

ecules by the totality of complexity; this property depends

on all the amino acids that compose a compound. For a

given system, information is cumulative and dispersed. Yet

the systems designed and evolved by nature hew to a

particular complexity in the mode structure. Moreover, the

adherence proves universal for living sources and case-

specific for viral, as readily fingerprinted via S ~G, S ~H plots.

It turns out to be easy to discriminate natural from arbi-

trarily-assembled compounds without engaging BLAST

routines. Natural compounds offer S ~G, S ~H in the arrowhead

regions of Figs. 4, 5 and 6. The state points of arbitrarily-

assembled molecules fall out of bounds.

The results also show natural proteins to carry infor-

mation about one another. For a naturally-occurring mol-

ecule, permutations of the primary structure generate the

S ~G, S ~H distributions embraced by nature (cf. Fig. 10).

Arbitrary sequences lack assembly rationales and provide

only sparing, coincidental information about natural mol-

ecules. As would be expected (cf. Fig. 9), arbitrary

sequences are unable to re-produce the phase plots for

natural systems.

Living systems express S ~G, S ~H-distributions markedly

different from viruses. This does not surprise. Both system

types encode multiple proteins and one is as natural as the

other. However, an organism encodes catalysts and signal

carriers that support metabolism and capabilities such as

immune responses. At life’s threshold, a virus is neither

metabolic nor defense-prone in the manner of an organism

[17]. Thus the protein collections of viruses demonstrate

glaring vacancies in the S ~G, S ~H-distributions along with

amorphous boundaries. What proved interesting was the

complexity divergence among viruses. Whereas the S ~G, S ~H

phase plots are similar for living systems (Figs. 4, 5), the

plots for viral libraries prove quite the opposite. Note that

the phase plots shown in this paper are evocative of blot

patterns used in protein library analysis [20]. The plots for

viruses (Fig. 6), subject to overlap and correlation analysis

(Figs. 7, 8) prove signature-like, and enable ready assign-

ment of the source.

The results are significant also because they identify

new analytical tools for proteins. As is well-known, nat-

ure’s catalysts are the frequent targets in drug develop-

ment—many drugs are enzyme inhibitors [28]. Information

spectra as in Fig. 2 and phase plots (Figs. 4, 5, 6) identify

supplemental tools for the medicinal researcher in selecting

targets. Inhibitors operate by modifying their target infor-

mation; this disrupts the catalytic control of one or more

reactions. Proteins that pose the maximum divergence

information-wise from fellow library members should offer

the minimum side-effects within the organism upon

inhibition. The well-engineered inhibitor will impact the

minimum number of catalysts.

Proteins encoded by viruses pose a sharp contrast. Here

the catalysts that demonstrate the maximum information

overlap should offer the most attractive targets. The drug

synthesized at a pharmaceutical lab will impact the maxi-

mum number of catalysts and signal carriers. Both spectra

and phase plots furnish a means of quantifying and con-

trasting the information divergence of target proteins.

4.1 Summary and Closing

A method for discriminating proteins based on molecular-

level information has been presented. The method directs

Z
ðiÞ
CI -tables, Fourier analysis, and complexity phase plots

to high-throughput advantage. Notably the complexity

boundaries are universal for living systems and case-

specific for viral libraries. Just as important, naturally-

occurring molecules re-generate the phase plots of living

systems via re-arrangements of the primary structure. As is

well appreciated, natural protein libraries have a real

capacity for replication: for living systems via mitosis and

for viruses via host cell invasion. This capacity appears to

coincide with the ability to generate complexity phase plots

via sequence isomers. At present, the authors are delving

further into the replication structure and symmetry of nat-

ural proteins. The results will be reported in a forthcoming

paper.
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Appendix

A natural protein contains information about another.

Given two of nature’s molecules, the primary structure of

the smaller is generally contained in permutation isomers

of the larger. We demonstrate how such ideas apply to

Seqs. 4 and 5 of the Sect. 1. The approach is readily

extended to other pairs of molecules.

Seqs. 4 and 5 are constructed from 457 and 120 amino

acid units, respectively. The total number of permutations

of (the larger) Seq. 4 is approximated as follows:

457! � exp 457 � loge 457� 457½ � � exp 2342½ � � 101017

Not all of the 101017 are unique since A appears in 32

places, V in 40, L in 39, and so forth. By accounting for the

placements of each amino acid, the number of distinguish-

able re-arrangements of Seq. 4 becomes:
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Now let the amino acids of Seq. 4 be re-ordered so that

the first (counting from left) 120 match Seq. 5. The result

still allows a large number of permutations for ‘‘leftover’’

slots 121–457, namely:

Seq. 4 can be re-arranged so that Seq. 5 commences at

any one of 457-120 ? 1 slots. Thus the number of times

Seq. 5 is contained in permutations of Seq. 4 is:

5:43� 10391 � 457� 120þ 1ð Þ � 1:84� 10394

One sees that truly many permutation isomers of the

larger molecule spell out the smaller one perfectly. A

naturally-occurring protein carries structure information

about another.
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