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Abstract
Brepocitinib is an oral selective dual TYK2/JAK1 inhibitor and based on its cytokine inhibition profile is expected to pro-
vide therapeutic benefit in the treatment of plaque psoriasis. Efficacy data from a completed Phase 2a study in patients with 
moderate-to-severe plaque psoriasis were utilized to develop a population exposure-response model that can be employed 
to inform dose selection decisions for further clinical development. A modeling approach that employs the zero-inflated 
beta distribution was used to account for the bounded nature and distributional characteristics of the Psoriasis Area and 
Severity Index (PASI) score data. The developed exposure-response model provided an adequate description of the observed 
PASI scores across all the treatment arms tested and across both the induction and maintenance dosing periods of the study. 
In addition, the developed model exhibited a good predictive capacity with regard to the derived responder metrics (e.g., 
75%/90%/100% improvement in PASI score [PASI75/90/100]). Clinical trial simulations indicated that the induction/main-
tenance dosing paradigm explored in this study does not offer any advantages from an efficacy perspective and that doses of 
10, 30, and 60 mg once-daily may be suitable candidates for clinical evaluation in subsequent Phase 2b studies.
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Introduction

Psoriasis is estimated to affect more than 8 million people 
in the United States, and approximately 125 million people 
worldwide (2–3% of the global population) [1]. Although 
psoriasis primarily affects the skin and is not a life-threat-
ening disease, it can profoundly impact the quality of life 
resulting in impairment analogous to other major diseases 
such as type 2 diabetes, myocardial infarction, and arthritis 
[2]. The most common variant of psoriasis, plaque psoriasis, 
is a chronic inflammatory disease characterized by red, scaly, 
raised plaques. Increased levels of several pro-inflammatory 

cytokines, including tumor necrosis factor-α (TNF-a), 
interleukin (IL)-6, IL-9, IL-12, IL-17, IL-22, and IL-23 
and interferon gamma (IFN-γ) have been implicated in the 
pathophysiology of chronic plaque psoriasis [3, 4, 5].

Brepocitinib (PF-06700841) is an oral selective dual 
TYK2/JAK1 inhibitor targeting signaling of multiple 
cytokines (IFN, IL-6, IL-12, IL-21, IL-22, and IL-23) and 
based on its cytokine inhibition profile is expected to pro-
vide therapeutic benefit in the treatment of plaque psoria-
sis [6, 7]. In the first-in-human clinical trial, brepocitinib 
was well tolerated by healthy participants and patients with 
plaque psoriasis. Additionally, psoriasis patients receiving 
active treatment in this study (30 or 100 mg once daily for 28 
days) had clinically meaningful decreases in disease activ-
ity [8]. Based on these data, a Phase 2a multicenter study 
was subsequently designed to assess efficacy, safety, and 
pharmacokinetics (PK) of oral brepocitinib in patients with 
moderate to severe plaque psoriasis, and test various doses 
and dosing regimens for induction and maintenance of brep-
ocitinib (ClinicalTrials.gov Identifier: NCT02969018). This 
study has been now completed, and overall results showed a 
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promising efficacy and a favorable safety profile in patients 
with moderate to severe plaque psoriasis [9].

One of the most commonly used efficacy assessments 
in psoriasis clinical trials is the Psoriasis Area and Sever-
ity Index (PASI). PASI score is a clinical tool that reflects 
both the extent (area) and severity of the disease and it 
can range from 0 (no evidence of the disease) to 72 (worst 
possible outcome) in 0.1 increments [10]. In addition, the 
PASI-derived responder metrics (e.g., PASI75 and PASI90 
referring respectively to the proportion of patients achiev-
ing at least 75% or at least 90% improvement from baseline 
PASI scores) are commonly used primary endpoints. Due 
to their dichotomous nature and the fact that they omit the 
granularity of the raw PASI scores, the derived responder 
metrics may not be optimal for exposure-response assess-
ment especially in small sample size early clinical devel-
opment trials. Therefore, exposure-response analysis in the 
domain of the raw PASI scores is often desirable, especially 
if this can be also accompanied with satisfactory predictions 
of the derived responder metrics. However, modeling the 
PASI scores directly presents particular challenges as they 
are bounded between 0 and 72 and their distribution is often 
skewed. In addition, the obtained PASI datasets may often 
contain observations at the lower bound (0), particularly in 
the presence of a strong drug effect.

The primary aim of this work is to utilize the data derived 
from the completed Phase 2a study of brepocitinib in pso-
riasis patients to develop a population exposure-response 
model that can be employed to inform dose selection deci-
sions for further clinical development. In parallel, this work 
aims to assess the utility of an approach that employs the 
zero-inflated beta distribution to overcome the challenges 
involved in PASI score modeling.

Methods

Study design

Model development was performed using data from a Phase 
2a, randomized, double-blind, placebo-controlled, paral-
lel group, multicenter study in subjects with moderate-
to-severe plaque psoriasis (ClinicalTrials.gov Identifier: 
NCT02969018). A schematic of study design is shown in 
Fig. 1. The first part of the study, following a screening 
period (up to 6 weeks), was a 4-week induction period with 
double-blind daily treatment. At the end of week 4, all sub-
jects switched to their predefined double-blind maintenance 
treatment regimen for week 5 through week 12.

Approximately 200 subjects were planned to be rand-
omized into the study, to allow for approximately 160 evalu-
able subjects (20 completers per arm). The randomization 
ratio was 7:1, active: placebo. During the first 4 weeks of 

the treatment period, subjects received orally either 30 mg 
once-daily (QD), or 60 mg QD of brepocitinib, or match-
ing placebo. During the 8-week maintenance portion of the 
treatment period (weeks 5 through 12), subjects received 
orally either 10 mg QD, or 30 mg QD, or a 100 mg once 
weekly (QW) regimen of brepocitinib, or matching placebo. 
Maintenance dose level and regimen were assigned at the 
initial time of randomization into the study. All subjects, 
regardless of assigned regimen (i.e., QD or QW) received 
blinded QD tablets throughout the study treatment period to 
maintain the study blind.

The duration of study subject participation was approxi-
mately 26 weeks, including screening (up to 6 weeks), 
12-week treatment period, and 8-week follow up period. For 
further details on the study design, the reader is referred to 
the associated publication [9].

Female and male patients between 18 and 75 years of age 
with a diagnosis of plaque psoriasis for at least 6 months 
before the start of the study, PASI score of ≥ 12, physician’s 
global assessment (PGA) score of 3 or 4, and psoriasis 
covering ≥ 10% of total body surface area were eligible to 
participate in the study. Key exclusion criteria were non-
plaque psoriasis, other skin conditions that would affect the 
assessment of psoriasis, drug-induced psoriasis, use of cor-
ticosteroids, and psychiatric conditions including suicidal 
ideation or behavior.

The study was conducted in compliance with the Dec-
laration of Helsinki and Good Clinical Practice Guidelines 
established by the International Council on Harmonisation. 
The final protocol, amendments, and informed consent docu-
mentation were reviewed and approved by the institutional 
review boards and independent ethics committees of the 
investigational centers.

Study assessments

PASI scoring, which quantifies body surface area and lesion 
severity into a single score, was used to assess brepocitinib 
efficacy in this study. PASI score is calculated by combining 
the percentage of body areas (head and neck, upper limbs, 
trunk, and lower limbs) covered, with the severity of ery-
thema, thickness/induration, and desquamation/scaling, for 
a score between 0 and 72 [10]. PASI scores were assessed: 
at screening; on week 0 (baseline); on weeks 1, 2, 4, 6, 8, 
10, and 12; and during follow-up (weeks 14 and 16). Only 
data collected during the 12-week active treatment period of 
the study were included in the analysis. Any data collected 
during screening and the follow-up period were not included 
in the analysis.

Blood samples for PK analysis of brepocitinib were 
collected pre-dose on week 0 (baseline) and week 1; pre-
dose and 30 min post-dose on weeks 2, 6, 8, and 10; and 
pre-dose, 30 min, 1, 2, and 4 h post-dose on weeks 4 



267Journal of Pharmacokinetics and Pharmacodynamics (2024) 51:265–277 

and 12. The samples were analyzed using high-perfor-
mance liquid chromatography-tandem mass spectrometry.  
The lower limit of quantification for brepocitinib was  
0.2 ng/mL.

For additional details and study assessments not related 
to the current analysis, the reader is referred to the associ-
ated publication [9].

Population PK model and derivation of  Cave 
for exposure‑response modeling

A population pharmacokinetic (PK) model has been pre-
viously developed for brepocitinib using data from five 
clinical trials, consisting of three Phase 1 and two Phase 2 
studies (including the Phase 2a study in psoriasis patients 
described in this manuscript) [11]. Briefly, brepocitinib 
PK were described with a one-compartment model with 
first-order oral absorption and an absorption lag for the 
tablet formulation (apparent clearance (CL/F) of 18.7 L/h, 
apparent volume of distribution (V/F) of 136 L, first-
order absorption rate constant  (ka) of 3.46  h−1 and a lag 
time  (Alag) of 0.24 h). The effect of body weight on CL/F 
and V/F was included with an allometric relationship (ref-
erenced to 70 kg) and the associated coefficients were 
fixed to 0.75 and 1, respectively. Random inter-individual 
variability was accounted in the CL/F and V/F param-
eters using a full variance-covariance matrix (coefficient 
of variation (CV) of 78% and 60.5% for CL/F and V/F, 
respectively, and a correlation coefficient of 0.76).

The empirical Bayes estimates (EBEs) of CL/F for all 
study participants (η-shrinkage < 0.1%) were extracted 
from the population PK model output and were used to 
calculate the average concentration ( Cave ) of each individ-
ual across the induction and maintenance periods of the 
study, using Eq. 1, where � refers to the dosing interval 
(24 h for QD dosing and 168 h for QW dosing) and Dose 
refers to the administered brepocitinib dose either during 
the induction or the maintenance period of the study.

The derived Cave for each study participant was the 
exposure-relevant metric that was used in the exposure-
response analysis (see Population exposure-response 
model section, Eq. 12). Brepocitinib PK is assumed to be 
at steady state during all efficacy assessments performed 
over the active treatment period of the study (since brep-
ocitinib has a short terminal half-life, ranging from 3.8 to 
7.5 h, and efficacy assessments were performed at least 1 
week since first dose either during the induction or main-
tenance period).

(1)Cave =
Dose

(CL∕F) ⋅ �

Population exposure‑response model

An approach that employs a zero-inflated beta distribu-
tion [12, 13] was used to allow modeling of PASI scores 
without disregarding their bounded nature (range from 0 
to 72). To enable this, observed PASI scores were first 
transformed to the 0 to 1 interval using Eq. 2.

Note that the analyzed dataset although it contains 
observations on the lower bound (PASI = 0), it does not 
contain any observations on the upper bound (PASI = 72), 
see Fig. 2, thus y ∈ [0, 1) . In the case that the dataset had 
contained data on both boundaries, the use of a zero- and 
one-inflated beta distribution [12, 13] would have been 
appropriate.

The transformed PASI scores ( y ) were then assumed to 
follow a zero-inflated beta distribution with a correspond-
ing probability density function that is given by the mixture 
in Eq. 3,

 where p0 is the probability of a 0 observation (i.e., PASI = 0) 
and f (y;�, �) is the density function of the beta distribution 
defined in Eq. 4,

 where Γ (∎) is the gamma function and � and � are shape 
parameters of the beta distribution (with � > 0 and � > 0). 
The Nemes approximation to the gamma function was used 
[14, 15, 16], as defined in Eq. 5, where X represents � , � , or 
� + � in the density function above (note that the GAMLN 
function can alternatively be used in  NONMEM® Version 
7.3 [17] onwards).

The shape parameters � and � were parameterized (see 
Eqs. 6 and 7) with respect to the expected value of the beta 
distribution � and the precision parameter �.

Under this parameterization, the variance ( �2 ) of the beta 
distribution is defined in Eq. 8. Thus, the parameter � plays 
the role of a precision parameter in the sense that for a given 
value of � , variance decreases as the value of � increases.

(2)y =
PASI

72

(3)p
(

y; p0, �, �
)

=
{

p0, if y = 0
(

1 − p0
)

⋅ f (y;�, �), if 0 < y < 1

(4)f (y;�, �) =
� (� + �)

� (�) ⋅ � (�)
⋅ y�−1 ⋅ (1 − y)�−1

(5)� (X) ∼
(

X

e

)X

⋅

√

2�

X
⋅

(

1 +
1

15X2

)

5

4
X

(6)� = � ⋅ �

(7)� = (1 − �) ⋅ �
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The precision parameter � was estimated as a fixed 
effect parameter, while � was parameterized (see Eq. 9) 
with respect to baseline PASI score ( BSL ), the placebo 
effect ( fp(t) ) and the drug effect ( fd(t)).

The placebo effect ( fp(t) ) was modeled as illustrated in 
Eq. 10 with an empirical relationship, where Pmax repre-
sents the maximum placebo effect (expressed as fraction of 
baseline), and kp represents the rate of onset of the placebo 
effect.

The drug effect ( fd(t) ) was modeled as illustrated in 
Eq. 11 through a latent variable R on which the drug elic-
its its effect via a Type I indirect response model (Eq. 12), 
similarly to [18].

It was further assumed that at baseline the latent vari-
able R takes the value of 1 (i.e., R(0) = 1 ) and consequently 
kin = kout (i.e., equal rates of onset and offset of the drug 
effect).

The model parameterization described in Eq. 9, 10, 11, 12 
assures that � , as the expected value of the beta distribution, 
is constrained within the (0,1) interval. The value of � can 
be interpreted as the individual PASI score prediction after 
transformation to the (0,1) domain (Eq. 9).

The probability of a 0 observation ( p0 ), see Eq. 3, was 
modeled through Eq. 13 as a function of � and two addi-
tional parameters �1 and �2 (with �2 > 0). The rationale for 
this parameterization is to enforce through a flexible func-
tion that the smaller the value of � for a given subject, the 
higher the probability of an actual PASI=0 observation.

Incorporation of random effects on the parameters 
of the exposure-response model was assessed using dif-
ferent parameterizations and covariance structures in 
order to take into account inter-individual variability in 
the observed response. Since the Pmax and BSL param-
eters need to be constrained at the individual level within 

(8)�2 =
� ⋅ (1 − �)

� + 1

(9)� =
1

72
⋅

(

BSL − fp(t) − fd(t)
)

(10)fp(t) = BSL ⋅ Pmax ⋅

(

1 − e−kp⋅t
)

(11)fd(t) = BSL ⋅

(

1 − Pmax

)

⋅ (1 − R(t))

(12)
dR(t)

dt
= kin ⋅

(

1 −
Cave

IC50 + Cave

)

− kout ⋅ R(t)

(13)p0 =
e(�1−�2⋅�)

1 + e(�1−�2⋅�)

a bounded region, inter-individual variability on these 
parameters was assessed using a generalization of the 
logit-normal distribution (see Eq. 14) [19],

 where Pi is the individual value of parameter P , �p is the 
typical population value of parameter P , �i is the random 
effect term with respect to the inter-individual variability in 
parameter P assuming to follow a normal distribution with 
mean of 0 and variance �2 , and Bl and Bu are the lower and 
upper bounds respectively of parameter P . Bl and Bu were 
set to 0 and 1 respectively for Pmax (since it represents a frac-
tion) and to 12 and 72 for BSL (since baseline PASI score 
cannot be less than 12 per study’s inclusion criteria).

No covariates were tested in the current exposure-
response analysis.

Assessment of model performance

In addition to evaluating the relative standard errors 
derived from the  NONMEM® covariance step, the param-
eter uncertainty of the final model was also assessed using 
sampling importance resampling (SIR) [20, 21]. SIR was 
performed by subjecting the final model covariance step 
output to five iterations of sampling, resampling, and mul-
tivariate Box-Cox transformation. Samples for the sam-
pling and resampling steps used 1000, 1000, 1500, 2000, 
2000 and 200, 250, 500, 1000, 1000 samples, respectively. 
The median and 95% confidence intervals (CIs) for each 
parameter were calculated from the SIR resamples of the 
final iteration.

The model’s performance to adequately describe the 
observed PASI scores was assessed via a visual predictive 
check (VPC) based on 1000 simulations using the design 
of the index dataset. Additionally, although the model was 
developed using the raw PASI scores, it is of particular 
importance to be also able to describe derived responder 
metrics, as the latter are important endpoints for future 
studies. Therefore, the model performance was also evalu-
ated with respect to its capacity to predict the following 
responder metrics: proportion of participants achieving 
at least 50%, 75%, 90%, and 100% improvement from 
baseline PASI (PASI50, PASI75, PASI90, and PASI100, 
respectively). For this evaluation these responder met-
rics were derived from the raw simulated PASI scores in 
each of the 1000 simulated datasets, and associated 95% 
CIs were generated. The latter were then compared to the 
responder metrics that were observed in the current study.

(14)Pi = Bl +
(

Bu − Bl

)

⋅

e
log

(

�p−Bl

Bu−�p

)

+�i

1 + e
log

(

�p−Bl

Bu−�p

)

+�i
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Clinical trial simulations for dose selection in future 
studies

The developed population exposure-response model was 
used to perform clinical trial simulations to aid dose selec-
tion for subsequent trials. Variability in brepocitinib expo-
sure was accounted by sampling CL∕F from the associ-
ated population distribution determined in the population 
PK model after incorporating the effect of weight (weight 
of each simulated individual was randomly sampled with 
replacement from the current study dataset). The individual 
CL∕F values were subsequently used to calculate Cave for 
each simulated individual using Eq. 1. The output Cave val-
ues were then passed to the developed population exposure-
response model to simulate PASI score response in clinical 
trials.

A set of 2000 clinical trials were simulated assuming 
that brepocitinib or placebo were administered QD for 16 
weeks. Each participant was assumed to be assigned the 
same treatment throughout a 16-week period (no induction/
maintenance periods). Brepocitinib dose levels between 5 
and 60 mg were evaluated in 5 mg intervals. Each treatment 
arm (either brepocitinib or placebo) was assumed to have a 
sample size of 56 participants. Efficacy assessments (PASI 
scores) were assumed to be performed at baseline and every 
2 weeks until week 16.

The PASI75, PASI90, and PASI100 responder metrics 
after 16 weeks of treatment are expected to be the endpoints 
of interest in subsequent studies. Thus, the output from the 
clinical trial simulations (raw PASI scores) was summarized 
to derive predictions for these responder metrics on week 16 
together with associated 90% CIs across all the evaluated 
dose levels.

Using the exact framework described above, additional 
exploratory clinical trial simulations were performed using 
selected dose levels in order to compare the projected effi-
cacy of flat dosing (same dose throughout the 16-week 
period) with that of an induction/maintenance dosing para-
digm (4 weeks of induction dose followed by 12 weeks of 
maintenance dose).

Modeling software

The population exposure-response model was developed 
using non-linear mixed effects methods and  NONMEM® 
Version 7.3 [17]. Population parameter estimation was 
performed with the Laplacian estimation method. The 
ADVAN13 subroutine with TOL = 7 was used for solving 
differential equations.  NONMEM® control stream is pro-
vided in Online Resource 1.

SIR was conducted using Perl speaks  NONMEM® (PsN) 
(version 5.2.6) [22, 21]. Data visualization, exploratory 
analyses, model diagnostics, post-processing of  NONMEM® 

output and all clinical trial simulations were generated using 
the R statistical and programming language [23] (version 
3.6.1).

Results

Data description

Overall, 212 patients were randomized and received at least 
one dose of brepocitinib or placebo. Of the 212 participants, 
148 (69.8%) were male and 64 (30.2%) female. 189 sub-
jects (89.2%) were White, 11 (5.2%) were Black or African 
American, four (1.9%) were Asian and eight (3.8%) were 
identified as other race. The median age in the study par-
ticipants was 48 years (ranged from 18 to 75 years), and the 
median weight was 91.6 kg (ranged from 45.1 to 204.3 kg).

The median baseline PASI score across all study partici-
pants was 18.2 (ranged from 12 to 54). An overview of the 
number of subjects and the mean baseline PASI score in 
each treatment arm is presented in Table 1. The observed 
longitudinal PASI score profiles of all study participants, 
stratified across the different treatment arms, are illustrated 
in Fig. 2.

A total of 170 of the 212 randomized participants com-
pleted the 12-week treatment period of the study (Table 1). 
Patient flow and a disposition diagram, including reasons 
for discontinuation, are reported in the primary manuscript 
[9]. The investigation of the longitudinal individual PASI 

Table 1  Number of participants and mean baseline PASI in each 
treatment arm

N randomized number of participants randomized in each treatment 
arm, N completed number of participants who completed the 12-week 
treatment period in each treatment arm, PASI Psoriasis Area and 
Severity Index, QD once daily, QW once weekly, SD standard devia-
tion
When a different dose is administered between induction (up to week 
4) and maintenance (weeks 5 through 12) periods the respective regi-
mens are reported separated by “/”
The median baseline PASI score across all study participants was 
18.2 (ranged from 12 to 54)

Treatment N randomized Mean base-
line PASI 
(SD)

N completed

Placebo QD 23 19.6 (7.6) 17
30 mg QD/10 mg QD 25 23.8 (9.1) 19
30 mg QD/100 mg QW 30 21.7 (7.5) 24
30 mg QD 29 19.1 (5.9) 27
60 mg QD/Placebo QD 25 20.6 (8.2) 21
60 mg QD/10 mg QD 29 19.3 (7.5) 21
60 mg QD/100 mg QW 26 20.7 (7.9) 20
60 mg QD/30 mg QD 25 21.5 (7.5) 21
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profiles indicated no substantial differences overall in the 
efficacy trajectories between participants who dropped out 
before the end of the 12-week treatment period and those 
who completed the 12-week treatment period (Online 
Resource 2). Therefore, dropout was assumed to have no 

impact on model development and estimation-based infer-
ences. For simulation-based diagnostics of model perfor-
mance (e.g., VPC), the exact same structure of the index 
(true) dataset was used, and, as such, the simulated datasets 
had identical dropout with the index (true) dataset.

Population exposure‑response model results

The parameter estimates of the developed population expo-
sure-response model are reported in Table 2. All model 
parameters were estimated with acceptable precision. The 
estimates for the rate of onset of the placebo and the drug 
effect are aligning with the observation that several weeks 
on-treatment are needed for the observed response to start 
plateauing. Inter-individual variability was incorporated 
only with regard to BSL (baseline PASI score), as models 
with additional variability components on other parameters 
faced convergence issues.

Model diagnostics supported the final model selected. 
Assessment of the model’s performance via VPC indi-
cated that the selected model adequately captured the 
observed PASI data and the associated variability across 
all treatment arms and across both induction and main-
tenance periods (Fig. 3). Alternative VPC plot illustrat-
ing 10th/90th percentiles instead of 5th/95th percentiles 
(given the relatively small sample size per treatment arm) 
is provided in Online Resource 3. Characteristically, the 
model was able to adequately capture PASI trajectories 

Table 2  Parameter estimates of the population exposure-response 
model

CI confidence interval, RSE relative standard error, SIR: sampling 
importance resampling
RSE (%) is the relative standard error of the parameter estimate cal-
culated as: (standard error∕estimate) × 100

Standard errors were derived from  NONMEM® covariance step
SIR median and 95% CIs calculated from the 50th, 2.5th, and 97.5th 
percentiles for the distribution of 1000 resamples from the 5th SIR 
iteration of the final model
As described in Methods, it is assumed that kin = kout

Parameter Estimate RSE (%) SIR median (95% CI)

BSL 18.00 2.69 17.98 (16.89–19.08)
IC50(ng∕mL) 53.24 21.43 53.21 (43.72–65.69)
kout

(

Day−1
)

0.067 13.42 0.067 (0.056–0.081)
Pmax 0.489 8.41 0.489 (0.447–0.528)
kp
(

Day−1
)

0.047 6.48 0.047 (0.042–0.053)
� 31.25 8.74 31.10 (28.87–34.00)
�1 2.228 39.95 2.241 (1.357–3.259)
�2 62.67 20.24 62.83 (49.40–79.77)
�BSL

(

�2
)

1.655 12.07 1.682 (1.297–2.169)

Fig. 1  Study design schema. Schematic illustrates the eight different treatment arms of the study and the respective dosing regimens across 
induction (up to week 4) and maintenance (week 5 through 12) periods. QD once daily, QW once weekly
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both in the arms that had the same treatment across the 
12-week period (e.g., Placebo QD, 30 mg QD) but also in 
the arms that switched treatments between induction and 
maintenance periods. In some of the latter arms (e.g., 60 
mg QD/Placebo QD or 60 mg QD/10 mg QD) a trend of 
rebound of the disease or flattening of the drug response 
was generally observed and this trend was successfully 
captured by the model.

Individual model fits (observed and predicted PASI 
scores over time) from 36 randomly sampled study partici-
pants are presented in Online Resource 4.

In addition, the model was able to adequately capture 
not only the observed raw PASI scores but also the derived 
responder metrics (Fig. 4). When taking into account the 
totality of the data across all treatment arms, the observed 
trajectories were in good agreement with the associated 
model-derived 95% CIs across all the evaluated responder 
metrics.   

Clinical trial simulation results for dose selection 
in future studies

The predictions for the PASI75, PASI90, and PASI100 
responder metrics on week 16 across different dose levels 
(assuming same dose throughout the study and no induc-
tion/maintenance periods), as derived from the clinical trial 
simulations, are presented in Fig. 5. These results indicate 
that a dose of 10 mg QD for 16 weeks is the lowest practical 
dose with an effect on PASI75 and PASI90 that could be dis-
tinguished from placebo (non-overlapping CIs, see Fig. 5). 
A dose of 30 mg QD appears to provide a robust response at 
16 weeks as 62.5%, 35.7%, and 21.4% of patients will have 
at least 75% (PASI75), 90% (PASI90), and 100% (PASI100) 
improvement, respectively, from their baseline PASI scores. 
Finally, a dose of 60 mg QD administered throughout for 16 
weeks appears to provide meaningful numerical improve-
ment in response compared to the 30 mg QD dose, as it will 

Fig. 2  Longitudinal individual PASI profiles stratified by treatment 
arm. The vertical dashed black line at 4 weeks highlights the tran-
sition from the induction to the maintenance treatment period. The 
solid orange line represents loess smoothing of the data. When a 

different dose is administered between induction (up to week 4) and 
maintenance (weeks 5 through 12) periods the respective regimens 
are reported separated by “/”. PASI Psoriasis Area and Severity Index, 
QD once daily, QW once weekly
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produce a PASI75, PASI90, and PASI100 of 78.6%, 55.4%, 
and 35.7%, respectively. The three dose levels discussed 
above (10, 30, and 60 mg QD) produce a median Cave of 
18.1, 54.5, and 108.6 ng/mL which correspond to 0.34 times, 
1.02 times, and 2.04 times, respectively the  IC50 determined 
in the current analysis (53.24 ng/mL).

Additional exploratory simulations were performed to 
compare the projected efficacy of flat dosing (10, 30 or 
60 mg QD throughout the 16-week period) with that of an 
induction/maintenance dosing paradigm (4 weeks of induc-
tion with 60 mg QD followed by 12 weeks of maintenance 
dose with 10 or 30 mg QD). The output from these simu-
lations regarding the longitudinal profiles of PASI scores 
and responder metrics of interest (PASI75, PASI90, and 
PASI100) is presented in Fig. 6. It is apparent that an induc-
tion/maintenance paradigm offers no benefits from an effi-
cacy perspective as both the “60 mg QD/30 mg QD” and “60 
mg QD/10 mg QD” regimens provide an efficacy trajectory 

that by week 16 is converging to that achieved with flat dos-
ing of 30 and 10 mg QD, respectively.

Discussion

In this Phase 2a trial, patients with moderate-to-severe 
plaque psoriasis received 30 mg QD or 60 mg QD of brep-
ocitinib or placebo for a 4-week induction period, followed 
by 10 mg QD or 30 mg QD or 100 mg QW of brepocitinib 
or placebo for an 8-week maintenance period. Based on the 
primary endpoint analysis of this trial, statistically signifi-
cant differences in change from baseline PASI at week 12 
were detected in all seven studied regimens with the excep-
tion of the “60 mg QD/10 mg QD” and “60 mg QD/Placebo 
QD” treatments, compared to placebo group [9]. The value 
of the exposure-response analysis presented here is that it 
allows not only to understand the longitudinal trajectory 

Fig. 3  VPC stratified by treatment arm. Closed circles represent the 
observed individual PASI data. Orange dashed lines represent the 5th, 
50th, and 95th percentile of the observed data. Dark orange and light 
orange shaded areas represent 95% CIs around the model-derived 

median and model-derived 5th/95th percentiles, respectively. PASI 
Psoriasis Area and Severity Index, QD once daily, QW once weekly, 
VPC visual predictive check
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of the observed PASI scores and the association with drug 
exposure but also to bring together in a quantitative context 
data observed across different treatment regimens and induc-
tion/maintenance periods. The developed model provided an 
adequate description of the observed PASI data across all 
the different dose regimens tested and across both induction 
and maintenance periods, while it also had overall a good 
predictive capacity with regard to the derived responder met-
rics (e.g., PASI75, PASI90). This enabled the use of model-
based clinical trial simulations to predict responder metrics 
and guide dose selection for future trials (e.g., Phase 2b) that 
may evaluate a different treatment duration (e.g., 16 weeks) 
or different treatment regimens compared to what was tested 
in the current study. With integration of the observed lon-
gitudinal data, the model suggested both placebo and drug 
effect to be plateauing by 12 weeks, and given the accurate 
estimation of the associated model parameters, extrapolation 
beyond 12 weeks is justifiable.

The rationale of the current study for the 4-week induc-
tion period was to assess whether an induction and mainte-
nance dosing regimen provided a better efficacy and safety 
profile than continuous treatment with the same dose and 
whether the reduction in the dose or dosing frequency could 
maintain the clinical response achieved during the induc-
tion period. Based on the efficacy results in this study and 

as further confirmed by model simulations it was apparent 
that due to the pharmacokinetic (short half-life) and phar-
macodynamic (onset/offset of drug effect) characteristics 
of this compound, the induction/maintenance paradigm is 
not advantageous compared to traditional flat dosing regi-
mens where the same dose is administered throughout the 
study. Such an induction/maintenance approach may have 
been advantageous for a compound with a long half-life, 
slower offset rate of the drug effect, or in the case that the 
induction regimen achieves a complete re-equilibration of 
the disease and the underlying inflammatory tone. A flat 
dose paradigm should be preferred in future studies with 
brepocitinib in the absence of any safety concerns that may 
require minimization of the timeframe that a participant is 
exposed to a given dose. Based on clinical trial simulations 
presented here, doses of 10, 30, and 60 mg QD throughout 
the 16-week treatment period are emerging as suitable can-
didates for clinical evaluation in subsequent Phase 2b dose-
ranging studies. It should be noted that, in the current study, 
30 mg QD was the maximum dose administered throughout 
the 12-week treatment period, and the 60 mg QD dose was 
administered in some treatment arms for the initial 4-week 
induction period only. Then, simulations with doses greater 
than 30 mg QD throughout the 16-week treatment period 
represent an extrapolation from the current study dataset, 

Fig. 4  Observed and predicted responder metrics stratified by treat-
ment arm. Solid black line with closed black circles represents the 
observed PASI50 (top left), PASI75 (top right), PASI90 (bottom left), 
and PASI100 (bottom right) responder metrics in the study. Shaded 

areas represent the associated 95% CIs around the model prediction. 
PASI 50/75/90/100: 50%/75%/90%/100% improvement in Psoriasis 
Area and Severity Index score, QD once daily, QW once weekly



274 Journal of Pharmacokinetics and Pharmacodynamics (2024) 51:265–277

and, as such, should be interpreted with caution and require 
confirmation in future trials.

Direct modeling of PASI data has particular challenges 
due to them being bounded outcome scores defined over the 
closed 0 and 72 interval. As such, these data may be often 
skewed exhibiting non-standard distributions (e.g., L-shaped 
in the presence of a strong drug response), while their error 
distribution may need to be heteroscedastic (since the 
variance may be decreasing approaching 0 close the lower 
boundary) [15]. Therefore, traditional modeling approaches 
assuming normality neglect the bounded nature of the data, 
may be inadequate to capture their distributional character-
istics and may predict scores outside their nominal range. 
Several approaches have been proposed in the literature to 
handle bounded outcome score data [24, 25, 26, 27, 28], 
and Hu has recently written an elegant review discussing, 
comparing and providing guidance for the application of 
such methods in pharmacometrics [29].

The beta distribution due to its unique characteristics and 
flexibility of its density function can be a valuable tool for 
the analysis of bounded outcome scores and a beta-regres-
sion approach has been previously applied particularly in the 
area of Alzheimer’s disease scores [15, 16, 30]. One of the 
limitations of this methodology is that when the analyzed 
dataset contains scores that are exactly at the boundary (e.g., 
0 or 72 for PASI), data need to be transformed/rescaled using 
an arbitrary small correction factor δ to map the data inside 
the open 0 to 1 interval. It has been illustrated before [30] 
and it is also the authors’ experience that modeling results 
can be sensitive on the choice of δ, thus raising doubts on the 
interpretation of the model output and highlighting the need 
for additional sensitivity analyses. In addition, the derived 
model cannot output scores exactly at the boundary (e.g., 
PASI of 0) when used for clinical trial simulations. This is an 
important shortcoming especially for compounds exhibiting 
a robust drug response where projection of the proportion 

Fig. 5  PASI75, PASI90, and PASI100 responder metrics on week 
16 across different dose levels as predicted from clinical trial simu-
lations. Top panels: PASI75 (left), PASI90 (center), and PASI100 
(right) on week 16 for different dose levels of brepocitinib (QD), 
as predicted from clinical trial simulations (assuming same dose 
throughout the 16-week period). Bottom panels: Population median 
 Cave across different dose levels of brepocitinib (QD). In the top and 

bottom panels, error bars represent simulation-based 90% CIs around 
the prediction, and points refer to the median prediction. The median 
prediction is also numerically reported on top of each error bar. Top 
and bottom panels have a shared x-axis and Dose of 0 refers to pla-
cebo.  Cave, average concentration; PASI 75/90/100: 75%/90%/100% 
improvement in Psoriasis Area and Severity Index score, QD once 
daily
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of patients achieving complete remission (e.g., PASI100) is 
of particular interest.

Use of an inflated beta distribution [12, 13] has the poten-
tial of alleviating these limitations of the traditional beta 
distribution as it employs a mixture that involves the beta 
density for the non-boundary data and a probability mass 
associated with data exactly at the boundaries. As such, 
there is no need for rescaling data at the boundaries dur-
ing analysis, while also scores exactly at the boundaries 
can be predicted in clinical trial simulations. This approach 
was employed here to analyze the exposure-response rela-
tionship of PASI scores from a Phase 2a trial in psoriasis 
patients and subsequently perform simulations to inform 
dose selection decisions for further clinical development. 
The value of this methodology for such an application lies 
in the fact that it respects the bounded nature of the data 
and its suitability was illustrated with the adequate model 
description of the observed PASI scores. Additionally, it has 
been previously stressed [31, 29] that models developed on 
the domain of the observed PASI scores often have limited 
capacity to also accurately predict the associated responder 
metrics. In this work, the developed PASI score model pro-
vided a good overall description across these derived metrics 
(PASI50, PASI75, PASI90, and PASI100). This provides 

further evidence that the modeling approach used here that 
employs the zero-inflated beta distribution is suitable to cap-
ture the distributional characteristics of the observed PASI 
data not only away but also near or at the boundary and 
thus providing accurate translation to the derived responder 
metrics. This is of particular importance as it enabled the 
exposure-response analysis to be performed in the domain 
of the actual PASI scores which offer the desired granu-
larity in drug response, while also being confident on pro-
jections associated with the responder metrics that may be 
the primary endpoints in Phase 2b/3 trials. Three distinct 
approaches from what was used here, the latent beta vari-
able approach [32, 33], the combined uniform and binomial 
approach [32, 33], and the bounded integer model [34], have 
been recently proposed for PASI score modeling, also exhib-
iting promising results.

PASI scores range from 0 (no evidence of the disease) 
to 72 (worst possible outcome) in 0.1 increments [10], 
and thus, PASI data are technically discrete (containing 
both integer and non-integer values). The approach/model 
presented in this study, outputs a continuous prediction 
for PASI scores that can take any value between 0 and 
72 (or PASI being exactly 0), rather than producing val-
ues exactly at 0.1 increments. However, given the large 

Fig. 6  Longitudinal profiles of PASI scores and PASI75, PASI90, 
and PASI100 responder metrics as predicted from clinical trial sim-
ulations to compare flat dosing (same dose throughout the 16-week 
period) with an induction/maintenance dosing paradigm. For the 
induction/maintenance regimens, 4 weeks of induction (60 mg QD) 

followed by 12 weeks of maintenance (30 or 10 mg QD) has been 
assumed. Predictions are summarized as the median over 2000 sim-
ulations. PASI: Psoriasis Area and Severity Index, PASI 75/90/100: 
75%/90%/100% improvement in PASI score, QD once daily
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number of possible categories and high granularity of the 
PASI scale (nearly continuous), the presented approach is 
fit for purpose and does not carry any impact on clinical 
decision-making.

This work is not without limitations. (1) No covari-
ates were tested in the current exposure-response analysis. 
Covariate effects will need to be explored in future trials 
where larger sample size and more heterogenous data will be 
available. (2) A sequential modeling approach was employed 
here where subject-level Cave derived from a population PK 
analysis was assumed to be the exposure-relevant metric 
that drives response. It is not known whether simultaneous 
modeling of the full PK/PD profiles will offer any substantial 
advantages. (3) The available data could not support esti-
mation of inter-individual variability components (random 
effects) in most of the parameters of the exposure-response 
model and thus inter-individual variability was incorporated 
only with regard to BSL (baseline PASI score). Thus, the 
observed population variability in response, although ade-
quately captured, could not be precisely allocated to specific 
mechanisms/sources (e.g., onset of drug effect). (4) Uncer-
tainty on the model parameter estimates was not taken into 
account in simulations. However model parameters were 
estimated with relatively high precision and thus the associ-
ated impact of parameter uncertainty was expected to be 
minimal and not meaningfully affecting any decision making 
for the clinical development of brepocitinib. (5) Only data 
collected during the 12-week active treatment period of the 
study were included in the exposure-response model to align 
with the primary endpoint analysis (change from baseline 
at Week 12). Inclusion of PASI data collected during the 
follow-up period (after the end of treatment) may provide 
additional information regarding the rate of offset of drug 
effect and will be considered in future brepocitinib exposure-
response analyses. (6) Finally, the simulations performed in 
this work with the scope of dose selection for further clinical 
development focus solely on an efficacy perspective. The 
safety and tolerability data of brepocitinib [8, 9] are equally 
important and should be considered in conjunction with the 
projected efficacy outcomes.

Conclusions

The developed population exposure-response model for 
brepocitinib provided an adequate description of the 
observed PASI score data, while it also had a good predic-
tive capacity with regard to the derived responder metrics 
(e.g., PASI75, PASI90). Clinical trial simulations with the 
developed model indicate that brepocitinib doses of 10, 30, 
and 60 mg QD may be suitable for clinical evaluation in 
subsequent Phase 2b studies.
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