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describes the probability distribution of one separate vari-
able, and a dependence structure reveals the relationships 
or dependent patterns between variables in a dataset. For 
instance, within a real-world dataset focusing on the elderly 
population, age, as a covariate, may exhibit a t-distributed 
margin, with a certain mean and standard deviation; mean-
while, it could be negatively correlated with renal function 
biomarkers. Misspecification of the margins or dependency 
structures, i.e., in comparison with those actually observed, 
may impact the quality of subsequent patient responses 
obtained in pharmacometric simulations.

VPs can be generated using several approaches, which 
are either data-driven or distribution-driven. Data-driven 
methodologies such as the bootstrap or conditional distribu-
tion modeling [2] utilize an actual dataset of patient charac-
teristics to sample from. Requesting such data, however, is 
sometimes not possible due to patient privacy regulations. 
Distribution-based approaches characterize the distribution 
of the marginals of covariates of interest but may not always 
capture their dependency structure. For example, series of 
univariate distributions can be used to describe the margin-
als yet ignore interdependencies between covariates. Multi-
variate normal distributions [3] do consider the dependency 

Introduction

In pharmacometric modeling, patients’ covariates are usu-
ally identified as a source of variability between individuals 
that impacts pharmacokinetics and pharmacodynamics [1]. 
Generation of virtual populations (VPs), i.e., realistic sets 
of patient characteristics or covariates, is essential to ensure 
that realistic responses are produced in pharmacometric 
simulations, eventually providing valuable information to 
support in silico clinical trials and optimization of dosing 
strategies.

Realistic VPs should reflect both the marginal distribu-
tion and dependency structure observed between covariate 
variables of interest. In statistics, a marginal distribution 
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Abstract
Incorporating realistic sets of patient-associated covariates, i.e., virtual populations, in pharmacometric simulation work-
flows is essential to obtain realistic model predictions. Current covariate simulation strategies often omit or simplify 
dependency structures between covariates. Copula models are multivariate distribution functions suitable to capture depen-
dency structures between covariates with improved performance compared to standard approaches. We aimed to develop 
and evaluate a copula model for generation of adult virtual populations for 12 patient-associated covariates commonly 
used in pharmacometric simulations, using the publicly available NHANES database, including sex, race-ethnicity, body 
weight, albumin, and several biochemical variables related to organ function. A multivariate (vine) copula was constructed 
from bivariate relationships in a stepwise fashion. Covariate distributions were well captured for the overall and subgroup 
populations. Based on the developed copula model, a web application was developed. The developed copula model and 
associated web application can be used to generate realistic adult virtual populations, ultimately to support model-based 
clinical trial design or dose optimization strategies.
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but assume that variables are normally distributed, which 
may not always hold. Finally, machine learning algorithms 
[4–6] have been proposed, but these models are usually 
based on complex frameworks and often lack interpretabil-
ity of underlying dependencies.

Copula modeling is a powerful tool for calculating mul-
tivariate distributions and has been widely used in various 
fields, such as finance [7–9], climate research [10, 11] and 
engineering [12, 13]. Copulas can capture the dependence 
structure between random variables independently from the 
description of the marginals [14]. Using a transformation 
of any marginal distribution to a uniform distribution, the 
dependence structure can be separated from the marginal 
structure. Moreover, a rich variety of copula models is avail-
able to be selected to estimate diverse dependent patterns 
in data [15]. An extension of the copula, the vine copula, 
addresses the difficulty of calculating multivariate joint 
distributions by using conditional dependence and bivari-
ate building blocks [16]. Recently, copulas have been intro-
duced to the field of pharmacometrics as a relevant key 
strategy for VP generation, demonstrating favorable per-
formance in simulating realistic VPs compared to standard 
approaches, while their distribution-based nature facilitates 
sharing of covariate data within the community [17].

Here, we present a copula model for the simulation of 
adult virtual populations. We first developed a copula model 
for 12 covariates of relevance for pharmacometric models 
using data from adult individuals present in the NHANES 
database [18]. Then we evaluated the performance of the 
copula in simulating the overall and subgroup populations. 
Finally, a web application was designed for the copula 
model developed to facilitate generation of adult VPs.

Methods

Data

We used the public database from National Health and 
Nutrition Examination Survey (NHANES), an initiative that 
collects data on non-institutionalized individuals in the U.S., 
including laboratory measurements, physical screening, and 
surveys; data are released to the public every two years 
[18]. We combined the NHANES data for 2009 ∼ 2010, 
2011 ∼ 2012, 2013 ∼ 2014, 2015 ∼ 2016, and 2017 ∼ 2018 
releases based on their accessibility and consistency in labo-
ratory methods. Differences in laboratory, instruments, and 
methods across releases were considered by implementing 
the adjustment equations provided by NHANES.

We focused on the adult population aged 18–80 years, 
with 27,008 subjects in total. Common covariates of inter-
est for population pharmacokinetic models were selected: 

sex, race-ethnicity, age, height, body weight, fat mass 
(Fat), serum creatinine (SCR), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), alkaline phos-
phatase (ALP), albumin and total bilirubin (BR) [19–23]. 
We acknowledge the sensitivity regarding the use of race-
ethnicity as a medical indicator. Its inclusion in our study 
is focused on subgroup analysis when relevant, and not 
intended to perpetuate stereotypes or contribute to health 
disparities.

Table 1 provides the summary statistics of covariates in 
the model development dataset. Of note, over 50% of fat 
mass data in the observed dataset were missing. Fat mass 
is measured via dual-energy x-ray absorptiometry (DXA) 
examination. Half of the missing data were due to not 
meeting the inclusion criteria of age (< 60 years old) dur-
ing the DXA examination, while another half were due to 
the examination not being conducted in the 2009 ∼ 2010 
release. Since copulas allow to be estimated from incom-
plete datasets and generate complete simulation datasets, a 
validation analysis was conducted (supplementary material) 
to provide more insights into the reliability of simulated fat 
mass for people aged  ≥ 60 years. This analysis involved 
validating fat mass predictions after excluding measured fat 
mass data for individuals within specific age groups. The 
result showed no significant bias in the simulated fat mass 
for the age groups under 60 years old (Figure S1).

Vine copula model development

A vine copula was fitted to the NHANES data. First, to avoid 
producing covariates of negative values in VPs, biochemi-
cal measurement data were log-transformed. As copulas are 
joint distribution functions with uniform margins, data were 
then transformed into uniform distributions using the prob-
ability integral function [24] based on kernel density esti-
mation. Candidate vine copula models consist of parametric 
bivariate copula functions, such as Gaussian, Clayton and 
Frank copulas. Each kind of bivariate copula possesses dis-
tinct strengths in depicting various dependence behaviors, 
and a rich variety of bivariate copulas are available to be 
selected to represent diverse dependence patterns in data.

The vine copula model was constructed with a tree struc-
ture, which defines the pairs of covariates and copulas to 
be estimated. A vine tree structure comprises a sequence of 
trees, with the first tree representing a group of uncondi-
tional bivariate copulas, and subsequent trees representing a 
group of bivariate copulas conditional on the previous trees. 
Each edge in a tree represents a bivariate copula between 
two covariates (the first tree) or two copulas (higher order 
trees).

The vine tree structure was sequentially selected and esti-
mated. For the first tree, the maximum spanning tree (MST) 
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algorithm was used to select covariate pairs in each tree by 
maximizing the sum of correlations over the possible pairs 
in each tree, then all bivariate copula functions (Gaussian, 
Clayton or other bivariate distribution functions) were fit for 
the selected pairs and parameters were estimated; the best-
fitting bivariate functions were selected based on the Akaike 
Information Criterion (AIC). This procedure was iterated 
for each subsequent tree until all trees were selected and 
estimated. Detailed methodology was described in the lit-
erature on bivariate copulas ([25] C3), tree structures ([25] 
C5), and MST [26].

To incorporate the covariate ‘race-ethnicity’ in the cop-
ula and optimize the model, we treated race-ethnicity as 
an ordered categorical variable and tested copulas with all 
order combinations.

Model evaluation

Model evaluation was conducted through a simulation-based 
strategy: performing 100 simulations of the original dataset 
and comparing the metrics between the real-world popula-
tion and VPs that were back transformed to their original 
scales. To assess the model performance on the marginal 
distributions, we evaluated observed and simulated popu-
lations by comparing the frequency of each category for 
categorical covariates, and for continuous covariates, com-
paring the marginal metrics, mean, standard deviation (SD), 
and percentiles (5th, 50th and 95th ), denoted by M, between 

observed and simulated data in terms of relative error (RE) 
(Eq. 1).

RE =
Msim −Mobs

Mobs
 (1)

where Msim  and Mobs  represent the metrics for simulated 
population and observed population, respectively.

To assess the performance of the model on capturing the 
dependency structure, pairwise correlation coefficients were 
compared between observed and simulated datasets. Since 
data sharing the same correlation could display various 
shapes of the dependence, a two-dimensional metric was 
developed to quantify the overlap of the density contours 
in observed and simulated data. For each pair combination 
of covariates, 95th percentile density contours were calcu-
lated for observed and simulated populations. The overlap 
metric was computed as the Jaccard index [27]: the ratio 
between the intersection area and union area (Figure S2). 
Higher overlap indicated a better description of dependence 
relations. We systematically evaluated the performance of 
the model from the following aspects:

(1) Overall performance: the NHANES copula (full copula) 
was developed based on the whole set of participants of 
NHANES that represents a general population. Simu-
lated populations and the real-world population were 
then compared.

Table 1 Summary statistics of covariates in dataset combined from National Health and Nutrition Examination Surveys 2009 ∼ 2010, 2011 ∼ 2012, 
2013 ∼ 2014, 2015 ∼ 2016 and 2017 ∼ 2018. The total number of individuals was n = 27,008
Variable name Variable description Percentage (%) Actual N (% Missing) Mean±  SD [range]
Sex Gender - 27,008 (0%) -

Male 48.5 13,104 -
Female 51.5 13,904 -

Race-
Ethnicity

Race-Ethnicity - 27,008 (0%) -
Hispanic* 26.6 7176 -
White 36.9 9978 -
African American 22.8 6166 -
Asian 10.6 2859 -
Other Race 3.1 829

Age Age (year) 27,008 (0%) 46.05 ± 17.21 [18 ∼ 79]
Weight Body weight (kg) 26,746 (1.0%) 82.02 ± 22.17 [32.3 ∼ 242.6]
Height Standing height (cm) 26,757 (1.0%) 167.16 ± 10.09 [123.3 ∼ 204.5]
Fat Total body fat (kg) 11,826 (56.2%) 27.11 ± 11.93 [4.9 ∼ 102.3]
SCR Serum creatinine (mg/dL) 25,313 (6.3%) 0.88 ± 0.45 [0.16 ∼ 17.41]
ALT Alanine aminotransferase (ALT, U/L) 25,307 (6.3%) 25.57 ± 20.42 [5 ∼ 1363]
AST Aspartate aminotransferase (AST, U/L) 25,288 (6.4%) 25.93 ± 17.13 [7 ∼ 882]
ALP Alkaline phosphatase (ALP, U/L) 25,310 (6.3%) 69.34 ± 24.59 [7 ∼ 907]
Albumin Albumin (g/dL) 25,315 (6.3%) 4.28 ± 0.35 [2.0 ∼ 5.6]
BR Total bilirubin (mg/dL) 25,298 (6.3%) 0.62 ± 0.31 [0.0 ∼ 7.3]
* Mexican American and other Hispanic in NHANES were recorded as Hispanic in our real-world dataset. Other race-ethnicity groups 
remained unchanged

1 3



Journal of Pharmacokinetics and Pharmacodynamics

Results

Vine copula of NHANES data

Logarithmic and uniform transformed data were fitted to 
estimate the underlying dependency structure with a vine 
copula. Instead of displaying the whole tree structure, we 
only showed the first tree since the first layer dependence 
captured the strongest correlations while trees of higher 
levels describe the conditional dependence, and are less 
influential on the overall fit than the first tree [29]. Sex was 
located at the center of the first tree structure, as it showed 
relatively strong dependence relationships with height, 
logBR, logALT, logAlbumin, and logSCR (Fig. 1A). The 
density contours of covariate pairs in the real-world popula-
tion displayed various patterns, and the VP was found to 
overlap the real-world population in selected covariate pairs 
well (Fig. 1B).

Estimating the NHANES copula using the input data-
set comprising 27,008 records with 12 covariates required 
approximately 20 min on a Windows computer with Intel 
Core i7 processor operating at 2.80 GHz. In contrast, simu-
lations from copula are computationally efficient, with an 
average of 1.6 s per 1000 individuals simulated.

Overall performance

The overall simulation performance of the developed cop-
ula model was evaluated for the entire population, without 
specifying any subgroups. For categorical covariates, (i.e., 
race-ethnicity and sex), the frequency of each category in 
the virtual population aligned with that of the real-world 
population (Fig. 2A). For continuous covariates, density 
curves of each individual covariate in the simulation dataset 
well tracked observed ones (Fig. 2B); mean, standard devia-
tion and percentiles of VP agreed with those of the observed 
population, with relative errors within ± 0.10 (Fig. 2C). For 
percentiles and mean metrics, coefficient of variation across 
simulations were all within 0.007, and those of standard 
deviation were within 0.09.

The simulated correlations from the copula model were 
very similar to observed correlations for most pair combi-
nations of covariates, with 0.023 median error (Fig. 3A). 
Covariate pairs associated with the largest error of corre-
lation were height-SCR (0.105) and SCR-albumin (0.102). 
The median overlap was 92.0% across all covariate pairs 
and simulations, and the model achieved over 85% overlap 
in 96% (43/45) covariate pairs, indicating a good capture 
of dependency structure (Fig. 3B). The only two covariate 
pairs that did not reach 85% were ALT-BR and weight-fat, 
with 81.4% and 70.5% overlap percentages.

(2) Subgroup performance: populations of interest in clini-
cal trials and cohort studies typically comprise indi-
viduals with certain race-ethnicity or sex. To be able to 
create realistic VP of interest, it is important to determine 
whether the full copula could capture the characteristics 
of subgroup populations. Predictive performance of the 
full copula for subsets of VPs was assessed with a par-
ticular interest in the race-ethnicity and sex subgroups. 
For comparison, two series of subgroup copulas were 
also constructed using data specific of each subgroup 
population:1) Hispanic copula, White copula, African 
American copula, Asian copula, Other race copula, 2) 
male copula, female copula. Virtual subgroup popula-
tions were obtained in two ways: by simulating from the 
full copula model and filtering out the irrelevant indi-
viduals, and by directly simulating from the subgroup 
copula. The performance of full copula was compared 
with that of subgroup copula to provide an understand-
ing of whether the full copula was sufficient for generat-
ing subsets of VPs.

Shiny application development

To provide a convenient and user-friendly tool, an interac-
tive web application that could output VPs was developed 
using the NHANES copula. Next to the NHANES copula, 
a weighted copula was estimated with the incorporation 
of sampling weights [28] to address the sampling bias in 
NHANES. The sample weights account for complex sam-
pling design and non-response of NHANES and are associ-
ated with demographic properties of the US population. The 
weighted copula allows users to sample a virtual population 
that is representative of the actual US population.

Software

The analysis was performed in R 4.1.2. Processing of 
NHANES data was conducted with survey package. Kernel 
density estimation of marginal distributions was performed 
with kde1d package. Development of NHANES copula 
was implemented with rvinecopulib package. The overlap 
metric was calculated using ks and sf packages. R shiny 
application was developed using shiny package. Visualiza-
tions of this study were generated with ggplot2 package. All 
scripts are available on https://github.com/vanhasseltlab/
NHANES_copula.
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metrics, with the median relative errors of all covariates in 
[-0.10, 0.16]. However, the relative errors were larger for 
Other race subgroup copula, with a range of [-0.46, 0.09]. 
Full copula and subgroup copulas showed comparable per-
formance in capturing the marginal attributes of Hispanic, 
White, African American and Other race subgroups, how-
ever, subgroup copula showed superior performance in 
Asian population.

The full copula model achieved 84.6%, 88.6%, 87.8%, 
74.0% and 80.1% median overlap percentages for Hispanic, 
White, African American, Asian and Other race populations, 
while subgroup copulas reached 89.7%, 91.0%, 89.0%, 
88.7% and 85.1% (Fig. 4A), respectively. Subgroup copulas 
outperformed the full copula in simulating the dependence 
structure of covariates in Asian and Other race subgroups, 
but showed similar performance in the rest of race-ethnicity 
subgroups.

Sex subgroup analysis

In general, compared with subgroup copulas, the full cop-
ula model could well capture the margins and dependency 
structures in male and female populations. For marginal 
metrics, median relative errors of full copula were within 
the range [-0.19, 0.09] and [-0.28, 0.07] for male and female 

The full copula model reproduced the marginal prop-
erties as well as the dependence relations of covariates of 
input population data. Variability across simulations tended 
to be small for all metrics except for standard deviation, 
showing the robustness of the copula model.

Subgroup performance

To gain further insights into the usefulness of the full cop-
ula for simulating subgroups of the total population, we 
conducted two separate investigations on the performance 
of full copula for VP simulation in race-ethnicity and sex 
subgroups.

Race-ethnicity subgroup analysis

The full copula was able to approximate the marginal char-
acteristics of the observed population in Hispanic, White, 
and African American subgroups, with median relative 
errors of marginal metrics across covariates within [-0.19, 
0.28] (Figure S3). For Asian and Other race VP populations, 
median relative errors were in the ranges [-0.21, 0.41] and 
[-0.68, 0.20], respectively. For comparison, subgroup copu-
las for Hispanic, White, African American and Asian popu-
lations showed good performances in terms of the marginal 

Fig. 1 Graphical representation of dependence structure estimated by 
NHANES copula and bivariate densities of observed and simulated 
covariates. A. The first tree structure of NHANES copula with 12 
covariates (nodes), and 11 copulas (edges). The texts on the edges 
denote the selected bivariate distribution functions: Gaussian, Gumbel, 
t, Clayton-Gumbel (bb1) and Joe-Frank (bb8). The tree was chosen 
based on the maximum spanning tree algorithm. The inter-dependent 
relationships between other covariate pairs were captured by subse-
quent trees that describe the conditional dependency. B. Density con-
tours of different covariate pairs of the observed population (orange 

dashed line) and the simulated population using the NHANES copula 
(gray solid lines). Marginal densities were displayed on the top and 
right sides of each plot. Six covariate pairs were chosen to present 
the diverse dependent patterns as illustrative examples. Abbrevia-
tions: LogFat: log fat mass; LogSCR: log serum creatinine concen-
tration (SCR); LogALT: log alanine aminotransferase concentration 
(ALT); LogAST: log aspartate aminotransferase concentration (AST); 
LogALP: log alkaline phosphatase concentration (ALP); LogAlbu-
min: log albumin concentration; LogBR: log total bilirubin concentra-
tion (BR)
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R shiny application

The copula covariate simulator (CoCoSim) web applica-
tion was developed based on the NHANES copula and 
made available online (https://cocosim.lacdr.leidenuniv.
nl/, Fig. 5). Using this application, VPs can be generated 

populations (Figure S4). For comparison, subgroup copulas 
for male and female yielded median relative errors of [-0.33, 
0.06] and [-0.07, 0.08]. The median overlap metric of full 
copula was calculated to be 88.5% and 88.8% for male 
and female populations (Fig. 4B), while subgroup copulas 
achieved 91.9% and 92.1% overlap percentages for the two 
populations.

Fig. 2 Marginal characteristics of the covariates in observed popula-
tion and virtual populations simulated from NHANES copula. A. 
Frequency of each category in discrete covariates, race-ethnicity and 
sex, in the real-world population (orange columns) and virtual popula-
tions (grey columns). B. Density curves of each continuous covariate 
variable in the real-world population (orange line) and virtual popula-

tions (gray lines). C. Relative error of marginal metrics (percentiles, 
mean, and standard deviation) of continuous covariates as compared 
to the statistics of the real-world population. Virtual population was 
simulated 100 times. Error bars indicated the standard deviation of 100 
simulations. Gray dashed lines indicate ± 20% relative error
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and BMI ranges. Generated virtual populations can then be 
used as covariate distributions for pharmacometric model-
based simulations, for example as part of clinical trial simu-
lations or dosing strategy optimization simulations.

Discussion

We developed a copula model for an adult population which 
adequately captured the covariate distributions as present in 
the NHANES database.

online following these steps: (1) define the population of 
interest by selecting race-ethnicity, sex, age, and body mass 
index (BMI); (2) select the covariates of interest. Second-
ary covariates, including BMI, lean body weight, and esti-
mated glomerular filtration rate, can be calculated based on 
the covariates in NHANES dataset; (3) select the number 
of individuals for simulation; (4) select the weighted or 
unweighted NHANES copula for the virtual population 
simulation; (5) generate the VP and download the data.

With the app, users can generate virtual population with 
desired characteristics, including race-ethnicity, sex, age 

Fig. 3 Dependency metrics of covariate pairs in the observed popu-
lation and virtual populations simulated from NHANES copula. A. 
Correlations of each covariate pair in real-world population (orange 
diamond) and virtual populations (black box). Gray dashed line repre-
sents no correlation between covariate pairs. B. Overlap metric of 95th 

density contours of virtual population relative to observed population. 
Virtual population was simulated 100 times. Error bars indicated the 
standard deviation of 100 simulations. Gray dashed lines indicate 
100% and 85% overlap percentages
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influence height, weight, serum creatinine, and liver func-
tion biomarkers (total bilirubin and ALT) [30]. The correla-
tion between covariates may explain the situations where 
sex may not be relevant as a covariate when the other 
covariates are included, since different PK or PD outcomes 

The tree structure of the NHANES copula revealed asso-
ciations between commonly used covariates in population 
pharmacokinetics studies, which may help in the process 
of covariate model development. Identified associations 
were in line with the literature in which sex was found to 

Fig. 4 Overlap metric of each subgroup virtual population relative to 
corresponding real-world population. A. Overlap metrics calculated 
for each race-ethnicity subgroup population. B. Overlap metrics cal-
culated for each sex subgroup population. The full copula was created 
utilizing the whole set of data, while subgroup copulas were developed 

based on each subgroup of data. Subgroup virtual populations were 
simulated 100 times using full copula (pink boxes) and subgroup copu-
las (blue boxes) for each. Error bars indicated the standard deviation of 
100 simulations. Gray dashed lines indicate 100% overlap percentage
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Yet, deploying non-parametric copulas is computationally 
expensive and is prone to overfitting [33].

This study is focused on the adult. The pediatric popula-
tion was not considered in this analysis mainly because some 
critical covariates for the pediatric population are lacking 
in NHANES database, such as birth weight, postnatal age 
and gestational age. Additionally, the pediatric population 
differs from the adult population in anatomical, physiologi-
cal and biochemical characteristics [34], and the develop-
mental changes over age may lead to drastic changes in the 
dependency structure between covariates. This could lead 
to inferior performance if the copula was estimated on both 
populations. We have thus chosen to focus on adults only.

In this study, we incorporated not only continuous but 
also categorical variables in the estimation of the NHANES 
copula. Currently, copula models for unordered categorical 
variables are not fully identifiable [24]. To include race-eth-
nicity (an unordered categorical variable) in copula, we esti-
mated vine copulas by iterating through all possible orders 
of race-ethnicity and selected the model with the lowest AIC 
value. Since there were five categories in race-ethnicity, we 
considered 120 unique order possibilities of race-ethnicity 
categories, which was time-consuming and computationally 
expensive. Since this type of variable is common in clini-
cal studies, such as disease classification, an algorithm that 
could efficiently deal with unordered categorical covari-
ates is yet to be developed. When categorical variables are 
transformed to a uniform scale, each value does not have 

depend on underlying covariates (such as weight and serum 
creatinine) [31, 32].

To evaluate the performance of the developed copula 
model, we assessed whether the simulated population is 
realistic by comparing the marginal and dependency met-
rics between VPs and real-world populations. Interestingly, 
we observed that the pair combinations of covariates that 
showed the largest errors of correlation differed from those 
showing the lowest overlap percentages. Pearson correla-
tion quantifies linear associations, while data sharing the 
same linear correlation could exhibit different dependency 
structures, and the overlap metric takes the shape or pattern 
of the dependency into account. Jaccard index is a similarity 
measure between two data samples [27], and the novelty of 
the overlap metric lies in its first application to two-dimen-
sional densities. Pearson correlation and overlap metric 
collectively depicted the joint behavior at a pairwise level 
and addressed different perspectives, and as such should be 
evaluated together when assessing copulas or investigating 
the similarity between two populations.

The advantage of copulas is that they can model complex 
multivariate distributions more easily and efficiently. The 
local poor fit for dependency structure between fat-weight 
conditional on sex (Fig. 4B) is probably due to the paramet-
ric bivariate copulas used for the estimation of vine copu-
las. The fat-weight distribution of the real-world population 
exhibited a heart-shaped contour (Fig. 1B), which might 
be better captured by non-parametric bivariate copulas. 

Fig. 5 Interface of the R shiny application CoCoSim (https://cocosim.lacdr.leidenuniv.nl/). Virtual population can be generated according to user-
defined characteristics based on NHANES copula (full copula)
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initiated to gather large-scale data to build copulas for vari-
ous target populations.

A copula can generate virtual populations that accurately 
represent the input population, and allows for adjusting sam-
pling weights in the estimation in case the input population 
is not representative of the real-world population. In this 
way, copulas facilitate the generation of virtual populations 
that are representative of the actual real-world populations 
if sampling weights are available. The marginal distribution 
of unweighted and weighted copula differed mainly in dif-
ferent race-ethnicity groups (Figure S7). Our web applica-
tion includes both unweighted and weighted copulas. In the 
analysis, we focused on the unweighted copula, because the 
comparison between the virtual population and the input 
population is only possible with the unweighted copula.

Conclusion

In this study, we demonstrated the development and evalua-
tion of a copula model using NHANES database to simulate 
commonly used covariates in pharmacometric modeling, 
which can be used as part of clinical trial design and dose 
strategies optimization. A user-friendly web application 
was developed to facilitate the use of the developed copula 
model for covariate simulation.
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the same probability of occurring, and it is still inherently 
discrete. Instead of calculating correlations, we chose to 
perform a subgroup analysis for categorical variables.

Copula models can be useful to support model-based 
dosing optimization or clinical trial simulation. For such 
applications, a focus on subjects with specific covariate char-
acteristics usually exists [35, 36]. To this end, it is important 
to confirm whether a copula model correctly reflects covari-
ate distributions for relevant population subgroups of inter-
est. In our analysis, compared with subgroup copulas, the 
full copula model showed comparable performance across 
different race-ethnicity and sex subgroups except for Asian 
and Other race subgroups, likely due to the relatively small 
number of individuals within the entire dataset. In particu-
lar, the Asian population has distinct marginal distributions 
of weight, height and logFat, compared to other race-ethnic-
ity populations (Figure S5). This led to a stronger correla-
tion between height and weight, the relation between which 
predominates the underlying dependency structure (Figure 
S6). The ability to adequately simulate subgroups from a 
large copula is of great importance since creating copulas 
for each subpopulation of interest, including e.g. different 
age and BMI ranges creates a nearly infinite amount of pos-
sible subgroups.

The NHANES population represents the non-institution-
alized population of America and cannot be classified as 
healthy subjects or patients, indicating that the virtual popu-
lation simulated from full copula should be interpreted with 
care. In this dataset, a significant portion of fat mass data 
was missing due to the age-eligible criterion (< 60 years 
old) of examination. However, copulas allowed for interpo-
lation and extrapolation of VPs, as they support the genera-
tion of fat mass data for individuals above 60 years old via 
conditional density functions [37]. Of note, we removed the 
extrapolated fat mass data during the evaluation of copula 
performance. Although no significant bias was revealed in 
the validation analysis, simulated fat mass for people above 
60 years old should be used with caution.

To make the full copula more accessible to the community, 
a web application was developed to facilitate the simulation 
of VPs with user-defined properties. The application allows 
to generate virtual populations with specific demographic 
attributes such as race-ethnicity, sex and BMI. Yet, the per-
formance of NHANES copula on special populations, has 
not been able to be validated in this study. Additional data 
related to these populations are necessary to further investi-
gate copulas for specific types of patients, such as pediatric, 
obese, pregnant, and renally impaired patients. This work 
served as a basis for building a copula library in future, for 
sharing the copulas of special patient populations and sup-
porting simulation studies. Collaborative efforts could be 
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