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Abstract
In this paper, we use Time Scale Calculus (TSC) to formulate and solve pharmacokinetic models exploring multiple dose 
dynamics. TSC is a mathematical framework that allows the modeling of dynamical systems comprising continuous and 
discrete processes. This characteristic makes TSC particularly suited for multi-dose pharmacokinetic problems, which inher-
ently feature a blend of continuous processes (such as absorption, metabolization, and elimination) and discrete events (drug 
intake). We use this toolkit to derive analytical expressions for blood concentration trajectories under various multi-dose 
regimens across several flagship pharmacokinetic models. We demonstrate that this mathematical framework furnishes an 
alternative and simplified way to model and retrieve analytical solutions for multi-dose dynamics. For instance, it enables 
the study of blood concentration responses to arbitrary dose regimens and facilitates the characterization of the long-term 
behavior of the solutions, such as their steady state.
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Introduction

Time Scale Calculus (TSC) is an emerging field in mathe-
matics that aims to unify the theory of differential and differ-
ence equations. While differential and difference equations 
require modeling time as exclusively a continuous or discrete 
quantity, TSC considers dynamics happening on unrestricted 

time domains called time scales. Hence, the core innova-
tion of TSC lies in its capacity to simultaneously address 
continuous and discrete dynamics, offering an improved 
modeling framework for analyzing systems where these 
processes coexist. This approach was first introduced in the 
seminal works of [1, 2] and has attracted growing interest 
for its applicability across multiple disciplines.

This paper highlights the potential applications of TSC 
in Pharmacokinetic/Pharmacodynamic (PKPD) and Physi-
ologically Based Pharmacokinetic (PBPK) modeling. In 
particular, we study blood concentration dynamics resulting 
from multiple administrations of orally and intravenously 
administered drugs. Understanding these dynamics is crucial 
for medical practice, as drugs are typically administered in 
a series of repetitive doses, not in single doses. TSC proves 
invaluable in examining these dynamics, offering a versatile 
framework that naturally accommodates the dual nature of 
drug administration: the continuous processes of absorp-
tion, metabolization, and elimination, alongside the discrete 
events of drug intake. Consequently, TSC provides a coher-
ent language for integrating these processes into models, 
enhancing their interpretability, and expanding their applica-
tions and complexity.
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The primary application examined herein is modeling 
multiple-dose dynamics through the Bateman function [3]. 
The Bateman function, which articulates the dynamics fol-
lowing some orally administered single doses, emerges from 
the solution of a second-order linear ordinary differential 
equation or, equivalently, from a system of two first-order 
linear equations, that rationalize well-known physiologi-
cal processes. Thus, to extend this model to accommodate 
multiple doses, we employ TSC to transition from ordinary 
linear equations to dynamic equations—their generalization 
within the TSC framework—enabling the incorporation of 
dosing timings into the dynamics. This methodology demon-
strates how TSC facilitates the derivation of analytical solu-
tions for established problems, such as the “Equi-dosing” 
regime—wherein a constant drug quantity is administered at 
uniform intervals—as studied originally studied in [4], and 
further developed by [5]. However, we also show that TSC 
allows us to go far beyond this case, yielding solutions for 
arbitrary dosing regimes where the amount of drug admin-
istered and the interval between doses can vary arbitrarily. 
This generalization is important, so long equi-dosing regi-
mens are “a difficult, if not impossible, feat to accomplish 
in any circumstances, be it a clinical or preclinical study or, 
even more so, in the real case of a patient taking a drug long 
term” [6, p. 432].

We also use the multiple-dose dynamics of the Bateman 
function obtained via TSC to showcase results concerning 
drug accumulation. For instance, we establish mathemati-
cal properties inherent to these dynamics, such as asymp-
totic periodicity and the convergence to a “Steady State”-a 
phase where blood concentration dynamics fluctuate within 
a predetermined range. Additionally, we formulate a new 
mathematical definition of the “Steady State”, and use it to 
provide explicit formulas for the asymptotic bounds of the 
dynamics.

Finally, we showcase the versatility of TSC in extending 
its application to various established PKPD and PBPK mod-
els. Consequently, we formulate multiple-dose dynamics via 
TSC of bolus injections through intravascular routes and 
models incorporating finite absorption times, as discussed 
in [7, 8]. Following the insights of [6], our findings high-
light the profound influence of administration routes and the 
underlying assumptions about drug absorption and elimina-
tion on drug accumulation kinetics in plasma.

Our paper is the first use of TSC in PKPD and PBPK 
applications. This novel application broadens TSC’s scope 
beyond its established utility in areas such as population 
dynamics and biology (e.g., [9–12]), economics (e.g., 
[13–16]), physics (e.g., [17]), machine learning (e.g., [18]), 
and robotics (e.g., [19]).

The closest work to our proposal is that of [5], which 
presents exact solutions for equi-dosing regimens within 
multi-dose pharmacokinetic models incorporating transit 

compartments. Similarly, the research conducted by [20, 21] 
provides exact solutions for multiple intermittent intravenous 
infusions within a single-compartment model. Our research 
distinguishes itself from these precedents in three funda-
mental aspects: First, we show that the multi-dose dynamics 
can be naturally encapsulated within the TSC framework. 
Specifically, dynamic equations -a generalization of differ-
ential and difference equations proposed by TSC—allow us 
to integrate absorption, elimination, and dose intakes into 
a single initial value problem. Hence, this approach differs 
from traditional modeling practices where researchers typi-
cally amalgamate multiple conventional ordinary differential 
equations describing post-dose dynamics. Second, we show 
that the dynamic equation language to PKPD and PBPK 
allows a simpler formulation and solution to complex dosing 
regimens. We demonstrate this by deriving analytical solu-
tions for arbitrary dosing schedules, thus improving upon 
the equi-dosing assumptions discussed in prior works. Third, 
our modeling framework is valid for models different from 
the standard transit compartment systems. An example is 
the multi-dose dynamics of Physiologically Based Finite 
Time Pharmacokinetic (PBFTPK) models explored in this 
paper. With this application, we contribute to the PBFTPK 
literature by providing multiple-dose dynamics where only 
single-dose dynamics have been developed (see [7, 8]).

In addition, we provide several new results concerning 
drug accumulation. First, we offer a new mathematical for-
mulation of the “steady state” for multi-dose dynamics based 
on TSC. We also provide alternate proofs of several well-
established drug accumulation results in medical practice, as 
described in [6]. Finally, we offer a novel result that asserts 
that a physician can—theoretically—formulate dosage regi-
mens for blood concentrations to stay within any desired 
range asymptotically.

The remainder of this paper is organized as follows. 
Section 2 introduces TSC, derives multiple-dose dynam-
ics stemming from the Bateman Function, and describes 
its properties. Section 3 provides additional applications of 
TSC to other PKPD and PBPK models. Section 4 concludes.

An application of TSC: exploring multi‑dose 
dynamics of the Bateman function

In this section, we employ TSC to deliver analytical solu-
tions for multiple-dose dynamics resulting from the Bate-
man function under different dosing regimens. The Bateman 
function is a one-compartment model disposition with first-
order absorption and elimination rate, frequently applied in 
pharmacokinetic analyses of oral dosing. As a solution to 
an ordinary differential equation initial value problem, we 
use the Bateman function to exemplify the value of TSC in 
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transitioning from single-dose to multiple-dose dynamics 
via dynamic equations.

The Bateman function

The Bateman Function describes the blood concentration 
dynamics following a single oral dose intake. As shown in 
[22], the Bateman Function is the solution of a system of lin-
ear ordinary differential equations modeling drug absorption 
and circulation through the gastrointestinal tract. In fact, the 
Bateman Function is also a solution to a second-order linear 
differential equation, as shown in (1).

Following [23], the concentration of many orally-admin-
istered drugs in plasma over time after a single dose, denoted 
as x(t), is well approximated in empirical data by the follow-
ing “Bateman Function”:

where �a, �e represent the compound absorption and elimi-
nation rate constants, respectively, and F, V, d account for 
absolute bioavailability, the volume of distribution, and the 
amount of the oral dose, respectively. It is usually the case 
that 𝜅a > 𝜅e > 0 , meaning the absorption of the drug into the 
central compartment is faster than the elimination process. 
However, in some cases 0 < 𝜅a < 𝜅e , which is known as the 
flip-flop situation [24]. Although it is possible to deal with 
the case where both parameters are equal, we will not refer 
to this case in our theory since it is uncommon to be found 
in practice.

More broadly, and following Eq. (1), the drug blood con-
centration dynamics resulting from the administration of a 
broad spectrum of medications is the solution to the follow-
ing second-order initial value problem:

where parameter � condenses different combinations of bio-
logical parameters depending on the route of administration1.

Alternatively, this particular second-order linear equa-
tion can be transformed into a system of first-order linear 
equations by introducing an auxiliary function y(t). The 

(1)x(t) =
�aFd

V (�a − �e)

(
e−�et − e−�at

)
,

(2)

⎧
⎪⎨⎪⎩

x��(t) + (�a + �e)x
�(t) + �e�ax(t) = 0

x�(0) = �a � d

x(0) = 0

,

function y(t) can be biologically interpreted as representing 
the quantity of the drug present in organs responsible for 
absorption at a time t. This reformulation leads to the fol-
lowing dynamical system

with 𝜅a > 0 , 𝜅e > 0 , and �a ≠ �e.
From a mathematical perspective, we have a system of 

two autonomous linear first-order differential equations 
with constant coefficients, for which a closed-form solution 
is known. For one, the differential equation governing y(t) 
represents the process by which the drug amount in the gas-
trointestinal tract is absorbed, wherein �a is the absorption 
rate constant. For another, the dynamics of x(t) encapsulate 
the aftermath of the absorption and elimination processes: 
�a�y(t) denotes the concentration of the drug instantaneously 
absorbed at time t (inflow), while −�ex(t) indicates the drug’s 
elimination, wherein �e is the elimination rate constant. The 
system is coupled with initial conditions y(0) = y0 = d , and 
x(0) = x0 = 0 , where d represents the quantity of the drug 
administered orally. This particular choice of initial condi-
tions allows the solution to match equation (1).

Transitioning from single-dose to multi-dose dynamics 
necessitates a framework capable of accommodating dose 
intake mechanics beyond what is typically offered by ordi-
nary differential equations. This requirement is met through 
the development of dynamic equations, which extend tradi-
tional differential equations to incorporate discrete events, 
such as drug intakes, into the model. In the subsequent sec-
tion, we delineate the foundational elements of this theory, 
setting the stage for its application to the Bateman function.

Time scale calculus preliminaries

TSC is an emerging field in mathematics that aims to unify 
the theory of differential and difference equations by ena-
bling the study of dynamics on more general time domains 
called time scales. As an introduction, we briefly overview 
the main definitions of TSC following [25, 26].

Basic definitions

As the name suggests, this theory aims to generalize discrete 
and continuous dynamical systems into more general time 
sets called time scales. Specifically, a time scale is defined 
as follows:

Definition 1 A Time Scale �  is an arbitrary nonempty closed 
subset of ℝ.

(3)

⎧⎪⎨⎪⎩

y�(t) = −�ay(t)

x�(t) = �a � y(t) − �ex(t)

y(0) = y0 = d;

x(0) = x0 = 0

1 For example, [23] indicates that for an oral administration (P.O.) of 
the drug � = F∕V  [ml−1 ] where F is the bioavailability and V is the 
volume of distribution, while for an intravenous administration (I.V.) 
of the drug, � involves the rate constants governing formation, �f  , and 
elimination, �m , as well as systemic availability, FH(m) , which is the 
ratio of the amount of metabolite leaving the liver to the amount of 
metabolite formed, and distribution volume Vm for the metabolite.
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For instance, ℝ, ℤ, ℕ ∪ [0, 1] are time scales.

Definition 2 Let �  be a Time Scale. For t ∈ �  , we define the 
forward jump operator � ∶ � → �  by:

Analogously, we define the backward jump operator
� ∶ � → �  by:

Intuitively, the definition of time scales admits both dis-
crete and continuous sets and sets with both components. 
As it is expected, dynamics will vary depending on the 
“structure” of the Time Scale. This leads to the following 
classification.

Definition 3 Let �  a time scale. An element t ∈ �  is: 

1. right-scattered if t < 𝜎(t).
2. right-dense if t = �(t).
3. left-scattered if t > 𝜌(t).
4. left-dense if t = �(t).
5. isolated if 𝜌(t) < t < 𝜎(t).
6. dense if �(t) = t = �(t)

In other words, the forward and backward operators deter-
mine whether, at a certain point, the dynamics resemble a 
discrete or a continuous scale. An alternative approach is to 
define another operator called the graininess function:

Definition 4 Let �  a time scale. We define the graininess 
function � ∶ 𝕋 ⟶ ℝ≥0 = [0,∞) by:

Observe that if �(t) = 0 , then the time scale at t is con-
tinuous, whereas if 𝜇(t) > 0 , then the time scale at t behaves 
like a discrete set. Finally, we define a distinguished subset 
of every time scale that will be useful for other definitions.

Definition 5 We define the subset � � as

Differentiation

We introduce the extended notion of a derivative in an arbi-
trary time scale.

Definition 6 Let f ∶ 𝕋 → ℝ be a function and t ∈ �
� . We 

define fΔ(t) (provided it exists) to be the number that for 

𝜎(t) ∶= inf{s ∈ � ∶ s > t}

𝜌(t) ∶= sup{s ∈ � ∶ s < t}

�(t) ∶= �(t) − t

�
𝜅 =

{
� ⧵ (𝜌(sup(� )), sup(� )] if sup(� ) < ∞

� if sup(� ) = ∞

every 𝜖 > 0 , there exists 𝛿 > 0 such that there is a neighbour-
hood U = (t − �, t + �) ∩ �  that satisfies:

We call fΔ(t) the delta-derivative (or Hilger Derivative) of 
f  at t.

The following Theorem shows how this definition extends 
the notion of the regular derivative and discrete differences:

Proposition 1 Assume f ∶ 𝕋 → ℝ be a function and let 
t ∈ �

� . Then the following are valid: 

 (i) if f  is delta-differentiable at t , it is continuous at t.
 (ii) if f  is continuous and t  is right-scattered, the f  is 

delta-differentiable at t with: 

 (iii) if t is right-dense, then f  is delta-differentiable at t 
if and only if the limit, 

 exists as a finite number. In this case: 

In summary, the Hilger derivative behaves like an ordi-
nary derivative in dense domains and like a discrete differ-
ence in scattered domains. This enables a single and general 
notion of “change” in time domains that exhibit both dense-
ness and scatteredness properties.

Dynamic equations

Like ordinary differential and difference equations, the 
TSC allows formulating equations that describe the dynam-
ics of an object in an arbitrary time scale—these are called 
“dynamic equations”. A dynamic equation of order p is a 
mathematical equation that relates a function and its delta 
derivatives up to order p with respect to a single independent 
variable t. More precisely, it takes the form:

Additionally, these equations can be combined with initial 
and boundary conditions to produce specific solutions. The 
general solution for many dynamic equations is known and 
thoroughly addressed in [25, 26].

|(f (�(t)) − f (s)) − fΔ(t)(�(t) − s)| ≤ �|�(t) − s|, ∀s ∈ U

fΔ(t) =
f (�(t)) − f (t)

�(t)

lim
s→t

f (t) − f (s)

t − s

fΔ(t) = lim
s→t

f (t) − f (s)

t − s
= f �(t)

G(t, f (t), fΔ(t),… , fΔ
p

(t)) = 0
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The equi‑dosing regimen

In this section, we apply TSC to model blood concen-
tration levels resulting from multiple successive drug 
doses under a Bateman function. The key idea behind this 
proposal is that the specific dynamical system depicted 
in (3), leading to the Bateman Function, results from 
assuming dynamics unfold on a quite specific time scale: 
ℝ≥0 = [0,∞) . However, these same dynamics can also 
potentially describe treatment responses in more general 
time scales. For instance, consider a simple scenario in 
which d grams of a particular drug is administered every 
� units of time, with the first dose being administered at 
time t = 0 . Thus, we can visualize the dynamics happening 
on the following time scale � (�):

The intervals In = [(n − 1)�, n�] , for n = 1, 2, 3,… , repre-
sent the time lapses between each dose administration. The 
beginning of interval In marks the moment the n-th dose is 
administered. In other words, the n-th dose is administered 
at the beginning of interval In , precisely at time (n − 1)� . 
Because d and � are constant, this case is known in the lit-
erature as the “Equi-dosing case” [5].

Leveraging TSC tools, we can embed the dynamical sys-
tem introduced in (3) into a different time scale—� (�) . Spe-
cifically, this generalization is possible via the Hilger deriva-
tive. The exact formulation of this extension is as follows:

Equation  5 condenses the equi-dosing problem into 
a single initial value problem using dynamic equa-
tions. Note that when considering a single-dose scenario 
(� → ∞) , the proposed model matches exactly (2) since 
𝕋 (∞) = [0,∞) = ℝ≥0 , and thus, the Hilger derivative is the 
same as the ordinary derivative.

In addition to the initial conditions typically used in ordi-
nary differential equations’ initial value problems, multiple-
dose dynamics require specifying conditions at dose intake 
times. Our model assumes that the concentration in the sys-
temic circulation does not rise abruptly when a new dose is 
administered orally, hence the continuity condition

(4)� (�) =

∞⋃
n=1

[(n − 1) �, n �] =

∞⋃
n=1

In.

(5)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y△(t) = −�ay(t)

x△(t) = �a � y(t) − �ex(t)

with initial conditions:

y(0) = d

x(0) = 0

and multiplicity conditions:

lim
t→n�+

y(t) = lim
t→n�−

y(t) + d; n = 1, 2,… ,∞

lim
t→n�+

x(t) = lim
t→n�−

x(t); n = 1, 2,… ,∞

In terms of the model, this implies that the drug concentra-
tion at the time of a new intake is equal to the concentration 
observed after � units of time have elapsed since the last 
dose administration. Similarly, we require that

This condition can be interpreted as follows: when a new 
drug dose is administered, it immediately enters the gastro-
intestinal tract, causing an abrupt increase in the amount of 
medicine to be absorbed by that system by d units.

The solution to the above system thus describes the 
dynamics of x and y after administering a dose d every � 
units of time. Since this model is derived from the “Bate-
man Function”, the resulting function for x(t) can be 
described as its equi-multiple-dose version. The formal 
result is presented in the following theorem:

Theorem 2 [The Equi-multiple-dose Bateman Function]

C o n s i d e r  t h e  T i m e  S c a l e  d e f i n e d  b y 
� (�) =

⋃∞

n=1
In =

⋃∞

n=1
[(n − 1)�, n�] . Then the initial value 

problem presented in (5) on Time Scale � (�) has a unique 
solution given by:

The function x(t) is called the Equi-multiple-dose Bateman 
Function.

Proof See Online Appendix B.1.
  ◻

Theorem 2 presents an explicit formula for the dynam-
ics of multiple doses, assuming that both the dose amount 
and the interval between doses remain constant. The solu-
tions are articulated as infinite sums of functions, where 
(n)
x (t) and 

(n)
y (t) denote the particular solutions within a 

cycle, that is, the period between the nth and (n  + 1)th 
dose.

lim
t→n�+

x(t) = lim
t→n�−

x(t)

lim
t→n�+

y(t) = lim
t→n�−

y(t) + d

(6)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y(t) =
∞∑
n=1

�[t ∈ In]
(n)
y (t);

(n)
y (t) = d

�
1 − 𝛼n

1 − 𝛼

�
e−𝜅a(t−(n−1)𝜏)

x(t) =
∞∑
n=1

�[t ∈ In]
(n)
x (t);

(n)
x (t) = C1e

−𝜅e(t−(n−1)𝜏) − C2e
−𝜅a(t−(n−1)𝜏)

where

C1 =

�
𝜅a 𝛾 d

𝜅a − 𝜅e

��
1 − 𝛽n

1 − 𝛽

�

C2 =

�
𝜅a 𝛾 d

𝜅a − 𝜅e

��
1 − 𝛼n

1 − 𝛼

�

𝛼 = e−𝜅a𝜏 , 0 < 𝛼 < 1

𝛽 = e−𝜅e𝜏 , 0 < 𝛽 < 1
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Arbitrary dosing regimens

In this section, we offer a direct extension of the model 
described in Sect. 2.3 when allowing for dosage regimens 
with uneven times between doses and possibly different 
grammages in the doses.

Let tn be the time the n− th dose is administered, and 
define �n = tn − tn−1 be the time elapsed between doses. 
Let dn represent the amount of drug administered at time tn . 
Then, the sequence {(�n, dn)}∞n=1 characterizes any conceiv-
able dosage plan.

We must consider the times scale generated by an arbi-
trary regimen to characterize dynamics in a general setting. 
Similar to the constant case, this can be formulated as

Notice this is a generalization of � (�) , which results 
from the special case when �n = � for all n, so that 
In(�1,… , �n) = In = [(n − 1)�, n�].

As with the equi-dosing plans, the corresponding dynam-
ics are described by a system of dynamic equations. Con-
cretely, for all t ∈ � ({�n}

∞
n=1

) , consider the multi-dose 
dynamics are given by the following system of dynamic 
equations,

As in Sect. 2.3, this dynamic system allows for a closed-
form solution, which we present in Theorem 3

Theorem  3 [The Generalized-multiple-dose Bateman 
Function]

Provided that �a ≠ �e and given any arbitrary dosage 
schedule given by the sequence 

{
(dn, �n)

}∞

n=1
 , the solution to 

the system of dynamic equations presented in (7) is:

� ({�n}
∞
n=1

) =

∞⋃
n=1

In(�1,… , �n) =

∞⋃
n=1

[tn−1, tn]

(7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y△(t) = −�ay(t)

x△(t) = � �a y(t) − �ex(t)

with initial conditions:

y(0) = d1
x(0) = 0

and multiplicity conditions:

lim
t→t+

n−1

y(t) = lim
t→t−

n−1

y(t) + dn; n = 2, 3,… ,∞

lim
t→t+

n−1

x(t) = lim
t→t−

n−1

x(t); n = 2, 3,… ,∞

(8)

y(t) =

∞∑
n=1

�[t ∈ In]
(n)
y (t)

x(t) =

∞∑
n=1

�[t ∈ In]
(n)
x (t)

where

The function x(t) is called the Generalized-multiple-dose 
Bateman Function.

Proof See Online Appendix B.2.   ◻

As illustrated in Fig. 1, irregular dosing schedules can 
lead to dynamics that diverge significantly from the “peri-
odic” solutions outlined in the previously discussed section. 
The blue line charts the blood concentration resulting from a 
consistent regimen of administering 250 mg of a hypotheti-
cal drug every 4 h. Conversely, the orange line depicts a sce-
nario where the patient skips the third dose and subsequently 
takes a double dose (500 mg) at the next scheduled time. 
While blood concentration levels eventually converge to a 
similar dynamic, this example underscores how deviations 
in dosing times and amounts can markedly affect the dynam-
ics in the short term and may lead to prolonged variations if 
such patterns are consistently followed.

Properties of the multiple‑dose Bateman functions

In this section, we exhibit properties of the Equi-multiple-
dose Bateman Function. Similar properties can be estab-
lished for the Generalized-multiple-dose Bateman Function.

Standard pharmacokinetic/pharmacodynamic quantities:

We begin by calculating several typical pharmacokinetic/
pharmacodynamic variables, such as the Area Under the 
Curve (AUC), maximum plasma concentration and the 
peak time in each cycle. Propositions 4 through 7 summa-
rize these results.

(9)

(n)
y (t) =

(
n−1∑
i=1

n−1∏
j=i

di�j + dn

)
e−�a(t−tn−1)

(n)
x (t) = C1(n) e

−�e(t−tn−1) − C2(n) e
−�a(t−tn−1)

C1(n) =
�a �

�a − �e

(
n−1∑
i=1

n−1∏
j=i

di�j + dn

)

+
�a ⋅ �

�a − �e

[
n−1∑
i=1

n−1∏
j=i

di�j −

n−1∑
i=1

n−1∏
j=i

di�j

]

C2(n) =
�a �

�a − �e

(
n−1∑
i=1

n−1∏
j=i

di�j + dn

)

�s = e−�a�s , �s = e−�e�s , s = 1, 2, 3,… , n ≥ 1.
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Proposition 4 (Area under the curve—AUCIn
 ) The 

area under the concentration–time curve in the interval 
In = [(n − 1)�, n �] , denoted as AUCIn

 , satisfies the follow-
ing expression:

Proof See Online Appendix B.3.   ◻

Proposition 5 Let AUC[0,∞] be the area under the concentra-
tion–time curve in the case of a single dose between t = 0 
and t → ∞ . The AUC[0,∞] satisfies the following expression:

Proof See Online Appendix B.4.   ◻

Proposition 6 The time at which the plasma concentration 
reaches its maximum value in period In = [(n − 1)�, n �] is 
denoted as 

(n)

t max and satisfies the equation:

(10)AUCIn
=

�a d �

�a − �e

[
1

�e
(1 − �n) −

1

�a
(1 − �n)

]

(11)AUC[0,∞) =
�a d �

�a − �e

[
1

�e
−

1

�a

]

(12)
(n)

t max = (n − 1)� +
1

�a − �e
ln

(
�aC2

�eC1

)

which is always a positive number regardless of whether 
𝛼 > 𝛽 or 𝛽 > 𝛼 . Here, C1 and C2 are the constants defined 
in Theorem 2.

Proof See Online Appendix B.5.   ◻

Proposition 7 The maximum plasma concentration in the 

period In = [(n − 1)�, n�] , denoted as 
(n)
x max , satisfies the fol-

lowing formula:

where C1 and C2 are defined in Theorem 2.

To summarize the previous results, we have graphically 
illustrated them in Fig. 2.

Asymptotic behavior of the solutions

In this section, we investigate the plasma concentration 
after numerous dose administrations by observing the 
behavior of the sequence of functions {

(n)
x }∞

n=0
 as n → ∞ . 

(13)

(n)
x max =

(n)
x

(
(n)

t max

)
= C1

(
�aC2

�eC1

)−
�e

�a − �e − C2

(
�aC2

�eC1

)−
�a

�a − �e

Fig. 1  Periodic dose vs. irregu-
lar dose—illustration. The top 
panel shows the amount of the 
drug in the intestinal tract, and 
the lower panel depicts the drug 
concentration in the blood-
stream
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While these results pertain to the equi-dose regimen case, 
some can be extended to arbitrary dosage regimens in sev-
eral situations.

Theorem 8 [Asymptotic periodicity]

For a fixed choice of parameters ( �a, �e, � ), �a ≠ �e , the 
sequence of functions 

(0)
x ,

(1)
x ,… , is asymptotically �-periodic, 

meaning

Proof See Online Appendix B.6.   ◻

Theorem 8 asserts that the dynamics of plasma concen-
tration stabilize into identical cycles after multiple doses 
have been administered. The predictability of concentra-
tion dynamics after several dose intakes suggests that solu-
tions reach a “steady state”, where the blood concentration 
dynamics exhibit a regular pattern. A similar result can be 
established for many arbitrary dose regimens in Online 
Appendix A. Consequently, we formalize the notion of a 
steady state as follows:

Definition 7 [Steady state] Let 𝜖 > 0 and let

We define the �-steady-state of the model as the time scale

Furthermore, we denote by

lim
n→∞

[
sup
t∈In

|||
(n)
x (t) −

(n−1)
x (t − �)

|||
]
= 0

N𝜖 ∶= min

{
n ∈ ℕ ∪ {0} ∶ ∀m ≥ n, sup

t∈Im

|||x
(m)(t) − x(m−1)(t − 𝜏)

||| < 𝜖

}

�
ss
𝜖
(𝜏) ∶=

⋃
n≥N𝜖

In ⊆ � (𝜏)

as the �-steady-state dynamics.

An immediate corollary of Theorem 8 is that “steady 
states” always exist for any conceivable dosage plan. More 
precisely, we know that a an �-steady-state always exist for 
any 𝜖 > 0 , and for any set of parameters �a, �e, � , provided 
that �a ≠ �e . Furthermore, this definition justifies studying 
the limiting behavior of standard pharmacokinetic/pharmaco-
dynamic quantities by considering their limits when n → ∞.

Additionally, asymptotic periodicity implies that it is 
possible to study the long-term behavior of patients fol-
lowing a specific dosage plan. In particular, it allows for 
examining the range of possible concentrations a patient 
may exhibit after being administered a particular drug dos-
age for a long period.

Definition 8 [Therapeutic Range] Let 𝜖 > 0 and let

be the range of values a solution can exhibit when it has 
achieved its �−steady state. We define the therapeutic range 
or safety range as:

In brief, the therapeutic or safety range is the set of 
possible concentrations an individual can exhibit when 
t → ∞ . We now find explicit formulas for SS and for SS . 

(s.s.)
x� ∶= x

|||� ss
�
(�)

TRs.s.
�

= Range(
(s.s.)
x� )

(14)TRs.s. = [SS, SS] =
⋂
𝜖>0

TRs.s.
𝜖

=
⋂
𝜖>0

Range(
(s.s.)
x𝜖 )

Fig. 2  The equi-multiple-dose 
Bateman function—illustration



Journal of Pharmacokinetics and Pharmacodynamics 

To achieve this, consider the following sequences indexed 
by n.

Definition 9 [Remainder] We will refer to the plasma con-
centration of medication that remains in the circulatory sys-
tem after the n-th period, In = [(n − 1)�, n�] , as that period’s 

remainder. We denote this quantity by 
(n)

Remx . Formally:

Since both 0 < 𝛼 = e−𝜅a𝜏 < 1 and 0 < 𝛼 = e−𝜅a𝜏 < 1 
as n → ∞ , the remainder converges to a quantity 

(∞)

Remx . 
Moreover, by definition, this quantity constitutes the lower 
bound of the therapeutic range. Hence:

Furthermore, it can be verified that 
(n)

Remx is always a positive 
number for each n, regardless of whether 𝛼 > 𝛽 or 𝛽 > 𝛼 . 

Likewise, it follows that SS =
(∞)

Remx > 0.
The following proposition carries out a similar procedure 

to find the upper bound of the therapeutic range

Proposition 9 The maximum plasma concentration in the 
steady state converges to a positive number and is given by 
the following expression:

Proof See Online Appendix B.7.   ◻

Critically, plasma concentration asymptotic behavior 
depends on the dosage schedule (d, �) . Theorem 10 demon-
strates how different schedules result in different therapeutic 
ranges:

Theorem 10 [Steady-state bounds] For a given vector physi-
ological parameters, (�a, �e, �) , let SS(d, �) and SS(d, �) be 
the upper and lower bounds of the therapeutic range in the 
steady-state seen as functions of (d, �) . 

(15)

(n)

Remx ∶=
(n)
x (n �) =

�a d �

�a − �e

[(
1 − �n

1 − �

)
� −

(
1 − �n

1 − �

)
�

]

(16)
SS =

(∞)

Remx ∶= lim
n→∞

(n)

Remx

=
�a d �

�a − �e

[(
�

1 − �

)
−

(
�

1 − �

)]

(17)

SS = lim
n→∞

(n)
x max =

�ad�

�a − �e

×

[
1

1 − �

(
�a(1 − �)

�e(1 − �)

)−
�e

�a−�e

−
1

1 − �

(
�a(1 − �)

�e(1 − �)

)−
�a

�a−�e

]

(a) If the personalized dose d is increased while maintain-
ing the personalized dose regimen � constant for a 
patient, then SS(d, �) increases and SS(d, �) increases.

(b) If the time between doses � is increased while keeping 
the dose d constant, then SS(d, �) decreases with a limit 
of zero and SS(d, �) decreases up to a positive limit.

Proof See Online Appendix B.8.   ◻

Moreover, we can show that the Therapeutic Range is 
well-defined in that SS > SS , as well as characterize how 
different dosage plans alter its width. Theorem 11 exhibits 
these results

Theorem 11 [Width of the Therapeutic Range] The maxi-
mum and minimum plasma concentrations, SS and SS , in the 
steady-state always satisfy the following inequality:

The width of the therapeutic range,  defined as 
�(d, �) ∶= SS(d, �) − SS(d, �) , increases with respect to the 
dose d and the dosage regime � . Moreover, if the dose is kept 
constant ( d > 0 ), then,

Proof See Online Appendix B.9.   ◻

Lastly, it is possible to characterize the area under the 
curve for the limiting cycle. This is given by

This quantity holds an interesting relationship with the sin-
gle-dose AUC, as documented by [6] and as formally proved 
in the following result.

Theorem  12 [Equality of areas under the curves] Let 
AUC s.s.

In
 be the area under the concentration–time curve in 

the period In = [(n − 1)�, n�] . Then,

Proof See Online Appendix B.10.   ◻

The area under the concentration–time curve (AUC) is 
a critical measure quantifying medication absorption into 
the systemic circulation. Theorem 12 establishes that the 
AUC for a single dose is equivalent to the AUC for each 
cycle in a steady state. In other words, when prescribing an 

(18)SS(d, 𝜏) > SS(d, 𝜏)

(19)

lim
𝜏→∞

�(d, 𝜏) =
𝜅a d 𝛾

𝜅a − 𝜅e

[(
𝜅a

𝜅e

)−
𝜅e

𝜅a−𝜅e

−

(
𝜅a

𝜅e

)−
𝜅a

𝜅a−𝜅e

]
> 0

AUCs.s. = lim
n→∞

AUCIn

(20)AUC[0,∞) = AUC s.s.
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evenly spaced dosage plan with a fixed grammage, a medical 
practitioner can expect the AUC in the steady state, which is 
frequently unknown, to be equivalent to that of the single-
dose scenario, which is frequently determined through clini-
cal studies.

To summarize the previous results concerning the asymp-
totic behavior of the Generalized Function, we have graphi-
cally illustrated them in Fig. 3.

Long‑term treatments.

Many long-term treatments require patients to adhere to a 
strict dosage regimen for several years, if not their entire 
lives. Some cases in question involve patients prescribed 
drugs for high blood pressure or HIV and non-disease 
treatments such as contraceptive pills. To facilitate the 
process for the patient, medical practitioners usually 
prescribe fixed-grammage doses to be taken at evenly 
spaced intervals. Furthermore, it is well known through 

practice that drug concentration in the blood stabilizes 
when prescribing these kinds of dosage schedules—a 
result we have now mathematically established to be 
always true in Sect. 2.5.2. Thus, the long-term behavior 
of these particular treatments can be well described using 
the asymptotic theory of the Equi-multiple-dose Bateman 
functions.

In general, the objective of many of these treatments is to 
maintain concentration levels within a desired range [R, R̄] , 
where R̄ > R > 0 [27, 28]). The lower bound is the Mini-
mum Inhibitory Concentration (MIC), which represents the 

concentration above which the drug is effective. The upper 
bound is the Toxic Concentration (TC), which denotes con-
centrations above which the drug could potentially harm the 
user. As a result, an effective dosage plan maintains drug 
concentration levels after several doses within this range. In 
terms of the model, this means that

From this description of the medical problem, two questions 
naturally arise: for a given set of parameters (�a, �e, �) char-
acterizing a patient’s kinetics, (i) does there always exist a 
dosage plan (d, �) that results in a successful treatment for 
any [R, R̄] ? and, (ii) provided there is a solution, how should 
a dosage plan be designed to be effective?

The answer to these questions is possible by studying the 
Equi-multiple-dose Bateman function’s asymptotics. Spe-
cifically, we have established that the asymptotic behavior 
of the multi-dose dynamics is a function of (d, �) , meaning 
that the set of effective dosage schedules can be described as

Theorem 13 For any R̄ > R > 0 and physiological param-
eters (�a, �e, �) with �a ≠ �e , the set E(R, R̄;𝜅a, 𝜅e, 𝛾) is never 
empty.

Proof See Online Appendix B.11.   ◻

Theorem 13 importance is twofold. From a medical stand-
point, it assures us that there always exists a dosage plan-spe-
cifically, one featuring constant intervals between intakes and 
a fixed dosage-that ensures effective treatment for each patient. 
From a mathematical perspective, it guarantees that methods 

MIC = R ≤ SS < SS ≤ R̄ = TC

E(R, R̄;𝜅a, 𝜅e, 𝛾) =
{
(d, 𝜏) ∈ ℝ>0 ×ℝ>0 ∶ SS(d, 𝜏;𝜅a, 𝜅e, 𝛾) ≥ R, SS(d, 𝜏;𝜅a, 𝜅e, 𝛾) ≤ R̄

}

Fig. 3  Asymptotic behavior of 
the equi-multiple-dose Bateman 
function
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searching for these solutions can always find effective dosage 
plans for any patient and any imposed medical requirement.

In our particular framework, one could (theoretically) rely 
on our knowledge of the asymptotic behavior of the Equi-
multiple-dose Bateman Equation to find effective dose sched-
ules. For example, a health practitioner can fix desired long-
run concentration levels [SS∗, SS

∗
] ⊆ [R, R̄] for their patient. 

Assuming the biological parameters (�a, �e, �) were known, 
and effective dosage (�∗, d∗) could be theoretically found by 
solving the non-linear system of equations given by

Unfortunately, given that such an approach is contingent 
upon the choice of a particular model and its unknown 
parameters, it does not offer a universally reliable tool in 
practice. However, the proof of Theorem 13 does theoreti-
cally justify recurrent medical practices. For instance, it 
implies that the solutions to this problem can be (locally) 
expressed as functions of the parameters, namely:

In other words, the dependence of the solutions on the bio-
logical parameters endorses the well-known fact that not 
every drug dosage plan can be effective for every person.

Other applications

This section showcases additional applications of Time 
Scale Calculus (TSC) to other PKPD and PBPK models. 
In particular, we explore multiple-dose dynamics of bolus 
injections through intravascular routes and models incorpo-
rating finite absorption times.

Additional application 1: bolus injections 
via intravascular routes

We consider a scenario where a drug is administered as a multi-
dose bolus dose via an intravascular route. Let x(t) denote the 
plasma concentration of the drug at time t, tn be the time the 
nth dose is administered, �n = tn − tn−1 be the time elapsed 
between doses, and �n denote the concentration of the drug 
delivered intravenously for dose n. In this context, the sequence 
{(�n, �n)}

∞
n=1

 outlines any potential dosing regimen. Therefore, 
the Time Scale suitable for this analysis is defined as:

SS∗ = SS(�∗, d∗, �a, �e, �)

SS
∗
= SS(�∗, d∗, �a, �e, �)

�∗ = �∗(SS∗, SS
∗
, �a, �e, �)

d∗ = d∗(SS∗, SS
∗
, �a, �e, �)

� ({�n}
∞
n=1

) =

∞⋃
n=1

In(�1,… , �n) =

∞⋃
n=1

In =

∞⋃
n=1

[tn−1, tn]

Given that the model only incorporates a central compart-
ment to describe elimination dynamics, the dynamics of 
the model can be articulated through dynamic equations as 
follows:

where �e is the elimination rate constant.
The analytical solution to the initial value problem formu-

lated in (21) is given in the following Theorem:

Theorem 14 [The Generalized-multiple-dose bolus injection 
function]

Given any arbitrary dosage schedule given by the 
sequence 

{
(�n, �n)

}∞

n=1
 , the solution to the system of dynamic 

equations presented in (21) is:

Proof See Online Appendix C.1.   ◻

Figure 4 uses Theorem 14 to demonstrate the dynamics of 
multiple doses under two distinct dosing regimens. The left 
panel displays the dynamics of traditional equi-dosing, while 
the right panel depicts an irregular dosing regimen. This 
comparison underscores how plasma concentration profiles 
can significantly differ due to variations in dosing schedules. 
As suggested by the functional form retrieved in Theorem 14, 
this is a consequence of the dependency he dependency of 
the concentration during cycle n, 

(n)
x (t) , on the cumulative 

history of preceding doses 
(

(n)
x (t) =

(n)
x (t;�n−1, �n−2,… , �1)

)
.

Application 2: multple‑dose physiologically‑based 
finite time pharmacokinetics models

Despite being a well-established model, the Bateman func-
tion has faced criticism, such as that articulated by [29], for 
its reliance on assumptions that may not accurately reflect 
physiological realities. One significant flaw identified by the 

(21)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

x△(t) = −�ex(t)

with initial condition:

x(0) = �1
and multiplicity conditions:

lim
t→t+

n−1

x(t) = lim
t→t−

n−1

x(t) + �n; n = 2, 3,… ,∞

(22)

x(t) =

∞∑
n=1

�[t ∈ In]
(n)
x (t);

(n)
x (t)

=

(
n−1∑
i=1

n−1∏
j=i

�i�j + �n

)
e−�e(t−tn−1), �s = e−�e�s
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authors is the presumption of an infinite absorption time for 
each dose administration. This does not align with the char-
acteristics of some drugs known for their slow and incom-
plete absorption profiles, like those belonging to classes 
II,III, or IV.

Physiologically-based finite Time Pharmacokinetics 
(PBFTPK) models constitute a response to this critique, 
introducing the concept of a Finite Absorption Time (F.A.T). 
Essentially, the F.A.T. theory postulates two different phases 
following a dose intake. First, drug concentration dynamics 
are determined jointly by absorption and elimination forces, 
which can be referred to as the assimilation phase. However, 
due to biological constraints, this phase is finite, and drug 

kinetics enter a second phase termed the clearance phase. In 
this stage, the drug concentration is governed solely by the 
elimination dynamics because absorption is no longer possi-
ble (e.g., the drug is no longer present in the gastrointestinal 
tract or beyond the respective absorptive sites).

Seminal works like [7, 8] have focused on single-dose 
PBFTPK models. We now extend these ideas to multiple 
dosing via TSC. Consider a regimen where a drug is admin-
istered in doses of dn milligrams every �n hours, with absorp-
tion occurring only within the first sn hours, where sn ≤ tn . As 
in other models, the sequence {(�n, �n)}∞n=1 defines any con-
ceivable dosing plan. However, the time scale here diverges 
from that in prior models, particularly in accommodating 

Fig. 4  Multiple intravenous bolus dosing—illustration. The simu-
lation shows an equi-dose regimen (left-hand side figures) with 
d = 600  mg/mL and � = 6  h, and an irregular regimen (right-hand 

side figures) with dn = [600, 600, 700, 500, 400, 300]  mg/mL and 
�n = [4, 4, 8, 4, 6, 4] h. In the simulation, �e = 0.3838 h−1
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the intervals between doses as In = [tn−1, sn] ∪ [sn, tn] , with 
[tn−1, sn] representing the assimilation phase and [sn, tn] the 
clearance phase. Thus, the new time scale incorporates both 
F.A.T. and dosing intervals, expressed as:

Within this framework, while maintaining the one-com-
partment model of Bateman with first-order absorption and 
elimination rates, the equations for multi-dose dynamics can 
be expressed as:

� ({sn}
∞
n=1

, {�n}
∞
n=1

) =

∞⋃
n=1

In =

∞⋃
n=1

(
[tn−1, sn] ∪ [sn, tn]

)

(23)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y△(t) = −�ay(t)

x△(t) = �a � y(t) − �ex(t)

with initial conditions:
(1)
y (0) = d1
(1)
x (0) = 0

and multiplicity conditions:

y(tn−1) = dn; n = 1, 2,… ,∞

lim
t→t+

n−1

x(t) = lim
t→t−

n−1

x(t); n = 2, 3,… ,∞

y(sn) = 0; n = 1, 2,… ,∞

lim
t→s+

n

x(t) = lim
t→s−

n

x(t); n = 1, 2,… ,∞

Equation (23) contains the initial value problem for the 
multiple-dose PBFTPK model. As in Sect. 2.3, we impose 
multiplicity assumptions at dose intake times, namely, the 
first and second on the list. However, introducing F.A.T. 
requires the imposition of two additional multiplicity condi-
tions. The third, and most critical, condition is expressed as:

which implies that the absorption drug is depleted after time 
sn . Indeed, given that y△(t) = −�ay(t) = 0 , it follows that 
y(t) = 0 for t ∈ [sn, tn] , thus effectively encapsulating the 
theoretical dynamics of finite absorption.

The fourth condition:

ensures the continuity of blood concentration dynamics even 
after the drug has been fully absorbed.

The solution to this dynamic equation is detailed in 
Theorem 15:

Theorem 15 [Multiple-dose PBFTPK drug concentration]

Given any arbitrary dosage schedule given by the 
sequence 

{
(�n, �n)

}∞

n=1
 , and a sequence of F.A.T. {sn}∞n=1 , 

y(sn) = 0; n = 1,… ,∞,

lim
t→s+

n

x(t) = lim
t→s−

n

x(t); n = 1,… ,∞

Fig. 5  Multiple-dose F.A.T 
dynamics—illustration. The 
simulation shows an equi-
dose regimen (left-hand side 
figures) with d = 600 mg, 
� = 5 h, sn = 2 h and an 
irregular regimen (right-
hand side figures) with 
dn = [600, 600, 400, 700] mg 
and �n = [6, 4, 5, 5] h, and 
sn = 2 h. In the simulation, 
�a = 0.42 h−1 �e = 0.4 h−1 , 
� = 0.00449 mL−1 . Vertical 
dotted lines indicate the Finite 
Absorption times
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the solution to the system of dynamic equations presented 
in (23) is:

Proof See Online Appendix C.2.
  ◻

Figure 5 showcases the dynamics of multiple doses incor-
porating Finite Absorption Time (F.A.T). The left panel 
depicts an equi-dosing scenario, where both the adminis-
tered dose and the interval between dosing and the F.A.T 
remain constant. Conversely, the right panel introduces 
variations in these parameters across doses. A notable fea-
ture introduced by incorporating F.A.T is a distinctive kink 
in the blood concentration dynamics due to the solution 
provided in Theorem 24 being a piecewise function.2 This 
change corresponds to the phase shift, in which blood con-
centration dynamics transit from being determined by both 
absorption and elimination forces, to being governed only 
by elimination.

Conclusions

This paper applies TSC to explore the dynamics of mul-
tiple drug doses, emphasizing how TSC’s tools simplify 
our formulation of these complex dynamics. TSC offers a 
comprehensive framework ideally suited to the dual nature 

(24)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t) =
∞∑
n=1

�[t ∈ I1
n
]
(n)
y1(t),

(n)
y1(t) = dne

−𝜅a(t−tn−1)

x(t) =
∞∑
n=1

�[t ∈ I1
n
]
(n)
x1(t) + �[t ∈ I2

n
]
(n)
x2(t);

�
(n)
x1(t) = C1(n)e

−𝜅e(t−tn−1) − C2(n)e
−𝜅a(t−tn−1)

(n)
x2(t) = C3(n)e

−𝜅e(t−sn)

where

I1
n

= [tn−1, sn], (Assimilation Phase); I2
n
= [sn, tn], (Clearance Phase); n = 1,… ,∞

C1(n) =
𝜅a⋅𝛾

𝜅a−𝜅e
dn +

𝛽

B

�
𝜅a ⋅ 𝛾

𝜅a − 𝜅e
(B − A)

�
n−1∑
i=1

𝛽n−1−i di

��

C2(n) =
𝜅a ⋅ 𝛾

𝜅a − 𝜅e
dn

C3(n) =
𝜅a ⋅ 𝛾

𝜅a − 𝜅e
(B − A)

�
n−1∑
i=1

𝛽n−1−i di

�

𝛼 = e−𝜅a𝜏 , 0 < 𝛼 < 1 𝛽 = e−𝜅e𝜏 , 0 < 𝛽 < 1

A = e−𝜅a𝜎 , 0 < A < 1 B = e−𝜅e𝜎 , 0 < B < 1

𝛼n = e−𝜅atn , 𝛽n = e−𝜅etn , 𝛼n−1A = e−𝜅asn , 𝛽n−1B = e−𝜅esn ; n = 1, 2,… ,∞

𝛼0 = 𝛽0 = 1, t0 = 0.

of drug administration, which encompasses the continu-
ous processes of absorption, metabolism, and elimination, 
as well as the discrete instances of drug intake. Through 

applying TSC, we develop the multi-dose dynamics for 
several key pharmacokinetic (PK) models and establish 
analytical expressions for the trajectory of blood con-
centrations. Specifically, we formulate multiple-dose 
dynamics of several flagship PK models using TSC and 
derive new analytical formulas of the blood concentration 
dynamics. A critical advantage of TSC is that it enables 
the formulation of entire multi-dose dynamics as a simple, 
unique initial value problem. This simplification in the 
language allows us to handle intricate dosing patterns, like 
those featuring irregular dose timings and quantities, and 
to accommodate non-conventional absorption-elimination 
dynamics, such as those with a finite absorption period.

Although our discussion has been limited to a few sim-
ple examples that facilitate the exposition of the technique, 
TSC constitutes an ideal toolkit to formulate and solve 
more complex PKPD and PBPK models. For instance, 
by using the same techniques shown in this paper, it is 
possible to find analytical solutions for higher-order tran-
sit compartment models under unrestricted dosing regi-
mens. Likewise, TSC offers possibilities to model coupled 
dynamical systems that incorporate continuous processes 
and discrete events. For example, it enables the simulta-
neous modeling of multi-dose drug administration aimed 
at bacterial eradication alongside models of bacterial 
population dynamics. Furthermore, TSC opens avenues 
for exploring optimization strategies for multiple-dose 
prescriptions via dynamic programming in time scales, a 
field well developed in recent years.

2 These characteristics appear in other works exploring blood con-
centration dynamics after single or multiple successive zero-order 
input rates under F.A.T schemes (see [30]).
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