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and reduces the risk of adverse effects [5, 6]. However, in 
many patients, the target is still not attained, e.g., 28.1–
56.2% of neonates and infants achieved the vancomycin 
target in recent trials [4, 7]. Thus, further improvements in 
MIPD are warranted.

Currently, in MIPD, a model from those available in the 
used software [1] or the model that best fits the historical 
group of patients according to the external evaluation of 
various population pharmacokinetic models is usually cho-
sen [8]. However, in precision medicine, the importance of 
finding subgroups of patients whose clinical outcome could 
be improved by providing targeted therapy has been recog-
nized [9]. In line with this, a model selection approach based 
on the fit of the model to already measured concentrations, 
i.e., individual predictions, has been described that outper-
forms the commonly used approach of using the single best 
model [10]. Still, lower target attainment rates of the first 

Introduction

Model-informed precision dosing (MIPD) of antimicro-
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According to meta-analyses, it significantly improves the 
target attainment, decreases the time to achieve the target 
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Currently, model-informed precision dosing uses one population pharmacokinetic model that best fits the target population. 
We aimed to develop a subgroup identification-based model selection approach to improve the predictive performance of 
individualized dosing, using vancomycin in neonates/infants as a test case. Data from neonates/infants with at least one 
vancomycin concentration was randomly divided into training and test dataset. Population predictions from published van-
comycin population pharmacokinetic models were calculated. The single best-performing model based on various perfor-
mance metrics, including median absolute percentage error (APE) and percentage of predictions within 20% (P20) or 60% 
(P60) of measurement, were determined. Clustering based on median APEs or clinical and demographic characteristics 
and model selection by genetic algorithm was used to group neonates/infants according to their best-performing model. 
Subsequently, classification trees to predict the best-performing model using clinical and demographic characteristics were 
developed. A total of 208 vancomycin treatment episodes in training and 88 in test dataset was included. Of 30 identi-
fied models from the literature, the single best-performing model for training dataset had P20 26.2–42.6% in test dataset. 
The best-performing clustering approach based on median APEs or clinical and demographic characteristics and model 
selection by genetic algorithm had P20 44.1–45.5% in test dataset, whereas P60 was comparable. Our proof-of-concept 
study shows that the prediction of the best-performing model for each patient according to the proposed model selection 
approaches has the potential to improve the predictive performance of model-informed precision dosing compared with 
the single best-performing model approach.
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vs. subsequent dosing regimens suggested by MIPD, e.g., 
28.1–41.5% vs. 44.3–56.1%, in the case of vancomycin in 
neonates and infants [4], remains a considerable problem. 
This is due to poor predictive performance of population 
predictions compared with individual predictions [10]. 
However, population predictions are used to optimize the 
dose when concentrations have not been measured, as may 
often be the case. Only recently, solutions for improving 
population predictions used in MIPD have emerged, e.g., 
estimating individual clearance values from clinical and 
demographic data [11] or averaging population predictions 
from different models using weights based on individual fea-
tures [12]. However, the root mean square error for the area 
under the vancomycin time-concentration curve prediction 
was still larger compared with the best-performing popula-
tion pharmacokinetic models [12]. Thus, further studies are 
warranted to improve population predictions used in MIPD.

We aimed to develop a population pharmacokinetic 
model selection approach based on the identification of the 
subgroups of patients to increase the predictive performance 
of MIPD by choosing the best-performing model for each 
patient according to clinical and demographic characteris-
tics. As a test case, we used vancomycin dosing in neonates 
and infants – one of the most common antimicrobial agents 
warranting MIPD in a patient group that challenging in 
terms of pharmacokinetics [4].

Methods

Data

The study included data from neonates and infants from two 
previous studies: (i) development of software for individu-
alized dosing of vancomycin in neonates and infants [13], 
and (ii) prospective evaluation of the developed software 
in a clinical trial (published currently only as an abstract 
at a conference) [7]. The study of the development of the 
software included neonates and infants with postnatal 
age < 90 days who were admitted to the pediatric intensive 
care unit of Tartu University Hospital between 01.01.2010–
31.12.2015, received vancomycin and had at least one 
vancomycin concentration measurement [13]. The clinical 
trial for prospective evaluation of the software included the 
following patients: (i) neonates and infants with postnatal 
age < 90 days admitted to pediatric intensive care unit of 
Tartu University Hospital or Tallinn Children’s Hospital 
between 01.01.2016–16.05.2019, received vancomycin, 
had at least one vancomycin steady-state concentration mea-
sured during the treatment and were not on renal replace-
ment therapy as a control group; (ii) neonates and infants 
with postnatal age 3 to 90 days expected to survive for at 

least 72 h who were admitted to PICU of Tartu University 
Hospital, Tallinn Children’s Hospital or East Tallinn Cen-
tral Hospital between 29.05.2019–16.06.2021, who were 
not included in other clinical trials requiring blood samples, 
had not received vancomycin for more than 24 h before the 
study intervention (optimization of vancomycin dose with 
the software) and whose parent(s) had signed informed con-
sent as an intervention group [7]. In both studies, multiple 
treatment episodes with vancomycin were allowed to be 
included if the episodes were separated by at least 7 days 
without receiving vancomycin. Due to rapid changes in 
physiology during critical illness and thereby in the pharma-
cokinetics of vancomycin, in this study, treatment episodes 
from the same neonate or infant were treated as indepen-
dent. The dataset was randomly divided into training/test 
(70%/30%) datasets.

The Ethics Committee of the University of Tartu approved 
the studies (256/T-23, 288/T-15). Written informed consent 
was signed by parents or legal representatives before inclu-
sion in the clinical trial [7].

Pharmacokinetic models

On 20.02.2022 PubMed search „vancomycin AND (popu-
lation pharmacokinetic* OR nonlinear mixed-effects OR 
nonlinear-mixed-effects OR NONMEM) AND (neonat* 
OR newborn* OR infant*)“ was performed to retrieve stud-
ies developing population pharmacokinetic model of vanco-
mycin in neonates and infants published since 2010. Models 
published earlier were excluded due to possible changes in 
the population of neonates and infants requiring vancomy-
cin and advancements in pharmacokinetic modelling. The 
studies describing parametric non-linear mixed effects mod-
els with all parameter values reported were included in this 
study. We excluded models with development datasets that 
did not include infants younger than 3 months and models 
with covariates missing in our dataset.

Development of model selection approaches

Population predictions from population pharmacokinetic 
models were calculated using NONMEM version 7.4 
(ICON Development Solutions, MD, USA). R was used for 
all other data analyses. Four approaches for model selection 
for individualized dosing of vancomycin were evaluated 
using training dataset – choosing single-best performing 
model (i) as a reference approach and three proposed sub-
group identification-based approaches (ii-iv).

(i)	 Single best-performing model for the whole training 
dataset was determined based on median percentage 
error (PE), median absolute percentage error (APE), 
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percentage of predictions within 20% (P20; shows 
the percentage of concentrations within 10–15  mg/L 
if targeting 12.5  mg/L) or 60% (P60; shows the per-
centage of concentrations within 5–20 mg/L if target-
ing 12.5 mg/L) of measurement and relative root mean 
square error (rRMSE) [14]. The models with the small-
est PE, APE or rRMSE and largest P20 or P60 were 
determined as the single best-performing models.

(ii)	 Clustering based on median APE values was based 
on the data of median APEs of each model for each neo-
nate and infant in the training dataset (Fig. 1).

�Due to a large number of assessed PK models, princi-
pal component analysis (PCA) of median APEs of all 
models was performed to reduce the dimensionality 
of the data that would result in relatively uniform dis-
tances between points, which complicates finding clus-
ters [15]. Subsequently, the first p principal components 
were used for K-medoid clustering. K-medoid cluster-
ing was used as it is relatively robust to outliers [16]. 
For each cluster, the model with the smallest median 
APE was determined. Finally, a classification tree using 
clinical and demographic characteristics (gestational 
age, postmenstrual age, postnatal age, birth weight, 
current weight, creatinine, use of inotropes, respiratory 
support, use of non-steroidal anti-inflammatory agents, 
sex, small for gestational age) to predict the model for 
a neonate/infant was developed and its P20 was cal-
culated. The algorithm was performed for p = 2,3,4,5, 
K = 2,3,4,5 and the maximum depth of classification 
tree of 2 and 3. The number of principal components 
p and clusters K and the maximum depth of classifi-
cation tree was selected using 10-fold cross-validation 
(CV), i.e., the training dataset was randomly divided 
into 10 approximately equal parts. For each k = 1,…,10 
all except the k-th part was used for analysis up to the 
development of classification tree and the k-th part was 
used for the calculation of P20 of the classification 
tree. Such p, K and the maximum depth of classifica-
tion tree in which case at least one K-medoid cluster 
was of size < 20 (due to possibly inaccurate classifica-
tion tree resulting from such imbalanced data [17]) or 
principal components explained < 70% of variance [18] 
were omitted from the ones among which the final tree 
was determined. The classification tree with the highest 
mean P20 of all ten CV sets was regarded as the final 
classification tree. P20, a measure of performance that 
we eventually want to optimize, rather than the misclas-
sification rate was used to choose the final classification 
tree because different misclassifications, i.e., predict-
ing a model that is actually not the best model for the 
patient, may differ in terms of their ‘cost’ [19].

(iii)	Clustering based on clinical and demographic char-
acteristics was based on the data on clinical and demo-
graphic characteristics of each neonate and infant at the 
start of the vancomycin treatment. To reduce the dimen-
sionality of the data including continuous and binary 
variables, factor analysis for mixed data was performed 
(Fig. 1). Subsequent analysis was similar to clustering 
based on median APE values.

(iv)	Model selection by genetic algorithm was used to find 
subset of models into which patients can be grouped 
according to their best-performing models. A reduced 
number of models for grouping patients was required 
due to the large number of models to avoid small 
groups of patients and, thereby, difficulties in building 
classification tree. Genetic algorithm is an optimiza-
tion algorithm mimicking the mechanisms of evolution 
[20]. This iterative method uses information in previ-
ous iterations (called generations) to guide the search 
for the best solution, avoiding assessment of all possible 
solutions [20]. Genetic algorithm used in this study was 
adapted from a genetic algorithm used in population 
pharmacokinetic-pharmacodynamic model selection by 
Ismail et al. [20]. . The algorithm started with a ran-
dom selection, without replacement, of 100 subsets of 
M = 2,3,4,5 models, followed by five steps repeated in 
100 generations (Fig. 1). Ten-fold cross-validation was 
used to choose M and the maximum depth of classifica-
tion tree of 2 or 3. First, fitness (defined as the mean of 
P20 of classification tree of ten cross-validation sets) 
was calculated for each subset of models. For that pur-
pose, the best model was determined for each neonate 
and infant based on median APE values and classifica-
tion tree was built to predict the best model for each 
neonate and infant. The mean of P20 of 10 CV sets was 
used as the fitness metric. The fitness metric was set to 
0 for subsets of models in which case at least one model 
was the best-performing for < 20 patients to reduce the 
inaccuracy of such classification tree resulting from 
imbalanced data [17]. Second, tournament selection 
was performed, where for each subset of models, a 
random opponent was chosen and the one with better 
fitness was retained. Third, in the crossover step, two 
subsets of models were randomly chosen and randomly 
chosen models were exchanged. Fourth, in the mutation 
step a random replacement of models with probability 
of 0.2 within each subset of models was performed. 
Fifth, in the elitism step, one subset of models was ran-
domly chosen and replaced with the subset of models 
with the highest fitness. These five steps were repeated 
100 times, called generations. The resulting modified 
set of the initial 100 subset of models was carried on 
to the next generation, where the described five steps 
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Results

A total of 245 patients were included, with a total of 296 van-
comycin treatment episodes divided into training (n = 208) 
and test (n = 88) dataset. The characteristics of the study 
population is shown in Table 1. A total of 699 vancomycin 
concentrations were obtained (497 in the training, 202 in 
the test dataset), median (range) of 2 (1–3) per patient. Alto-
gether, 35 (7.0%) and 16 (7.9%) were trough concentrations 
(< 0.5 h before the next dose), and 7 (1.4%) and none were 
peak concentrations (up to 2 h after the dose) in the train-
ing and test set, respectively. All doses were administered 
as a 1-hour infusion. A total of 30 vancomycin population 
pharmacokinetic models identified from the literature were 
included in the analysis (Fig. 2).

The performance metrics varied largely between the 30 
models (Fig.  3). All performance metrics resulted in dif-
ferent single best-performing model: Zhao et al. (based on 
median APE) [21], Mehrotra et al. (P20) [22], Jacqz-Aigrain 
et al. (P60) [23], De Cock et al. (median PE) [24], Oudin 
et al. (rRMSE) [25]. The single best-performing models 

were repeated. The final classification tree was devel-
oped using the subset of models with the highest P20 
of 10 CV sets in the last (100-th) generation. Genetic 
algorithm was repeated twice for each M and the maxi-
mum depth of classification tree with mutation rates 0.1, 
0.2 and 0.5 to ensure convergence to the best subset of 
models.

Evaluation of the approaches

The single best-performing models based on all five per-
formance metrics and the final classification trees from 
approaches (ii) to (iv) were evaluated on the test dataset by 
calculating P20 and P60.

Fig. 1  Subgroup identification-based approaches with subsequent 
development of classification trees to predict the best-performing 
model for each neonate and infant
* Classification trees and clustering based on clinical and demographic 
characteristics included the following: gestational age (GA), postmen-

strual age, postnatal age, birth weight (BW), current weight, creati-
nine, use of inotropes, respiratory support, use of non-steroidal anti-
inflammatory agents, sex, small for gestational age
APE – absolute percentage error; CV – cross-validation; P20 – the 
percentage of predictions within 20% of measurement
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et al. (median PE), Oudin et al. (rRMSE) – are shown with 
colored bars (red, green, blue, yellow, pink, respectively). 
Grey bars show models that were not the best-performing 
according to any performance metric. Asterisks above the 
bars indicate models that were predicted by the classifica-
tion trees.

Clustering based on median APE values had mean P20 
32.8–39.9% in CV-sets, clustering based on clinical and 
demographic characteristics 32.5–39.3% and model selec-
tion by genetic algorithm 43.4–47.6%. The best-perform-
ing clustering based on APE values had p = 5 and K = 3, 

according to P20, P60 and median APE had similar per-
formance in terms of P20, P60 (Table 2) and median APE 
(27.8%, 27.1% and 26.5%, respectively) (Fig. 3). Compared 
with these, the single best-performing models according 
to median PE and rRMSE had considerably smaller P20 
(Table 2) and larger median APE (36.7% and 34.2%, respec-
tively) (Fig. 3). The single best-performing models had P20 
in the training dataset 27.0-39.4% (Table 2).

The single best-performing models according to the per-
formance metrics – Zhao et al. (based on median APE), 
Mehrotra et al. (P20), Jacqz-Aigrain et al. (P60), De Cock 

Fig. 2  Flowchart of literature search and selection of pharmacokinetic (PK) models included in this study

 

Training dataset (n = 208) Test dataset (n = 88)
Male 116 (55.8) 57 (64.8)
Gestational age (weeks) 27.3 (25.1–31.1) 27.4 (25.4–31.5)
Birth weight (kg) 0.871 (0.700-1.414) 1.000 (0.752–1.647)
Small for gestational age 36 (17.3) 14 (15.9)
At the start of vancomycin treatment
  Postnatal age (days) 9.5 (6–21) 10 (7–19)
  Postmenstrual age (weeks) 29.4 (27.4–34.3) 29.6 (27.3–34.4)
  Weight (kg) 1.025 (0.765–1.636) 1.102 (0.798–2.003)
  Creatinine (µmol/L) 48 (32–60) 42.5 (31-57.3)
  Need for inotropes 87 (41.8) 30 (34.1)
  Need for CPAP 91 (43.8) 36 (40.9)
  Need for mechanical ventilation 90 (43.3) 38 (43.2)
  Use of NSAIDs 10 (4.8) 6 (6.8)

Table 1  Clinical and demo-
graphic characteristics of the 
neonates and infants receiving 
vancomycin during treatment 
episodes included in the training 
and test dataset

Results are presented as number 
(%) or median (interquartile 
range) for categorical and con-
tinuous variables, respectively. 
CPAP – continuous positive 
airway pressure; NSAIDs – 
non-steroidal anti-inflammatory 
drugs
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clustering based on clinical and demographic values p = 5 
and K = 3, genetic algorithm M = 4. All had maximum depth 
of classification tree of 2. The best-performing subgroup 
identification-based methods had P20 41.6–48.7% in the 
training set (Table 2).

In the test dataset, P20 of the single best-performing 
model approach was 26.2 to 42.6% and P20 of subgroup 
identification-based methods 44.1–45.5% (Table  2), an 
improvement by 3.5–73.7% from the single best-perform-
ing model approaches.

Subgroup identification-based methods did not have con-
sistently larger P60 compared with single best-performing 
models, having smaller or equal P60 than single best-per-
forming models based on P60 in the training dataset and 
based on median APE, P20 or P60 in test dataset (Table 2).

Classification trees had the depth of one or two and 
predicted two to four models with probabilities ranging 
between 0.59 and 0.81 (Fig. 4). Among the seven models 
used in at least one tree were three models that were the 

Table 2  The percentage of predictions within 20% (P20) or 60% (P60) 
of the measurement of the single best-performing models based on 
different performance metrics and subgroup identification-based 
approaches in the training and the test dataset
Approach Training 

dataset
Test 

dataset
P20 
(%)

P60 
(%)

P20 
(%)

P60 
(%)

Single best model based on
  Median PE (De Cock et al.)
  Median APE (Zhao et al.)
  P20 (Mehrotra et al.)
  P60 (Jacqz-Aigrain et al.)
  rRMSE (Oudin et al.)

30.8
38.2
39.4
35.8
27.0

70.4
78.5
81.7
86.1
79.5

27.2
38.6
42.6
41.1
26.2

78.7
87.1
86.6
87.1
82.7

Clustering based on median APE values 41.6 82.5 44.1 86.1
Clustering based on clinical and demo-
graphic characteristics

42.5 82.9 44.6 86.6

Model selection by genetic algorithm 48.7 84.5 45.5 86.1
APE – absolute percentage error; PE – percentage error; rRMSE - 
relative root mean square error

Fig. 3  Performance of all 30 
models in the training dataset in 
terms of median percentage error 
(PE), median absolute percentage 
error (APE), relative root mean 
square error (rRMSE), percentage 
of predictions within 20% (P20) 
or 60% (P60) of measurement
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characteristics. A simpler solution could be choosing a 
model for each group of patients that was developed on 
a similar population, e.g., a model based on critically ill 
patients preferred in critically ill patients [30]. In large part, 
the predicted models by classification trees agree with this 
principle. For example, the model by Colin et al. [26]. , pre-
dicted by two classification trees for neonates and infants 
with postmenstrual age ≥ 33 weeks or gestational age ≥ 35 
weeks, was built on a population varying from premature 
neonates to elderly in contrast to studies by Tang et al. [27]. 
and Jacqz-Aigrain et al. [23]. where median postmenstrual 
age was 33 and 32 weeks, respectively, and Mehrotra et 
al. [22]. with median gestational age 32.7 weeks. The only 
exceptions to this rule were the terminal nodes that were 
preceded by splits at two different levels, e.g., the model 
by Jacqz-Aigrain et al. [23]. was predicted if creatinine is 
< 55 µmol/L and Tang et al. [27]. if ≥ 55 µmol/L, although 
median creatinine levels in the study populations were 
reversed, 54 and 28 µmol/L, respectively. Such disagree-
ment could be explained by differing covariate-covariate 
[31] or covariate-parameter interactions [32] between popu-
lations for model development and our target population 
that lead to biased predictions. However, this discrepancy 

single best-performing models (Mehrotra et al. [22], Jacqz-
Aigrain et al. [23] and Oudin et al. [25]), two models that 
had relatively good performance (Colin et al. [26]. and Tang 
et al. [27]. with median APE 27.0% and 29.1%, P20 36.4% 
and 36.8%, median PE -5.1% and − 4.0%, respectively) and 
two models with considerably poorer performance (Song et 
al. [28]. and Hughes et al. [29]. with median APE 43.4% 
and 119.3%, P20 22.3% and 10.9%, median PE 37.9% and 
− 119.3%, respectively) (Fig. 3).

Discussion

This study described approaches to derive a model selection 
algorithm based on clinical and demographic characteris-
tics to improve population predictions for model-informed 
precision dosing. The improvement of P20 by 3.5–73.7% 
from the single best-performing model approach shows the 
potential of such a model selection, although P20 in the test 
dataset remained low (44.1–45.5%).

Our proposed approach aims to improve the predic-
tive performance of population predictions by selecting 
an appropriate model based on clinical and demographic 

Fig. 4  The final classification trees of the clustering 
based on median absolute percentage error (APE) 
values (uppermost tree) or clinical and demographic 
characteristics (middle tree) and model selection by 
genetic algorithm (lowermost tree) used
The leaf nodes show the best-performing model for 
this group and the probability of this model
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The subgroup identification-based approaches performed 
quite comparably, although model selection by genetic algo-
rithm slightly outperformed other methods in CV sets and 
the training dataset, but only slightly in the test dataset. The 
reason for the smaller improvement in the test dataset could 
be the grouping of patients by the model that is the best for 
the patient, even if the model is only slightly better than 
for others. Thus, grouping is more pronouncedly affected by 
randomness leading to the risk of overfitting. Although the 
differences in P20 were small, possible overfitting is exem-
plified by its lower P20 in the test compared with the training 
dataset, in contrast to other subgroup identification-based 
approaches. Still, the other subgroup identification-based 
methods also have some disadvantages. Due to the inclu-
sion of all models, clustering based on median APE values 
is in part driven by models that fit poorly to the data. Thus, 
this may not result in finding clusters that each have a well-
defined best-performing model. However, using methods to 
improve clustering, like weighting [38] or variable selec-
tion [39], to downweigh or omit overall poorly performing 
models may not lead to optimal solution. This is exempli-
fied by the inclusion of overall relatively poorly performing 
models by Hughes et al. [29]. and Song et al. [28]. into the 
prediction algorithm by genetic algorithm. Our results sug-
gest that for some patients models performing poorly for 
the entire population may be the best-fitting ones. Indeed, 
these models were the best for eight and nine patients in the 
training and test dataset with median of median APEs of 
8.9% and 15.4%, respectively (data not shown). The result 
of clustering based on clinical and demographic characteris-
tics depends on the variables considered. If some variables 
affecting pharmacokinetics are omitted and some with no 
influence are included, the resulting clusters are less homo-
geneous in terms of pharmacokinetics and thus the best-
performing models for the clusters are not optimal. This 
will remain a challenge for this approach, as the knowledge 
of what affects pharmacokinetics warrants further research 
[35].

Our study has some limitations. First, the small dataset 
with sparse sampling and few variables did not allow the 
grouping of patients into a larger number of subgroups and, 
thereby, better predictive performance. Second, the neonates 
and infants in the test dataset were from the same population 
as those in the training dataset. Thus, we do not know how 
well the algorithms may perform in external evaluation – a 
critical step in the assessment of models that can describe 
overfitting or underspecification [40]. Third, the results of 
the developed subgroup identification-based approaches are 
most likely influenced by performance metrics, as in the 
case of selecting the single-best performing models. Sev-
eral metrics were used for the latter to present the variabil-
ity of performance evaluation between various studies [41] 

may only be apparent as the distributions of the variables 
within the subgroups formed by the classification trees were 
not described in the original papers. Such classification of 
patients exemplifies why the choice of the best model for a 
particular subgroup of patients warrants more detailed anal-
ysis than constructing subgroups of patients based on some 
broad criteria, e.g., receiving renal replacement therapy or 
not. Subgroup identification allows revealing obscured asso-
ciations that can be hard to detect by describing pre-defined 
subgroups of patients, particularly in complex situations 
[33], such as pharmacokinetics that changes considerably 
during critical illness [34].

We believe that the improvement in P20 by subgroup 
identification-based approaches compared with the single 
best-performing model approach could be higher than in our 
study if relevant aspects of dataset are considered. First, a 
larger training dataset could allow grouping of patients into 
a larger number of subgroups, as there could be a higher 
risk of possible inaccuracy of the prediction model if built 
using highly unbalanced data [17]. Second, a comprehen-
sive list of factors that influence pharmacokinetics, e.g., 
surgery, renal replacement therapy, plasma protein levels 
[35], could improve predictions of the classification trees, 
even if these have been tested as covariates in the models. 
As the datasets of model and algorithm development may 
differ in size and characteristics of the population, previ-
ously undetected relationships, including interactions, may 
be detected. This is shown by our study, where postmen-
strual age and creatinine values, which are commonly used 
as covariates in the models, were also used as predictors 
in two trees. Such interaction between creatinine and post-
menstrual age is possibly due to different reflection of renal 
function by creatinine in various age groups [36]. Third, a 
larger number of concentrations per treatment episode could 
allow splitting episodes into shorter periods and fitting 
models separately to the obtained periods due to changes in 
pharmacokinetics during critical illness [34]. This prevents 
selecting a model that has ‘on average’ the best fit to the data 
from one treatment episode but is outperformed by other 
models during some time periods. This is exemplified by 
findings that the predictive performance of individual pre-
dictions from pharmacokinetic models deteriorates as the 
time from measured concentrations increases [37]. Finally, 
the inclusion of concentrations measured at various times 
during dosing interval, e.g., peak concentrations, may allow 
testing timing of concentration prediction as a predictor of 
model selection. Models differ in their predictions of peak 
or trough concentrations [37], likely due to the differences 
in the model development dataset. Thus, different models 
may be selected for prediction of peak or trough concentra-
tions or peak concentration-based metrics, like area under 
the curve (AUC).
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subgroup identification-based approaches to predict the 
best-performing model for each patient has the potential to 
improve the precision of individualized dosing.
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