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Abstract
Forward addition/backward elimination (FABE) has been the standard for population pharmacokinetic model selection 
(PPK) since NONMEM® was introduced. We investigated five machine learning (ML) algorithms (Genetic algorithm [GA], 
Gaussian process [GP], random forest [RF], gradient boosted random tree [GBRT], and particle swarm optimization [PSO]) 
as alternatives to FABE. These algorithms were applied to PPK model selection with a focus on comparing the efficiency 
and robustness of each of them. All machine learning algorithms included the combination of ML algorithms with a local 
downhill search. The local downhill search consisted of systematically changing one or two “features” at a time (a one-bit or 
a two-bit local search), alternating with the ML methods. An exhaustive search (all possible combinations of model features, 
N = 1,572,864 models) was the gold standard for robustness, and the number of models examined leading prior to identifica-
tion of the final model was the metric for efficiency.
All algorithms identified the optimal model when combined with the two-bit local downhill search. GA, RF, GBRT, and 
GP identified the optimal model with only a one-bit local search. PSO required the two-bit local downhill search. In our 
analysis, GP was the most efficient algorithm as measured by the number of models examined prior to finding the optimal 
(495 models), and PSO exhibited the least efficiency, requiring 1710 unique models before finding the best solution. Addi-
tionally, GP was also the algorithm that needed the longest elapsed time of 2975.6 min, in comparison with GA, which only 
required 321.8 min.
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Introduction

The current standard method for PPK model selection is 
FABE. This approach has been little change for nearly 
50 years, despite major advances in essentially all other 
numerical methods in pharmacometrics. The model selec-
tion process would be included in the definition of “optimi-
zation”. Specifically, FABE would be described as a “local 
search” or a “greedy search”. In many ways FABE is compa-
rable to gradient based methods of parameter optimization. 
Among the fundamental weaknesses of FABE are:

•	 Typically the search starts at “trivial” model, which is 
likely very different from the true optimal model, result-
ing in a risk of local minima.

•	 A local/greedy search is at risk for missing important 
interaction between model features, as typically only one 
feature at a time is examined.
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In this work we examine the properties of a number of 
global search algorithms and compare to a “gold standard” 
of an exhaustive search.

The process of selecting a population pharmacokinetic or 
pharmacodynamic model to describe a dataset includes at 
least two related processes. The first is hypothesis generation. 
Hypotheses regarding candidate models that may best describe 
the data are generated. These hypotheses may include:

•	 Number of compartments (e.g., 1, 2, 3)
•	 Elimination mechanism (e.g., linear or nonlinear)
•	 Absorption models (e.g., first order, zero order, absorp-

tion lag time)
•	 Covariate relationships. (e.g., absent, linear, power model)

In the ML algorithm paradigm, this set of hypotheses com-
prises the “search space”. The search space is an N-dimen-
sional discrete space, where each dimension consists of a set 
of mutually exclusive options. Each candidate model consists 
of a set of exactly one option chosen from each dimension.

The search space is analogous to the parameter value 
search space for a single model. The dimensions of the 
parameter search space are usually real valued and might 
include:

•	 Clearance
•	 Volume of distribution
•	 Absorption rate constant
•	 Residual Error variance

The objective in the parameter search space is to find the 
set of exactly one parameter value in each dimension that 
optimizes some measure of “model goodness”, often -2 log 
likelihood (-2LL). A diagram of a (continuous) parameter 
search space with two dimensions (Volume and Clearance) 

is given on the left in Fig. 1. The objective in the model 
structure search space is to find the set of exactly one value 
in each dimension that optimizes some measure of “model 
goodness”. A model structure search space with only two 
dimensions is given on the right in Fig. 1. The (discrete) 
dimensions of the model structure search space are the 
elimination mechanism (Linear, Michaelis–Menten, or 
Combined linear and Michaelis–Menten) and compartment 
structure (one, two, or three compartments).

The second process in model selection is the selection and 
testing of the hypotheses generated and comparing models 
resulting from those hypotheses. That is, what hypothesis 
to test next and how to decide if that candidate model is 
a “better” model. In traditional model selection/building, 
these two processes are undertaken iteratively. Typically, 
a relatively small set of hypotheses are initially generated 
based on the understanding of the biology and examination 
of diagnostic graphics. These are then tested by construct-
ing some of those models, estimating the parameters and 
examining the results. Criteria for testing the hypotheses 
typically include both objective (e.g., -2LL) and subjective, 
including the generation of various diagnostic graphics 
and consideration of biological plausibility. The generated 
graphics serve two purposes. First, is the model “good”? 
For example, does the line, generally, go through the dots? 
More importantly, graphics serve to generate new hypoth-
eses, which are then tested in subsequent candidate models. 
The first step in the model selection process—the generation 
of hypotheses based on the understanding of the biology and 
graphics belongs to, at the time of this writing, the domain 
of human intelligence. However, the efficiency and robust-
ness of the selection and testing of hypotheses have recently 
been expanded to include a range of machine learning meth-
ods [1–4] There are several reasons to believe that machine 
learning methods may be superior to FABE. Interactions 

Fig. 1   Search space for parameters (left) and model structure (right). *MM is Michael-Menten
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between different components of the model leading to local 
minima in the search space are the most important [5]. In 
addition, ML model selection can be more objective as deci-
sions regarding biological plausibility, model “goodness” or 
a “reasonable graphic” defined prior to examination of any 
results can be subjective. Finally, machine learning based 
model selection is likely more time efficient, at least with 
regard to human time, if not computer resource. Note that, as 
the ML algorithm will not use these subjective evaluations, 
it remains the responsibility of the human to consider them. 
The subjective criteria can, and should, be applied before 
and/or after the objective model search is complete.

A number of numerical algorithms have been proposed 
for the model selection/hypothesis testing. We will limit 
our results and discussions to the efficiency and robustness 
of a subset of these algorithms. Specifically, we will not 
address the process of hypothesis generation and its potential 
impact on the final model selection nor the evaluation of 
graphics. This question has been previously addressed. [6] 
For the purpose of this analysis, efficiency is defined as the 
number of evaluations (models run) needed to arrive at the 
final model and robustness is defined as whether the algo-
rithm can select the optimal model as the final model. The 
number of evaluations needed to arrive at the final model 
is used rather than convergence, as there are no generally 
agreed upon criteria for convergence in these methods. It is 
assumed that whatever criteria used to define convergence 
(e.g., 5 generations without change in the model goodness), 
the number of models run after the optimal model is identi-
fied would be consistent across algorithms. For example, if 
the best model is found at generation 6, the convergence will 
not be confirmed until generation 11. Therefore, the number 
of models to find the optimal model is an adequate surrogate 
for number of models to convergence.

The optimal model in this case was identified by exhaus-
tive search, where every possible combination of the set 
of hypotheses is run, ensuring that the optimal solution is 
identified.

Theoretical

The basic concept of explicitly defining the search space for 
machine learning model selection, or, for defining it implic-
itly for traditional model selection has been described previ-
ously by Bies [1]. As described above, a multi-dimensional 
discrete search space is defined, where each dimension rep-
resents a set of mutually exclusive model features. In gen-
eral, these values are strictly categorical (i.e., not ordered 
categorical). While the options in each dimension will be 
coded as integers (and therefore ordered categorical), in the 
algorithms, they are, in all cases, treated as strictly categori-
cal. In the case of GA, the values are recoded as a bit string, 

reducing them to strictly categorical (values of 0 or 1). Other 
algorithms have the option to treat the values as strictly cat-
egorical and this option is used in all cases.

The options in each dimension are then concatenated into 
a string of integers. Different algorithms may require differ-
ent representations of this integer string, such as conversion 
to a bit string (for GA) or to a “minimal binary” (a binary 
code without redundancy) string for the one- and two-bit 
downhill search.

Algorithms

The algorithms examined include:

GA – Genetic algorithm attempts to reproduce the 
mathematics of evolution and survival of the fittest. 
The algorithm begins by defining a random popula-
tion (randomly selected bit strings), typically 50–100 
models. These bitstrings are translated into NONMEM 
control files. The resulting NONMEM output is used to 
calculate the fitness. Models are then randomly selected 
from the population as candidate “parents”, 2 pairs of 2 
models are selected. Each pair undergoes “tournament 
selection” wherein the model with the better fitness of 
the pair “wins” and is selected as a parent for the subse-
quent generation. The two bitstrings of the two parents 
then undergo crossover and mutation to generate new 
options. Mutations serve to generate features that have 
not yet appeared in the population. The Python package 
DEAP (https://​deap.​readt​hedocs.​io/​en/​master/) is used to 
implement the GA method.
GP – Gaussian process is implemented with the scikit-
learn python package (https://​scikit-​learn.​org/​stable/​
modul​es/​gauss​ian_​proce​ss.​html). Briefly GP represents 
the fitness as a generalization of a Gaussian probability 
distribution. The distribution begins with an uninforma-
tive prior. The initial sample is again essentially random, 
as no information is available to inform it. With the 
results of that first iteration, the probability distribution 
is updated. Samples are taken from that updated distri-
bution selected to inform the parameters of the distribu-
tion. The models from those samples are then run, and 
the distribution is updated again. An excellent review of 
GP can be found here (https://​gauss​ianpr​ocess.​org/​gpml/​
chapt​ers/​RW.​pdf).
RF and GBRT – Random forest and gradient boosted ran-
dom tree are implemented using the scikit-learn package 
(https://​scikit-​learn.​org/​stable/​modul​es/​ensem​ble.​html). 
Random forest implements a set of decision trees, clas-
sifying the search space based on the fitness values. The 
multiple trees from random samples (samples, in this 
case, being the set of models and corresponding fitness) 
are used to prevent overfitting. Gradient boosted random 

https://deap.readthedocs.io/en/master/
https://scikit-learn.org/stable/modules/gaussian_process.html
https://scikit-learn.org/stable/modules/gaussian_process.html
https://gaussianprocess.org/gpml/chapters/RW.pdf
https://gaussianprocess.org/gpml/chapters/RW.pdf
https://scikit-learn.org/stable/modules/ensemble.html
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tree uses a different approach to prevent overfitting. In 
RF, each tree is independent and created from a random 
sample of the data. In GBRT, the tree is built additively, 
with each tree taking the previous, and “boosting” the 
gradient with respect to fitness by adding some selected 
low performance models. The addition of low perfor-
mance models reduces the chances of overfitting as cor-
rect classification of poor models is also required.
PSO – Particle swarm optimization is another attempt 
to reproduce a natural process, in this case of a flock of 
birds or a school of fish. The “particles” represent candi-
date models. As for other algorithms, an initial random 
population is first created. The movement in the search 
space is then defined as:

Equation 1. Equation for updating velocity in PSO

where Vt+1 is the velocity at time t + 1, Vt is the velocity at 
time t, r

1
 and r

2
 are random numbers between 0 and 1, and 

w is inertia weight (a particle continuing in the same direc-
tion), cognitive constant ( c

1
 ) and social constant ( c

2
 ) are 

PSO algorithm parameters, pbesti is the best position that 
particle I has explored, xt is the current particle position, and 
gbest is the best position explored by the entire (global) par-
ticle swam. PSO is implemented with the package pySwarms 
(https://​pyswa​rms.​readt​hedocs.​io/​en/​latest/).

pyDarwin package

The python package pyDarwin was used for the model selec-
tion. Details of the implementation can be found on a pub-
lic repository on Git Hub (https://​github.​com/​certa​ra/​pyDar​
win). Details of generation of syntactically correct NON-
MEM control files from the template and tokens file have 
been described previously by Bies [1] as well as the pyDar-
win documentation (https://​certa​ra.​github.​io/​pyDar​win/​html/​
index.​html). Briefly, a control file template is created by the 
user. The control file template is a text file, similar to a NON-
MEM control file, but with “tokens” that may be replaced to 
specify features from the search space. Next, a tokens file is 
created. Both the template and tokens file are identical for 
all algorithms examined in this analysis. The tokens file is a 
JSON (Java script object notation) formatted file where each 
group of sets of key-text pairs represents a dimension of the 
search space. The sets of key-text pairs correspond to the 
options in that dimension. The selected element of the key-
text pair is substituted into the control file template, creating 
a syntactically correct NONMEM control file. The control 
file is then executed with the NMFE{version}.bat command 
(where {version} is the version number of NONMEM). After 

(1)
Vt+1 = w · Vt + c

1
· r

1
· (pbest − xt) + c

2
· r

2
· (gbest − xt)

execution, the user-defined metric of “model goodness” is 
calculated. The “model goodness” metric is, for simplic-
ity, called “fitness” for all algorithms, the term used in GA. 
Other algorithms conventionally use different terms, but we 
will use “fitness” throughout. Initially, a “population” (again 
a term from GA) is created with perhaps 50–100 models. 
When execution of all of these models is complete, the fit-
ness is calculated and the resulting values are used to select 
the next generation of models. The term “generation” is used 
throughout to avoid confusion with the term “iteration” used 
in NONMEM.

Local downhill search

pyDarwin includes an option for alternating between the ML 
algorithm and the local downhill search. Including the local 
downhill search in ML algorithms is from the recognition 
that while ML algorithms are able to robustly find the area 
containing global minima, they may struggle in locating the 
optimal solution within that region. Conversely, local down-
hill search is expected to find the local minima efficiently. 
Therefore, a combination of global search and local search 
strategies will enhance both robustness and efficiency in 
finding the true optimal solution [10].

For the downhill search, first a “one bit” search is per-
formed. One or more models from the current ML results are 
used to start the local downhill search. If multiple models are 
used as the starting point for the one-bit local downhill search, 
a minimal difference between the models (Hamming distance 
[7] or niche radius) is defined, so that multiple downhill 
searches are not started from nearly identical models which 
would likely lead to the same (potentially local) minimum. 
Rather, the multiple models are in different “niches”. Each bit 
in the binary representation of the models is “flipped”, 0 to 1 
or 1 to 0 and the resulting models are executed. If any model 
in the generated set of models is better (has a lower fitness), 
the process is repeated with the best model. This iteration is 
continued until no further improvement is seen.

If requested by the user, the one-bit search is followed 
by a two-bit search. For the two-bit search, the single best 
model from the one-bit search is used as the base model. 
All possible combinations of two-bit changes are generated 
and the resulting models are executed. For illustration, the 
one and two bit changes for a [0,1;0,0] genome are given in 
Table 1. Note that the 1 bit changes are on the diagonal and 
the 2 bit on the off diagonal elements. The first bit change 
is in columns, and the 2nd in rows. That is, the 2 bit change 
for the 1st and 2nd bit is given in row 2, column 1 ([1,0;0,0]).

An illustration of the two-bit search is given in Fig. 2. In 
this figure, assume that the dark gray genome (0,1 for dimen-
sion 1 and 0,0 for dimension 2, i.e., [0,1;0,0]) is the current 
“best” model after the ML step. The one bit changes from 
this are shown with horizontal hatching ([0,0;0,0],[0,1;0,1], 

https://pyswarms.readthedocs.io/en/latest/
https://github.com/certara/pyDarwin
https://github.com/certara/pyDarwin
https://certara.github.io/pyDarwin/html/index.html
https://certara.github.io/pyDarwin/html/index.html
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and [0,1;1,0]. (N.B, [1,0;0,0] is a two bit change despite 
being adjacent in the figure, with both the 1st and 2nd bit of 
dimension 1 changed). All of these are worse (higher fit-
ness) than the current best model [0,1;0,0]. Essentially the 
current “best” [0,1;0,0] is surrounded by a 1 bit wide ridge 
of worse models. This is a local minimum. Two bit changes 
(off diagonals Table 1) are shown with vertical hatching. Of 
these, [1,0;0,1] is has a lower fitness. This model would not 
be evaluated in a one bit search. Experience suggests this 
is common in model search spaces. This sort of interaction 
between model features was first described by Wade et. al 
[5].

The 2 bit search can be computationally expensive, as the 
number of models for each iteration is:

Equation 2. Number of models in each two-bit search step

where n is the number of bits. In principle the search could 
be extended to 3 bit changes, but the number of models to 

(2)Number of models =
n · (n − 1)

2

be evaluated increases rapidly. These local downhill search 
steps can be alternated with the ML algorithm at an interval 
determined by the user. Typically, the downhill period is 
set as 5, which means after 5 generations of ML search, the 
local downhill search will begin to run.

Methods

Five machine learning algorithms were used to select a 
model for dimethylaminoethylamino-17-demethoxygeldan-
amycin (DMAG). The clinical study [8] and a population 
PK model for DMAG has previously been reported [9]. The 
objective of this analysis was to test whether the algorithms 
can identify the optimal model, based on the fitness func-
tion. For this analysis, the “gold standard” was an exhaustive 
search, constructing and running all possible models in the 
search space.

Data

From 66 subjects, 951 observed concentrations were avail-
able. Multiple daily doses were administered, with sample 
collection for up to 102 h. Ages ranged from 28 to 82 years, 
weight ranged from 48 to 137 kg with 39% (26 of 66) male 
and 61% (40 of 66) female. Renal function was normal with 
the highest serum creatinine of 1.8 mg/dL.

Table 1   Table of 1 and 2 bit search genomes for a [0,1;0,0] genome

Change 1st bit 2nd bit 3rd bit 4th bit

1st bit 1,1;0,0
2nd bit 1,0;0,0 0,0;0,0
3rd bit 1,1;1,0 0,0;1,0 0,1;1,0
4th bit 1,1;0,1 0,0;0,1 0,1;1,1 0,1;0,1

Fig. 2   T1 vs 2 bit changes
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Search space

The search space, template file and token sets were identical 
for all algorithms. The search space consisted of 20 dimen-
sions that included the structural model (number of com-
partments), between subject variability on central volume, 
peripheral volume, clearance and intercompartment clear-
ance, covariate relationships for central volume, peripheral 
volume, clearance and intercompartment clearance, between 
occasion variability on central volume, clearance and inter-
compartment clearance, and residual error model. A table of 
the dimensions and options is given in Table 2. In pyDarwin, 

the search space is coded as token sets, which is given in 
Supplementary Material 2.

Fitness function

The fitness function was identical for all algorithms. The 
penalties listed in Table 3 were added to the -2LL output 
from NONMEM. No additional R/Python code penalties 
were used.

RF, GBRT and GP all use default search options in 
Table 4. Specific search options used for GA are given in 
Table 5 and for PSO in Table 6.

Table 2   Search space 
dimensions

Dimension Name Options

“ADVAN” ADVAN1
ADVAN3
ADVAN11

“BSVQ2” No relationship
Log normal between subject variability(BSV) on Intercompartment Clearance 1

“BSVQ3” No relationship
Log normal BSV on Intercompartment Clearance 2

“BSVV2” No relationship
Log normal BSV on Peripheral Volume 1

“BSVV3” No relationship
Log normal BSV on Peripheral Volume 2

“Q ~ WT” No relationship
Intercompartment Clearance 1 a power function of Centered Weight

“Q2 ~ WT” No relationship
Intercompartment Clearance 2 a power function of Centered Weight

“V ~ WT” No relationship
Central Volume a power function of Centered Weight

“V2 ~ WT” No relationship
Peripheral Volume 1 a power function of Centered Weight

“V3 ~ WT” No relationship
Peripheral Volume 2 a power function of Centered Weight

“V ~ AGE” No relationship
Central Volume a power function of Centered AGE

“V ~ SEX No relationship
Central Volume an exponential relationship of SEX (0|1)

“CL ~ SEX” No relationship
Clearance an exponential relationship of SEX (0|1)

“CL ~ WT” No relationship
Clearance a power function of Centered Weight

“CL ~ SCR” No relationship
Clearance a power function of Serum Creatinine

“CL ~ AGE” No relationship
Clearance a power Centered AGE

“IOVCL” No between occasion variability (BOV) on Clearance
Log normal BOV on Clearance

“IOVQ2” No BOV on Peripheral Clearance 1
Log normal BOV on Peripheral Clearance 1

“IOVV” No BOV on Volume
Log normal BOV on Volume

“RESERR Combined additive and proportional residual error
Proportional residual error only
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The files needed for ML model selection are template 
file (Supplementary Material 1), tokens.json file (Sup-
plementary Material 2), and options file (Supplementary 
Material 3). The hardware environment for ML search is 
based on Intel Xeon Gold 6148 processor at 2.40 GHz with  
40 cores in total. Parameter estimation was performed with 

NONMEM® (ICONplc) version 7.5 with Intel Fortran 
compiler version 16.0. The first order conditional method 
with interaction was used for estimation The final parameter 
estimates for the global optimal model are given in Table 7.

Results

The search space consists of 1,572,864 candidate m odels. 
The true optimal model was identified by the exhaustive 
search. This model included:

•	 3 compartments
•	 Power function of centered WT for volume

•	 BSV on central volume, clearance, peripheral volume 
1, inter-compartment clearance 2

•	 Between occasion variability on central volume, clear-
ance and intercompartment clearance 1

•	 Combined additive and proportional residual error 
model

Table 3   Penalties

Parameter name Description Value

theta Penalty for each estimated THETA 10
omega Penalty for each estimated OMEGA 

element
10

sigma Penalty for each estimated SIGMA ele-
ment

10

convergence Penalty for failing to converge 100
covariance Penalty for failing the covariance step 100
correlation Penalty for failing correlation test 100
condition_number Penalty for condition number > 1000 100

Table 4   Options for all 
algorithms

Parameter name Description Value

population_size Number of candidate models in each generation 80
num_parallel Number of models to run in parallel 32
num_niches Number of niches to be used 2
niche_radius Minimum number of bits different between niches (niche radius) 2
downhill_period Number of ML generations to be run between downhill searches 5
num_generations Number of generations to be run 20

Table 5   GA search parameters Parameter name Description Value

crossover_rate probability of any pair of parents undergoing cross over 0.95
elitist_num (number of the best model carried over unchanged to the next generation 4
mutation_rate probability of any new candidate model undergoing mutation 0.95

Table 6   PSO search parameters

Parameter name Description Value

cognitive Parameter for a particle moving toward the best position in its own history 0.9
social Parameter for a particle moving toward the best position in the populations history 0.8
inertia Parameter for a particle continuing to move in the same direction 0.5
neighbor_num Number of nearest neighbors to be used for calculating the population best 2
p_norm Value of 2, specified using Euclidean distances for calculations 2
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The parameter values for the final model is reported in 
the table below:

The control file for this model is provided in Supple-
mentary Material 4. The output file for this model is pro-
vided in Supplementary Material 5.

Pharmacokinetic prediction

A visual predictive check for the final model is given in 
Fig. 3. Despite the optimal model based on the defined 
search space underpredicted the peak concentrations, it 
exhibits a generally good prediction of the DMAG pharma-
cokinetic profile.

Algorithm comparisons

Table 8 shows the summary results of different ML algo-
rithms. All algorithms were able to identify the optimal 
model with the two-bit local downhill. With only a one-
bit local downhill search, PSO failed to find the optimal 
model. When evaluating the efficiency of various algo-
rithms, GP was found to be the most efficient, finding the 
optimal model after examining 495 models. However, GP 
exhibited decreased efficiency when measured by the met-
rics of total compute time, requiring 2975.6 min. Notably, 
according to the time needed per number of unique models 
generated prior to identifying the true optimal solutions, 

Fig. 3   Visual predictive check 
for the optimal model searched 
by exhaustive search. Open blue 
circles are observed DMAG 
plasma concentrations. The 
solid red line is the median 
of observation and the upper 
and lower dashed red lines are 
95th and 5th percentiles of the 
observed concentrations. The 
shaded area from top to bottom 
are 95th, 50th, and 5th percentiles 
of the simulation

VPC for optimal model

Table 7   Parameter values of the 
optimal model

Parameter Population estimates 
(SE%)

Between-subject variabil-
ity (SE%)

Between-occasion 
variability (SE%)

CL (L/h) 8.54 (7) 50.3% (11) 30.3% (13)
Q2 (L/h) 79.3 (6) - 28.6% (13)
Q3 (L/h) 9.74 (13) 75.8% (10) -
V1 (L) 29.1 (8) 42.9% (25) 31.1% (35)
V2 (L) 71.9 (8) 58.7% (11) -
V3 (L) 136 (12) - -
Power relationship between 

weight and volume
1.31 (26) - -

Proportional error 13.2 (7) - -
Additive error (mg/L) 14.7 (39) - -
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GP took the longest mean time to generate a single model, 
compared with GA, RF, PSO, and GBRT, which showed 
comparable performances. The reason for the longer 
time for GP to complete is that the computational load 
for updating and sampling from the posterior distribution 
increases dramatically as the sample size (total number 
of models run) increases. GA, and PSO model selection 
times are independent of the number of models run, as 
they only use the current population of models for model 
selection. RF and GBRT do use all available models for 
models selection, and the bootstrap/bagging for RF has 
some slow down, but little compared to GP.

Note that the exhaustive search spent a short time in 
getting the optimal model. This is simply a function of the 
sequence of the token sets in the tokens file. Under other 
circumstances, this number might be lower than any other 
machine learning algorithms, while it cannot be regarded as 
the most efficient.

Figure 4 shows the minimum fitness by generation under 
different ML algorithms. GA, PSO, and GBRT found the 
optimal solution (star symbol) all at the first downhill step 
after 10 generations, RF was able to find the optimal solu-
tion at the third 2-bit search generation after running 5 gen-
erations of ML search. GP exhibited the best efficiency by 
identifying the global minima at the third downhill step after 
5 generations of ML search.

The final model describe by pyDarwin can be com-
pared to the final model found in the original analysis 
[8]. Note that this comparison is limited in that the cri-
teria for model selection were different. The work by 
Aregbe et al. used a penalty of 3.84 points per parameter 
for a likelihood ratio test, whereas the present analysis 
used 10 points. No other model selection criteria are 
described for the original analysis. The final original 
analysis model was 3 compartment, linear with no covar-
iates. Between subject variability was included on clear-
ance, Q3, and all volumes. Between occasion variability 
was described on central volume and Q2. The residual 
error model was proportional only. In comparison, the 
final model from this exercise was also 3 compartments, 
linear, with between subject variability on CL, Q2 and 
all volumes. One covariate was described, with central 
volume of distribution a power function of weight. The 
same 2 between occasion variability terms were identi-
fied, plus one additional, on clearance. The current final 
model had a combined proportional and additive residual 
error. The objective function value (OFV) of the original 
model was 8178.45, compared to the current analysis 
OFV of 8041.27 (delta OFV = 137.2 points), with 1 addi-
tional THETA, 1 additional OMEGA and 1 additional 
SIGMA parameters. This is consistent with the experi-
ence with ML methods to date, with the selection of a 
larger model than with traditional methods.Ta
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Fig. 4   Minimum fitness vs 
generation by algorithm
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Discussion

Each algorithm has a set of hyperparameters required. 
Some of these hyperparameters (e.g., population size) are 
common to all algorithms, but most are specific to the 
selected algorithm. Many of these hyperparameters can 
define the relative focus of the algorithm on “exploita-
tion” vs “exploration”. Exploitation is the degree to which 
the selection of subsequent models to be run is based on 
what is already “known” and exploration is the degree 
to which the selection is outside of what is currently 
“known” to maximize the predictive uncertainty. In GA, 
the key parameter defining this exploitation/exploration 
tradeoff is the mutation rate. The mutation rate, as is the 
case in biology, introduces new content into the genome, 
which is unrelated to any previous genetic content and is 
random. If the mutation rate is low (even 0), little or no 
new genetic content will be introduced, and the only “evo-
lution” will be from the crossover – basically re-shuffling 
the existing genetic contents (based on which features gen-
erate a good fitness value). Thus, no exploration would 
be done. If the mutation rate is high (e.g., 1.0), then no 
exploitation will be done, and the search is essentially a 
series of randomly selected models. The consequence of 
a tradeoff between exploitation and exploration is that, 
testing a hypothesis once (e.g., is this a two-compartment 
model vs a one-compartment model?) is helpful, but not 
confirmatory, and it therefore needs to be retested with dif-
ferent combinations of other features, as found by Wade et. 
al. [5] demonstrated. With each rejection of a hypothesis, 
the representation of that hypothesis (genetic content) in 
the population is reduced, but may be reintroduced at any 
time by mutation. Note that in traditional model selec-
tion, we commonly test any given hypothesis only once, 
then assume the test is correct regardless of other model 
features, corresponding to a very high exploitation com-
ponent in model selection. In other words, we exploit what 
we believe to be “correct” without retesting. In the case 
of PSO, exploration is based on the random number intro-
duced into the updated velocity (Eq. 1) with the exploita-
tion vs. exploration based on the relative values of the 
coefficients for inertia/moving toward the best position in 
the population and the best position seen by that particle. 
Other algorithms have similar hyperparameters that can 
define this ratio of exploitation to exploration.

All ML algorithms implemented in pyDarwin package 
were able to find the optimal model structure searched by 
“gold standard” exhaustive search, which highlights the 
robustness of the machine learning application in nonlinear 
mixed effect model selection and optimization process. It’s 
noted that this analysis is based on a single sample model 

selection process, therefore inference on the robustness of 
the algorithm’s performance across various problems must 
be limited. To further evaluate the robustness of each ML 
algorithm, more datasets and corresponding exhaustive 
search results will be needed.

The most efficient algorithm measured by the number of 
unique models to the optimal is GP, which was able to find 
the optimal model after examining 495 models. However, 
it’s the least efficient algorithm based on the compute time, 
which is up to 2975.6 min. As what we have pointed out 
above, this analysis is based on a single, typical dataset, and 
changing the datasets, using different tokens, and adjusting 
the hyperparameters may impact the algorithm efficiency. 
We do, though based again on small sample size as well as 
other experience with this method, conclude that the two-
bit local downhill search is likely critical to ensure robust-
ness and should be done whenever the computation load is 
feasible.

The method implemented in pyDarwin is quite gen-
eral, in that it simply manipulates text string. As such, it 
can readily be used for models other than PK. For exam-
ple, searching different pharmacodynamic (PD) models 
(effect compartment, type 1–4 indirect response) can be 
accommodated. There are additional challenges to these 
models. One is execution time, as PD are frequently ordi-
nary differential equations (ODEs) and they have a longer 
run times. This is a problem when inadequate computer 
resource is used, as typically hundreds to thousands of 
models are run, large scale parallel execution is typi-
cally needed. Fortunately, large scale parallel compute 
resources are readily available from cloud computer pro-
viders. Coding the different ODE models is more com-
plex. “Other” type endpoints (e.g., categorical, survival) 
can be done as well, with similar challenges to ODE 
models.

Conclusions

All algorithms, when combined with one- and two-bit local 
downhill search, were able to identify the optimal model in 
this single example. GA, RF, GP, and GBRT were able to 
identify the optimal model with only a one-bit local down-
hill search. In general, a two-bit local downhill search is 
recommended to ensure a robust search. GP was the most 
efficient based on the number of unique models to the opti-
mal model measurement, while it took 2975.6 min to finally 
elapse. PSO was the least efficient, requiring 1710 model 
runs, when combined with two-bit local downhill search to 
find the optimal model.
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