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Abstract
Validation of a quantitative model is a critical step in establishing confidence in the model’s suitability for whatever

analysis it was designed. While processes for validation are well-established in the statistical sciences, the field of

quantitative systems pharmacology (QSP) has taken a more piecemeal approach to defining and demonstrating validation.

Although classical statistical methods can be used in a QSP context, proper validation of a mechanistic systems model

requires a more nuanced approach to what precisely is being validated, and what role said validation plays in the larger

context of the analysis. In this review, we summarize current thoughts of QSP validation in the scientific community,

contrast the aims of statistical validation from several contexts (including inference, pharmacometrics analysis, and

machine learning) with the challenges faced in QSP analysis, and use examples from published QSP models to define

different stages or levels of validation, any of which may be sufficient depending on the context at hand.
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Introduction

Preliminaries

The efficient discovery and development of a safe and

efficacious drug requires a mechanistic understanding of

physiological and biochemical processes that contribute to

drug exposure and efficacy. Quantitative systems pharma-

cology (QSP) modeling is a modeling and simulation

approach to integrate the data and knowledge mechanisti-

cally and quantitatively, which allows not only represen-

tation of existing data, but also extrapolation of current

knowledge to untested scenarios. The predictive capability

of QSP models is crucial for hypothesis generation to

support target selection, optimization of dosing strategy,

biomarker identification, patient stratification and combi-

nation strategies.

QSP model development starts with establishing the

model structure and parameter ranges by integrating a

multitude of qualitative and quantitative data relevant to

biological system and disease of interest, such as in vitro

and in vivo experiments, transcriptomics and proteomics

data and clinical data. Due to complexity of the biological

systems QSP models tend to have many parameters. While

aim is to constrain these parameters by direct measure-

ments, often majority of the parameters are not measurable,

or laboratory measurements do not translate to in vivo

situation. Therefore, the techniques such as sensitivity

analysis and model reduction are important to identify the

most impactful parameters and to reduce the problem size

in the next stage of model development when the modeler

navigates through the uncertainties in the predictions due to

nonlinearity and nonidentifiable parameters that are unique

to large models like QSP models.

As with other pharmacometrics modeling approaches, a

distinctive feature of QSP models is their ability to repre-

sent interpatient variability. With large set of sensitive

parameters, a plethora of outcomes can be simulated, and

thereby, tweezing the variability from uncertainty and

elucidating the cause of the observed variability becomes a

challenging problem. To address this, QSP modelers

employ virtual population (VPop) techniques, where a

unique set of parameters are used to simulate an individual
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virtual patient (VP) and interpatient variability is repre-

sented in VPop by varying these parameters. These virtual

populations allow for the mechanistic exploration of how

observed variability in a population might be formed (e.g.,

how intrinsic production capacity, cell numbers, and cell

activation potential can all contribute to plasma cytokine

concentration). There may be many ways to generate a

certain range or distribution of any single observable. To

capture observed range of responses and interpatient vari-

ability accurately and to increase the predictive capability

of the model the VPop needs to be calibrated and validated

across the spectrum of biology supported in the model.

What is calibration and validation in QSP?

The aim of the calibration in QSP is to capture the distri-

bution of observed responses in a population-level data, such

as clinical study data. Generally, the process begins by

simulating a large cohort of biologically plausible VPs,

which all meet certain requirements, but which do not

accurately represent the calibration data. From this cohort,

one could follow a number of strategies. Firstly, one could

algorithmically select a sub-population of these VPs to

become the final VPop, so that these VPs together match the

calibration data. In this case, all VPs contribute equal

information as to the population predictions. Alternatively,

one could construct a means to sample the larger cohort such

that on average, samples of VPs reproduce the calibration

data. In this case, the information content of each VP is

proportional to its probability of being selected [1, 2]. This

approach allows for the creation of populations of differing

sizes and explorations of questions of power analysis.

While calibration strengthen the ability of the QSPmodel to

capture the available data, validation can test the ability of the

QSP model to extrapolate to untested scenarios by testing how

the distribution of responses from calibrated VPop compares

with observed responses from studies that were not used in

calibration. Since QSP model validation depends on the VPop

generated in calibration step, validation in QSP cannot be

considered in isolation and can be seen as a complementary

component of calibration, both strengthening the predictive

power of QSP models [3–5]. This is also true for QSP models

that do not employ VPop approach, as the data used in vali-

dation is tied to data used in calibration [6].

Approaches to validation in QSP

Approach to validation in QSP is context-
dependent

QSP modeling can be used to describe many different

biological systems and address a diverse range of

questions. Therefore, approaches and rigor in validation of

QSP models can vary depending on the scope and the

availability and the nature of the data [5, 7, 8]. For

instance, the models that aim to predict clinical outcomes

need to be calibrated and validated with clinical data. If the

clinical data provides sufficient insights on individual

patient responses and their distributions VPop approach

can be utilized [1, 2, 9–11]. On the other hand, if a model is

developed in an area where only some preclinical data is

available a rigorous approach may not be possible. In this

case a qualitative assessment of the model behavior may be

sufficient if model is aimed to address exploratory or pre-

clinical questions. As it may be apparent in this second

example, the data availability can also impact the scope of

the model and therefore, can shape the entire QSP model

development process. Therefore, it is important to under-

stand the type of data and the way the data is utilized in the

QSP model development.

What is data used in the QSP model
development?

Development of QSP models typically evolves with the

generation of the new data and information in the related

disease area. In vitro measurements and qualitative

behaviors observed in preclinical and clinical studies can

inform the model structure and initial model parameteri-

zation. If direct measurement is not possible, parameter

estimation by fitting a mini-model (a separate model to

capture a specific experiment) to the related in vitro data is

a common technique [6, 9]. The model parameters can be

further fine-tuned by fitting the unknown model parameters

to the mean of related observations from in vivo experi-

ments or clinical studies [12, 6, 13–17]. For instance, Riggs

et al. fit their model to data compiled from five different

clinical studies to capture the average patient behavior with

regards to relationship between estrogen and bone mineral

density and impact of intervention for management of

endometriosis [13]. In this work and in a follow-up work

[18] the modelers validated the model based on the mean

behavior as it was sufficient to address the questions of

interest. In another example, Kosinsky et al. employs

NLME to estimate the model parameters and variability

simultaneously using a relatively rich in vivo tumor growth

data set [17]. This process of parameter fine-tuning can be

referred as model calibration by some modelers and should

not be conflated with VPop calibration [12, 6].

In relatively more data-rich areas, we see more QSP

models that are further calibrated with VPop approach

[9, 10, 2, 19, 20, 1]. Especially patient-level data enables

the modelers to test the plausibility and the prevalence of

the patient response phenotypes simulated by the QSP

models. Kirouac et al. is a good example of how a modeler
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can embrace aforementioned parameter estimation tech-

nique along with VPop approach to integrate a wealth of

data from preclinical and clinical studies [9]. In this work,

the authors calibrated the VPop by estimating relative

prevalence of tumor growth phenotypes from their QSP

model describing the link between EGFR activation,

MAPK signaling pathway and tumor growth using clinical

data from three Ph1b studies with combinations of EGFR,

BRAF and MEK inhibitors. The model was later validated

with another clinical study with an ERK inhibitor, a drug

on the same pathway.

Kirouac’s approach to partitioning the data sets for

VPop calibration and validation is not uncommon. Many

other QSP studies that either validate only the mean model

predictions or validate both mean and interpatient vari-

ability via VPop approach use data of the drugs on the

same pathway, but support calibration and validation pro-

cesses with different clinical studies or drugs

[13, 20, 19, 21]. For instance, Riggs et al. assigned data

from 5 studies with GnRH agonist or antagonist treatment

to calibration set and 9 studies to validation set [13], and

later the model was further calibrated with 4 Ph3 studies

[18]. Similarly, Gadkar et al. used Atorvastatin Ph2 study

and anti-PCSK9 SAD study for calibration step, and anti-

PCSK9 MAD study and a Ph2 study with combination of

Atorvastatin and anti-PCSK9 for validation [19]. Alterna-

tively, data can be partitioned based on dose regimen of the

same drug [22], based on biomarkers from the same studies

[10], based on species [6, 15], or based on study type (i.e.

observational studies for calibration and intervention

studies for validation) [23].

Biology as the driver for validation

Before considering how one might approach validating a

QSP model, the question must first be asked what precisely

is being validated in the model. Structure and parameteri-

zation of components of the model might be evaluated in

the context of in vitro or preclinical experiments, but in the

clinical context the model is used to generate a VPop that

capture the observed variability in biological state and

outcome. Modelers are faced with design choices about

how much biology to include in the model. One might

settle upon a large scope of biology, even if there is no

clinical data to constrain the pathway activities in the

clinical population, if there is sufficient molecular data to

be reasonably certain as to its parameterizations and con-

tributions in the disease state. On the other hand, one may

adopt a more parsimonious approach, in which only the

biology needed to represent the desired clinical interven-

tion(s) is considered, with other biology involved in the

disease subsumed into lumped parameters and processes.

The first strategy allows one to explore therapy

combinations and molecular causes of response (or non-

response) at the expense of significantly more parameters

involved in the VPop generation and calibration process,

with the potential for one or more of the pathways involved

in generation being unconstrained by the calibration data.

The second strategy allows for more focused exploration of

variability in the clinical context; however, opportunities to

mechanistically extrapolate are much more limited. In

either case, the question must be formulated to probe the

VPop for which components are not constrained by the

available data, and how those pathways might contribute to

the predictive power of the model and its VPop.

Levels of validation in QSP

With the principal of ‘‘biology as driver for validation’’ in

mind, we can categorize QSP model validation approaches

in four levels: qualification, within-target validation,

within-pathway validation, and cross-pathway validation.

Qualification-level validation tests whether the model can

generate the intended model outcomes, e.g. observed

qualitative behavior of a biomarker or an outcome that

directly depends on a marker that is used in calibration.

Qualification confirms the ability of the model to interpo-

late within the observed range of outcomes and increase

confidence in model predictions for the tested therapy.

Many preclinical and some early-phase clinical QSP

models rely on this approach either because the data is

limited [6, 15, 16, 21, 23] or because interpolation of the

data is sufficient for the scope of the model [12]. In another

case, all the clinical data was used to construct VPops so

that the subsequent analyses could be well-qualified [2].

In the therapeutic areas with more abundant clinical

data, we start seeing examples of within-target and within-

pathway validation. Within-target validation uses the data

from a therapy that has the identical mechanism of action

as the therapy used for calibration or the data from a dif-

ferent clinical trial with the same drug or drug combination

[13, 17–20, 22, 24–26]. To be clear, we are defining target

as the specific component of a mechanism or pathway that

is subject to experimental perturbation (i.e. the target of the

pharmacological intervention). Taking this approach to the

next level, some QSP studies also utilize data from other

targets within the pathway for validation, which we refer-

red as within-pathway validation [9, 10, 27]. Most of the

clinical QSP modeling studies fall under these two cate-

gories, and many of these studies use VPop technique as

the model complexity increases (Fig. 1).

While the first three levels of validation cover the

approaches in the published QSP validation studies, here

we would like to introduce a fourth level of validation:

cross-pathway validation. As the name indicates in this

case, the QSP model is validated with clinical data of
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therapies with a mechanism of action that is different from,

but related to the therapy that the model was calibrated

with. This final approach requires significant amount of

clinical data as well as extra time investment in model

validation on top of the QSP model development and cal-

ibration, making it hard to achieve within the typical drug

development timeline. However, applying cross-pathway

level validation can increase the predictive capability of

QSP models significantly especially in the areas where

combination therapies targeting different pathways. If the

model is validated by perturbing a pathway not included in

its primary calibration data set and recapitulates accom-

panying data for that perturbation, it demonstrates that not

only are individual pathways well-constrained (either by

data used in the full model calibration or during con-

struction of the individual pathways or model subcompo-

nents) but also so are the various mechanisms by which

these pathways interact with one another. This can in turn

build confidence in future model predictions, such as the

presence (or lack) of synergy in a novel combination

regimen.

To illustrate the differentiation between within target,

within pathway, and cross-pathway validation, consider a

biological model consisting of three pathways as shown in

Fig. 2: pathway 1 (components A, B, and C); pathway 2

(components D, E, and F); and pathway 3 (components G,

H, and I). All pathways and components therein are well-

established in the literature with in vitro data sufficient to

parameterize their effects. The output of pathway 1 is a

biomarker which plays a regulatory role in pathway 2.

Pathways 2 and 3 work in competing manners to influence

an observable outcome in a patient. Pharmacological

manipulation of pathway 1 (component A, two distinct

pharmaceutical agents; component B, one agent, and

component C, one agent) and pathway 2 (component D,

one agent; component F, one agent) is available, and a

virtual population is calibrated using intervention and

response (both observed effector and observed outcome)

data for components A, C, and F. The remaining data now

permits all three levels of validation that has been dis-

cussed. A within target validation can be performed by

using the second agent influencing component A. A within

pathway validation can be performed using data from the

agents affecting components B (pathway 1) and D (path-

way 2), since the role of these pathways has already been

constrained by the calibration data. Finally, based on the

calibration data pathway 3 has not been fully constrained;

its effects are inferred based on the calibration of pathway

1 (negative regulator of pathway 2) and pathway 2 (en-

hancer of the observed outcome). A cross-pathway vali-

dation using intervention data against component I allows

one to demonstrate the validity of the inferred magnitude of

pathway 3’s contribution to the observed outcome. Overall,

such multi-level validation improves the prediction capa-

bility of the model for the validated targets and biomarkers,

and also expands the scope of the prediction capability of

the model.

The data and modeling approach in Schmidt et al. pro-

vides a nice example of rich dataset and QSP model

framework that is suitable for application of multiple levels

of validation, including cross-pathway validation [2]. In

this work, data from 3 classes of therapeutics [anti-TNF

(two distinct compounds), anti-IL6R (two doses), and anti-

CD20 (B cell depletion)] were utilized. While the authors

chose to use the entirety of the data for model calibration,

the data could also be partitioned between calibration and

validation. For instance, within-target validation can be

approached by withholding one dose level of the anti-IL6R

and/or one of the two anti-TNF agents. Moreover, cross-

pathway validation can in principle be achieved by with-

holding an entire class of therapy from the calibration

process. Permutations of this process are also possible,

including a kind of cross-pathway validation scheme in

which distinct VPops were calibrated to any two of the

three therapies and predicted the third. This type of

approach can yield insight into which therapeutic

Fig. 1 This visual table groups examples from QSP validation

literature by the highest level of validation (qualification, within-

target validation, within-pathway validation and cross-pathway val-

idation) and calibration/validation technique (comparison with mean

or range of response vs. VPop). The numbers indicate the reference

number of the published QSP modeling work, while the shape

indicates the scope of modeling work
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mechanisms provide more (or less) information as to the

expected response to another. It can also demonstrate that

all the data was necessary to constrain the many degrees of

freedom the model had to generate plausible virtual

patients, reinforcing the critical need for varied, high-

quality data in the QSP development process.

How to show a QSP model validation?

Some common validation techniques in more traditional

pharmacometrics and statistical models can be applied in

validation of QSP models. For instance, visual predictive

checks (VPCs) are commonly used to assess the ability of a

structural NLME model and its estimated parameters (for

both fixed and random effects) to properly describe both

the central tendencies and the variability of the observed

data. Similar procedures have been described for mecha-

nistic models [28, 29]. These tools sample model param-

eters either around their precision estimates calculated

during estimation [29] or by taking as input an explicit

random effect [28] and generate Monte Carlo simulations,

plotted in manners analogous to the NLME VPC. While

these routines are conceptually very similar to VPop

strategies, they have been applied to reduced models (as

part of model selection) or more traditional pharmaco-

metric models, and to date the literature does not have

examples of such tools applied to platform or disease-level

QSP models.

When considering the quality of parameter estimates

and the predictability of a model, goodness of fit (GoF)

metrics can be applied to provide confidence in the model

simulations. In the current QSP literature, many of these

metrics are qualitative in nature, allowing the reader to

visually inspect what features of the data the model

describes well, which aspects of the simulation fall short of

the data, and whether such gaps between model and data

are meaningful. Models described in [30, 31] demonstrate

the value of iterative ‘‘unit checks’’ in the model building

and validation process, allowing biology and data of dif-

fering nature and scope to be layered in to the overall

model while preserving past results. More quantitative

measures of GoF have been described in the literature,

albeit more in the context of calibration rather than vali-

dation [32].

The VPop approach for QSP adds further complexity to

the question of validation. This approach allows a modeler

to use the QSP model in a meta-analysis context, in which

published population-level clinical data for different ther-

apeutic strategies are all simulated in the same VPop. In

this case, a VPC approach would not be warranted. Instead,

with a VPop that can be sampled, one could perform an

analysis akin to a bootstrapping, in which populations of

defined size are sampled, and used to construct a prediction

interval for the model’s ability to reproduce the population-

level data [32]. The range of VPop predictions (i.e. the

prediction interval for the VPop) can also be simply

compared to the observed range of data used in a validation

set, such as the within-pathway validation shown in [25].

How does validation in QSP differ
from validation in statistical models

In statistical applications, it is common to discuss valida-

tion of the model as being internal or external in nature.

Fig. 2 This figure depicts a hypothetical QSP model and its

calibration/validation scheme at a given stage of model development.

QSP model encompasses a biological system with various biological

entities, such as targets and biomarkers (gray block arrows) and

indirect relationships (black lines between gray arrows). In this

hypothetical calibration/validation scheme, the biological entities in

the central pathway are calibrated with preclinical or clinical data

(black boxes), while some biological entities are not calibrated

(dashed boxes). This hypothetical QSP model is also validated using

multiple levels of validation. Some biological entities and their

interactions within the central pathway are validated by within-target

validation (yellow box) and within-pathway validation (blue box).

Data on the entities that are linked to both central pathway and other

related pathways are used for cross-pathway validation (green box)

(Color figure online)
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Naively, the distinction is made based on the origin of the

data used to compare with model predictions: if the source

is from the same experiment(s) from which the model

parameters were estimated, but withheld from the estima-

tion itself, it would be termed internal validation. Con-

versely, if the data is derived from a distinct set of

experiments, it would be considered an external validation.

As stated previously, the objective of these validation steps

is to characterize the quality of the parameter estimates and

assess the bias and degree of overfitting the model might

contain. In this section, we summarize what validation

means in these other contexts, to reinforce the scientific

and technical differences between these approaches.

Validation in NLME based pharmacometric
modeling and statistical/deep learning

NLME based phamacometric modelling and Statistical/

Deep Learning constitute a broad range of algorithms that

seek to uncover patterns from large scale and often

heterogeneous data sets to make predictions based on these

patterns. Pharmacometric modeling is a special case of

statistical learning that employs a nonlinear mixed-effect

modeling (NLME) strategy and is used in essentially every

drug development program. This approach seeks to char-

acterize the total variability of an observable in a popula-

tion (e.g., the pharmacokinetics of a compound) and to

quantify how known input variability in the population

(body size, age, gender, renal function, CYP enzyme

expression) informs the output variability, so that ulti-

mately one can predict how changes in a clinical experi-

ment (protocol, alternate patient population with defined

characteristics) would lead to changes in the observed

outcome.

In pharmacokinetic modeling, and more generally, in

statistical learning models, training is typically an exercise

in parameter estimation. Techniques to estimate parameter

and model credible intervals are well-established. These

techniques emphasize visual analysis of the assumptions of

the model, such as distribution of random effects, corre-

lations between effects and covariates, predicted distribu-

tions of model predictions.

If we have sufficient data, these models are best vali-

dated by dividing the data into three groups: a training set

to train the model, a validation set from which we select the

model that gives the smallest prediction error and a test set

that measures the overall performance of the model. The

goal of splitting the data into train, validate and test sets is

to reduce model variance, the sensitivity of the model to

minor changes in the training data, while simultaneously

minimizing model bias, the error introduced by approxi-

mating the complex process being investigated with a

simpler model. Finding this balance is guided by the Bias-

Variance Decomposition theorem [33].

In situations where there is not enough data to split into

three groups researchers typically use k-fold cross-valida-

tion. This technique results in models whose test error rates

have neither high variance nor high bias, consistent with

the Bias-Variance Decomposition theorem [33]. Cross-

validation, though more challenging to apply to NLME

models due to possible changes in the distribution of ran-

dom effects, is still useful for structural and covariate

model selection [34].

Although typically models are trained, validated, then

tested on external data sets prior to publishing the model,

there are examples in the literature of external validation

performed on population pharmacometrics models after the

fact. In separate studies focused on vancomycin [35],

meropenem [36], and phenobarbital [37], authors identified

published pharmacokinetic models (7–8 per study) in the

literature with differences in populations supplying the

data, model structure, and model purpose. Each of these

studies was focused on application of prior popPK models

in the context of therapeutic drug monitoring in patient

populations or contexts different than the originating

models. It was noted that while most of the published

models evaluated in these studies had evaluated goodness

of fit by standard techniques (visual predictive checks,

bootstrap re-estimation of parameters to establish confi-

dence intervals), very few performed more extensive val-

idation using a withheld data set. Predictive performance of

the models was evaluated by calculation of prediction error

and several derivatives thereof (mean error, mean absolute

error, and root mean-square error).

One shortcoming of both statistical Learning techniques,

such as tree-based methods, and pharmacometric (NLME)

modelling is that they are both limited to a particular

representation of the data. A tree-based heart failure model

that makes predictions based on age, gender and lifestyle

factors or an NLME model that makes pharmacokinetic

predictions based on body size, gender and renal functions

is limited by how these predictors are represented. If we

were to give the heart failure model the MRI scan of a

heart, for example, it would not be able to use this data for

predictions because there is little connection between

individual pixels from an MRI image and heart failure.

Solving this problem, known as the representation problem

[38], would enable researchers to validate their model over

a wider range of data, leading to more robust models. Deep

learning solves this problem by determining both the rep-

resentation of the data and the mapping of data to the

output. It does this by discovering representations that are

expressed in other simpler representations. For example,

deep learning methods used in image recognition, might

detect simpler aspects of the image such as edges in one
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layer of the neural network, corners and contours in another

layer until the object is identified. To extend a tree-based

model for heart failure so that it also can use MRI images,

for example, one could generalize techniques that combine

metadata with image classification [39]. These techniques

leverage convolutional neural networks (CNNs) for the

images with relatively small feed forward networks for the

metadata. A feedforward is a common neural network

architecture in which information flows from the input to

the output without any feedback connections while a con-

volutional neural network is a particular type of feed for-

ward network designed for image processing [38]. By

taking the output from the feedforward network and

merging it with the CNN’s feature vector, we can create a

single neural network. For the heart failure application

envisioned here, we could use a feed forward network to

replace the tree-based heart failure model and combine that

with a CNN for the MRI images.

Finally, it is important to realize that NLME modeling

and Statistical/Deep Learning are active areas of research

which could lead to new insights into how to validate these

models and even what it means to validate these models. A

good example is the empirical study by Zhang et al. [40].

They show empirically that that many successful neural

network architectures are complex enough to memorize the

training data. Yet, despite this apparent overfitting, deep

neural networks are remarkably accurate on test data, even

if explicit regularization is not used. While there is no

universally accepted explanation, a consensus is beginning

to emerge from empirical studies based on a notion that

Belkin defines as the capacity of a function [41]. Roughly

speaking, the capacity of a function is the number of

parameters needed to specify a particular class of functions.

When the capacity of a function is relatively low, as typ-

ically happens in classical statistical learning, the function

will exhibit the bias-variance tradeoff: the function will be

complex enough to capture the underlying structure in the

test data without fitting to noise in the training data.

However, as the capacity of the function increases, say, by

increasing the number of hidden layers in a neural network,

the function can fit the training data perfectly without

exhibiting poor performance on the test data, thereby

avoiding the danger of over fitting the model. Belkin

explains this behavior by showing that the performance of

many neural networks is described by a double decent risk

curve rather than the classic U-shaped curve. When the

capacity of the function increases above the interpolation

threshold, the double decent risk curve shows that the

model typically performs better on test data than the

classical U-shaped risk curve would predict. From this

empirical observation, Belkin argues that the capacity of a

neural network is not a good measure of a function’s ability

to generalize beyond the training data. Belkin’s observation

is consistent with the Universal Approximation Theo-

rem [40], which states that a neural network can approxi-

mate any function sufficiently close given enough hidden

layers and a deterministic relation between the input vari-

ables and the target function.

Implications for QSP modeling

Combining statistical and deep learning model with QSP

holds much promise. For example, researchers have poin-

ted out that findings from statistical learning models, such

as importance of left ventricular ejection fraction for pre-

dicting survival in patients with heart failure, can be

incorporated into QSP models [41]. In addition, recent

work [42] suggests that neural ordinary differential equa-

tions, which specify the time derivatives of state variables

by a neural network, could lead to mechanistic models that

illuminate the underlying biologic processes that affect

pharmacokinetics and dynamics of drugs.

While the concepts of internal and external validation

are certainly applicable to the QSP context, they do not

fully cover the conceptual validation process described

herein. In a QSP model, we strive to demonstrate that we

have adequately captured the correct biology, and that

model trajectories are generated for the correct reasons.

Thus, we focus on a pathway-level view of validation; this

will always be an external validation in the statistical sense,

but not all external validation data sets will provide com-

parable levels of biological validation. We here have

introduced the concepts of qualification, within-target,

within-pathway, and cross-pathway validation to describe

the levels of biological validation we can pursue. Note here

that the latter three of these biological levels would prop-

erly be considered an external validation, as each repre-

sents experimental data not used during calibration;

however, the magnitude of information each test provides

upon success (or failure) is not conceptually equal.

Once last implication for validation in QSP analyses is

the question of what happens if a model (or VPop) fails

validation. In most statistical contexts, a model that fails

validation on a data set it should predict would be rejected

and the model building process begun anew. The failure

could happen for many reasons (failure of the data to

conform to the assumptions of the model, inadequate

amount or quality of training data, overfitting, etc.), but

regardless of the cause, a fundamentally different model

must be considered instead. However, as discussed in

Hendriks 2013, the purpose of the QSP model is to facil-

itate understanding of the key biology and pharmacology at

play [43]. Thus, a failure in validation should help drive the

future development of the model and itself provide key

insights into how the pathways interact between each other

and with various interventions. The reasons for failure of a
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QSP model to validate are varied (insufficient biological

representation, parameters estimated from one context that

do not translate to another, inability of the calibration data

to properly constrain components of a VPop, among many

other possibilities), but failure of the model to validate

followed by careful examination of why this occurred can

be a critical learning point along the path of model

development. An example of this is shown in Hamuro et al.

[44]. The authors applied the model from [27, 45] to a

novel context, finding the model accurately predicted one

context but not another. However, after consulting the lit-

erature and adding new biology to the model (without

needing to recalibrate any parameters from the original

model), they found the updated model could now predict

both the original data as well as the new data.

Conclusions

In this review, we have discussed the concept of validation

of QSP models, how validation approaches are presented in

the QSP literature, and how those approaches both draw

from and differ from validation approaches in the statistical

and pharmacometric fields. We presented a heuristic for

QSP model validation that balances validation of both the

knowledge and the data used to build the model, by con-

sidering how different components of a model interact with

one another. This heuristic is inspired by the multiple

levels of data (biochemical, cellular, tissue, organism,

population) from which a QSP model is constructed and

subsequently applied. By validating in not only the statis-

tical sense (e.g. assessing quality of parameter estimates)

but also in the biological sense the representation contained

within the model, the QSP modeler is more able to generate

confidence in the mechanistic hypotheses proposed by the

modeling analysis. Of course, not every analysis will have

a dataset capable of powering all levels of validation dis-

cussed here. However, applying the approach of within-

target, within-pathway, and cross-pathway validation can

also assist the modeler to propose feasible new investiga-

tions which can either begin to demonstrate validity of the

model, or uncover new biology necessary for the model to

properly describe the pathways under study.
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