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Abstract
Accurate characterization of longitudinal exposure-response of clinical trial endpoints is important in optimizing dose and

dosing regimens in drug development. Clinical endpoints are often categorical, for which much progress has been made

recently in latent variable indirect response (IDR) modeling with single drugs. However, such applications have not yet

been used for trials employing multiple drugs administered concurrently. This study aims to demonstrate that the latent

variable IDR approach provides a convenient longitudinal exposure-response modeling framework to assess potential

interaction effects of combination therapies. This is illustrated by an application to the exposure-response modeling of

guselkumab, a monoclonal antibody in clinical development that blocks the interleukin-23p19 subunit, and golimumab, a

monoclonal antibody that binds with high affinity to tumor necrosis factor-alpha. A Phase 2a study was conducted in 214

patients with moderate-to severe active ulcerative colitis for which longitudinal assessments of disease severity based on

patient-reported measures of rectal bleeding, stool frequency, and symptomatic remission were evaluated as categorical

endpoints, and fecal calprotectin as a continuous endpoint. The modeling results suggested independent pharmacodynamic

guselkumab and golimumab effects on fecal calprotectin as a continuous endpoint, as well as interaction effects on the

categorical endpoints that may be explained by an additional pathway of competitive interaction.

Keywords Population pharmacokinetic/pharmacodynamic modeling � Synergy � Additivity � NONMEM �
Model-informed drug development

Introduction

Exposure-response (ER) modeling of clinical endpoints is

important in drug development for facilitating informative

dosing selection [1]. Longitudinal ER modeling is espe-

cially informative for dose-regimen decisions [2]. Clinical

endpoints are often ordered categorical, for which the most

common analysis approach may be logistic regression [3].

Probit regression is another often-used approach, and its

choice vs. the logistic regression is usually the analyst’s

preference [3]. A similarity between the two approaches

has been suggested in a pharmacometric application [4].

A Markov transition approach has also been used and has

the appeal of capturing individual response changes [5],

although advantages of the mixed-effect logistic/probit

regression have been argued [6].

For single drugs, a widely used class of longitudinal ER

models is the indirect response (IDR) model [7] which can

be applied to categorical clinical endpoints by the latent

variable approach [6]. For multiple-drug combinations [8],

longitudinal ER modeling has been evaluated in the context

of fixed-dose drug combinations [9]. Various mechanism-

based drug interaction models have been used for contin-

uous data. In particular, the Agonist – Partial Agonist

model for drugs A and B with effect-site concentrations CA
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and CB extends the commonly used Emax model shown

below [10]:

effect CA;CBð Þ ¼ Emax;AIC50;BCA þ Emax;BIC50;ACB

IC50;AIC50;B þ CAIC50;B þ CBIC50;A
ð1Þ

where Emax,A, Emax,B, IC50,A, and IC50,B are the maximum

effect and potency parameters for A and B. A general

pharmacodynamic interaction model has also been pro-

posed that allows the explicit modeling of the influence of

one drug on the Emax or IC50 parameter of the other drug

[11]. Conversely, longitudinal ER modeling of categorical

endpoints for combination drug therapy has not yet been

conducted.

Guselkumab (TREMFYA�) is a monoclonal antibody

that specifically blocks the interleukin-23p19 subunit

approved worldwide for the treatment of psoriasis and

psoriatic arthritis and is currently under study in ulcerative

colitis (UC) and Crohn’s disease [12]. Golimumab (SIM-

PONI�) is a monoclonal antibody that binds with high

affinity to tumor necrosis factor alpha and is approved for

the treatment of UC and other rheumatologic indications

[13].

UC is a chronic immune-mediated gastrointestinal dis-

order of the colon characterized by symptoms of increased

rectal bleeding, stool frequency, and abdominal pain.

Disease activity and treatment response are frequently

evaluated by patient-reported measures of rectal bleeding

and stool frequency, with resolution of rectal bleeding and

bowel habit normalization identified as important thera-

peutic targets for UC, in conjunction with endoscopic

remission [14]. As endoscopy is an invasive and costly

procedure, surrogate markers that reflect the severity of

mucosal inflammation have been investigated. Fecal cal-

protectin, which can be readily measured from stool sam-

ples, is highly correlated with endoscopic and histologic

activity and has been proposed as a reasonable surrogate

for a treatment target [15, 16].

Dose/exposure-response modeling of drug interaction

has a long history with multiple definitions of additivity or

synergy, each having its advantages and disadvantages [8].

Defining additivity or synergy is not the purpose of this

manuscript; instead, the aim was to demonstrate that the

latent variable IDR framework can be readily used for

mechanism-based assessment of drug-drug interaction with

both categorical and continuous clinical endpoints. Data

from a Phase 2a clinical trial in patients with moderate-to-

severe active UC [17] that evaluated combination therapy

with guselkumab (TREMFYA�) and golimumab (SIM-

PONI�) was used as an illustration.

Methods

Study design

A Phase 2a, randomized, double-blind, active-controlled,

parallel-group, proof-of-concept trial (ClinicalTrials.gov

number, NCT03662542) was conducted in patients with

moderate-to-severe active UC. The trial consisted of 2

distinct phases: a 12-week combination therapy compar-

ison phase followed by a 26-week monotherapy phase

(total treatment period of 38 weeks with last study treat-

ment administered at Week 34). At Week 0, patients were

randomly assigned, in a 1:1:1 ratio, to receive (1) goli-

mumab monotherapy: golimumab 200 mg subcutaneous

(SC) injection at Week 0, followed by golimumab 100 mg

SC at Week 2 and then golimumab 100 mg SC every 4

weeks (q4w), (2) guselkumab monotherapy: guselkumab

200 mg intravenous (IV) infusion at Weeks 0, 4, and 8

followed by guselkumab SC 100 mg q8w, or (3) combi-

nation therapy?guselkumab monotherapy: guselkumab

200 mg IV and golimumab 200 mg SC at Week 0; goli-

mumab 100 mg SC at Weeks 2, 6, and 10; guselkumab

200 mg IV at Weeks 4 and 8 followed by guselkumab

100 mg SC q8w. Patients randomized to combination

therapy received guselkumab monotherapy after Week 12.

The study design is shown in Fig. 1. More details have

been described previously [12].

Pharmacokinetic and longitudinal clinical
efficacy assessments

During Weeks 0–12, guselkumab and golimumab serum

samples were collected every 2 weeks. At visits when

patients received treatment, a pre-dose sample was also

collected. Additionally, for IV infusion-related visits (i.e.,

Weeks 0, 4, and 8), another sample was taken pre-dose and

approximately 1 hour post-dose. Afterwards, serum sam-

ples of guselkumab and golimumab were collected at

Weeks 14, 16, 24, 32, 34, 38, at early termination when

applicable, and at safety follow-up.

Patient-reported scores for rectal bleeding and stool

frequency (both having possible values of 0, 1, 2, or 3, with

higher scores indicating greater disease severity) were

collected at Weeks 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, 24,

26, 30, 32, 34, 38, at early termination, and at safety fol-

low-up. Rectal bleeding and stool frequency were modeled

as ordered categorical endpoints. In addition, a binary

endpoint of symptomatic remission (yes/no) was evaluated

at the same time points and was defined as achieving a

rectal bleeding score of 0, a stool frequency score of 0 or 1,

where stool frequency had not increased from baseline.
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Fecal calprotectin concentrations were evaluated at Weeks

0, 2, 4, 8, 12, 24 and 38. The final dataset contained data

from 214 randomized patients overall, with 1958 guselk-

umab pharmacokinetic (PK) measurements from 142

patients, 1686 golimumab PK measurements from 143

patients, 3553 symptomatic remission outcomes, 3441

rectal bleeding and stool frequency scores, and 1378 fecal

calprotectin concentration measurements.

Population PK modeling

Population PK modeling following SC administration of

guselkumab using a one-compartment model with first-

order absorption and first-order elimination has been

described previously [18]. The availability of the data from

IV administration allowed for a two-compartment popula-

tion PK model, with body weight as the main covariate for

both clearance and volume of distribution [19]. The typical

clearance and absolute bioavailability were estimated as

0.34 L/day and 74%, respectively. Population PK model-

ing following SC administration of golimumab using a

one-compartment model with first-order absorption and

first-order elimination has been described previously [20].

Following a confirmatory analysis approach [19], with

body weight as the main covariate for both clearance and

volume of distribution, the typical clearance was estimated

as 0.84 L/day. Exploratory analyses did not suggest addi-

tional covariates. The detailed results will be reported in a

separate publication. Individual empirical Bayesian PK

parameter estimates based on the population PK model

were obtained and used for the subsequent ER analysis.

Categorical endpoint model and latent variable
motivation

For the categorical endpoints of symptomatic remission,

rectal bleeding, and stool frequency, the following mixed-

effect logistic regression model was used:

logit½probðY 6 kÞ� ¼ ak þ f ðtÞ þ g ð2Þ

where Y is the response, k = 0 for symptomatic remission

and k = 0, 1, or 2 for rectal bleeding and stool frequency

scores, ak represents the intercept, t is time, and g is a

normally distributed random variable representing

between-subject variability (BSV). To stabilize parameter

estimation, ak was re-parameterized as (a1, d0, d2) where
d0, d2[ 0 are distances between intercepts such that

a0 = a1 – d0, and a2 = a1 ? d2. For symptomatic remis-

sion, there is only one intercept, namely a0, thus no re-

parameterization is needed.

The logistic regression model has a latent variable

motivation. Let L(t) be a latent variable indicating the

underlying disease severity such that when it drops below

thresholds {ak}, the outcome Y = k is observed. That is,

Y B k , L(t) \ ak. Assume that L(t) is modeled as

L(t) = M(t) ? re, where M(t) is the model predictor, e is

Fig. 1 Study Design Schema
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error with a logistic distribution with standard deviation r.
It can then be shown that r is not separately identifiable

and may be set to 1 [21], and prob[Y B k] = prob[L(t)\
ak] = F[ak - M(t)], where F is the inverse logit function.

This is the same as Eq. 2, with -M(t) = f(t) ? g. While

standard in statistical theory [3], in the context of applying

IDR models this derivation was first given by Hutmacher

et al. [21]. The derivation allows the interpretation of f(t) in

Eq. 2 as a physiological variable, and consequently the

mechanistic consistency of applying IDR models. In this

setting, Hu has proposed that f(t) be modeled in a reduc-

tion-from-baseline form [6].

The drug effect f(t) is given below separately for the

scenarios of single and combination drugs.

Basic latent variable indirect response model

At the single drug level, the same structural drug effect model

for both guselkumab and golimumab was used as follows:

dR tð Þ
dt

¼ kin 1� C

IC50 þ C

� �
� koutR tð Þ ð3Þ

where R(t) is a latent variable, C is drug concentration, and

kin (disease formation rate), IC50 (half-maximal inhibitory

concentration), and kout (disease amelioration rate) are

parameters in a Type I IDR model that has previously been

used for guselkumab in other disease areas and golimumab

in UC [22, 23]. It was further assumed that at baseline

R(0) = 1, yielding kin = kout. The reduction of R(t) was

assumed to drive the drug effect through:

f ðtÞ ¼ DE½1� RðtÞ� ð4Þ

where DE is a parameter to be estimated that determines

the magnitude of drug effect.

Theoretically, the representation of the drug effect in

Eqs. 2–4 has been shown to be equivalent to a change-from-

baseline latent-variable IDRmodel [24], forwhich koutmaybe

empirically interpreted as the rate constant of drug effect onset

and offset, and DE may be interpreted as the latent variable

baseline prior to normalization. In this setting, the Imax/Emax

parameter appearing in the general IDR model is usually not

separately estimable and should be set to 1 as shown previ-

ously [6]. More details on the theoretical characteristics of

latent variable IDR models are described elsewhere [6].

2-Pathway (independence) model

Initially, guselkumab and golimumab effects were modeled

independently as.

f ðtÞ ¼ fgusðtÞ þ fgolðtÞ ð5Þ

where fgus(t) and fgol(t) follow the basic change-from-

baseline latent-variable IDR form of Eqs. 3–4, namely

fgusðtÞ ¼ DEgus½1� RgusðtÞ� ð6Þ

and

dRgus tð Þ
dt

¼ kin;gus 1� Cgus

IC50;gus þ Cgus

� �
� kout;gusRgus tð Þ

ð7Þ

where kin, gus = kout, gus, and fgol(t) is defined similarly.

Equation 5 may seem empirical, but guselkumab and

golimumab may be interpreted as affecting the latent

variable L(t) through two separate pathways, with maximal

effects on each pathway determined by DEgus and DEgol,

respectively [6].

Interaction model

It is not a priori clear whether guselkumab and golimumab

would work independently in UC. To assess potential

interaction effects, Eq. 5 was augmented with an additional

component based on the Agonist – Partial Agonist model,

which in this case appears more plausible than other

interaction models given in [10]:

f ðtÞ ¼ fgusðtÞ þ fgolðtÞ þ fAPAðtÞ ð8Þ

where

fAPAðtÞ ¼ DEAPA½1� RAPAðtÞ� ð9Þ

and

dRAPA tð Þ
dt

¼ kin;APA 1� IHð Þ � kout;APARAPA tð Þ ð10Þ

with kin, APA = kout, APA and IH taking the form of Eq. 1

with A = gus, B = gol for guselkumab and golimumab,

respectively, and Emax,gus = Emax,gol = 0.5. Further

refinement is possible by modeling the ratio of Emax,gus and

Emax,gol as an additional parameter while keeping their sum

at 1.

Under Eq. 8, guselkumab and golimumab may be

interpreted as affecting endpoint Y through three separate

pathways: one for guselkumab only, one for golimumab

only, and one that is shared between both guselkumab and

golimumab. The similarity of parameters, particularly

IC50s between the Agonist – Partial Agonist component

and the guselkumab and golimumab only components,

were also assessed.

Continuous endpoint model

Fecal calprotectin, a non-invasive surrogate marker of

colonic inflammation, was previously modeled in a single

drug setting with a Type I IDR model [20]. Fecal calpro-
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tectin cut-off values, ranging from\ 50 lg/g to\ 150 lg/
g, have been identified to differentiate active versus qui-

escent colonic disease endoscopically [12, 21, 22]. Similar

cut-offs have also been associated with histologic remis-

sion [23, 24]. In this study, reduction of fecal calprotectin

below 100 lg/g was used as a surrogate for endoscopic

improvement. The Type I IDR model was extended to

describe the combined guselkumab – golimumab effect on

FC(t), the time course of fecal calprotectin, as

dFC tð Þ
dt

¼ kin;FC 1� IHð Þ � kout;FCFC tð Þ ð11Þ

where

IH ¼ 1� Emax;gusCgus

IC50FC;gus þ Cgus

� �
1� Emax;golCgol

IC50FC;gol þ Cgol

� �

ð12Þ

which may be viewed as a 1-pathway independence model.

For ease of interpretation, kin,FC is re-parameterized as BFC

� kout,FC, where BFC is baseline fecal calprotectin and will

be estimated instead. BSV was modeled on BFC and

explored on other parameters. A log-transform-both-sides

approach was applied.

Model estimation and evaluation

A sequential pharmacokinetic/pharmacodynamic (PK/PD)

modeling approach was used by first fixing the individual

empirical Bayesian PK parameter estimates. NONMEM

Version 7.4 with the LAPLACE estimation option was

used for all modeling [25]. A decrease in the NONMEM

minimum objective function value (OFV) of 10.83, corre-

sponding to a nominal p-value of 0.001 for a v2 distribu-

tion with 1 degree of freedom, was considered as the

threshold criterion for including an additional model

parameter. For categorical endpoints, residuals have been

defined but are not practically useful [26]. Visual predictive

check (VPC) with 500 replicates was used for model

evaluation [27]. For categorical endpoints, the observed

frequencies were overlayed with the VPC intervals (VPCI)

constructed from the simulated median, 5%, and 95%

percentiles of the model predicted frequencies [28]. Note

that percentiles, e.g., 5% and 95%, are not meaningful for

raw observed categorical endpoints.

Results

Demographics and baseline characteristics

Baseline body weight, the only influential PK covariate,

ranged between 40 and 145 kg, with a mean (SD) of 71

(18) kg. Mean rectal bleeding and stool frequency scores

and median fecal calprotectin concentrations were similar

among treatment groups as shown in Table 1. More

detailed demographics and baseline covariates were

reported elsewhere [17].

Symptomatic remission

The 2-pathway independence model was fitted first. The

parameter estimates and estimation precision were rea-

sonable for the study size (data not shown). The VPC

results are shown in Fig. 2 (left column). The model

notably overpredicted the combination treatment response

but underpredicted the golimumab treatment response. This

suggests potential pharmacodynamic interactions.

The Interaction model was fitted next. Compared with

the 2-pathway independence model, the NONMEM OFV

improved by more than 100, indicating significant

improvement of the fit. An attempt of including the ratio of

Emax,gus and Emax,gol as an additional parameter resulted in

a point estimate of Emax,gus = 0.4, with an insignificant

OFV change of 6 and convergence difficulties, thus it was

not kept in the model. Subsequent exploration showed that

neither individual component, fgus(t) or fgol(t), could be

removed from the model, suggesting that all 3 pathways

contributed to the combination effect of guselkumab and

golimumab. Setting DE and kout parameters of different

components to be equal mostly resulted in significantly

worse fits. However, setting IC50,APA, gus = IC50,gus and

IC50,APA, gol = IC50,gol resulted in a negligible NONMEM

OFV change, indicating the lack of significant difference.

This was considered the final model, and the parameter

estimates are given in Table 2. Estimation precision was

reasonable, with relative standard errors (RSEs)\ 40%

except for those of IC50 parameters where difficulties with

parameter estimation may be expected with only single

drug doses used. The condition number of the model,

calculated as the ratio between the largest and smallest

eigenvalues of the variance-covariance matrix, was * 100

which was reasonable. The VPC results improved notably

from the independence model (Fig. 2, right column) and

appeared to reasonably describe the observed data.
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Rectal bleeding score

The 2-pathway independence model was also fitted first.

The parameter estimates and estimation precision were

reasonable for the study size (not shown). The VPC results

are shown in Fig. 3 (left side). Also here, the model notably

overpredicted the combination treatment response but

underpredicted the single treatment responses. This sug-

gests potential pharmacodynamic interactions.

Table 1 Baseline characteristics

Characteristic Golimumab Monotherapy

(n = 72)

Guselkumab Monotherapy

(n = 71)

Combination Therapy

(n = 71)

Weight, kg, mean (SD) 73.9 (17.1) 69.6 (16.7) 69.8 (18.8)

Rectal bleeding subscore, mean (SD) 1.7 (0.6) 1.7 (0.7) 1.6 (0.6)

Stool frequency subscore, mean (SD) 2.3 (0.7) 2.4 (0.7) 2.4 (0.7)

Fecal calprotectin, mg/kg, median (IQR) 1588 (421; 3224) 1511 (495; 4166) 1577 (605; 3577)

Fig. 2 Visual predictive check results of the symptomatic remission independence and interaction models by treatment group. Key: VPCI, visual

predictive check interval; Independence: 2-way independence model; Interaction: 3-way interaction model
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The Interaction model was fitted next. Compared with

the 2-pathway independence model, the NONMEM OFV

improved more than 60, indicating significant improvement

of the fit. Subsequent exploration showed that neither

individual component, fgus(t) or fgol(t), could be removed

from the model. However, setting IC50,APA, gus = IC50,gus

and IC50,APA, gol = IC50,gol resulted in a NONMEM OFV

increase of \ 5, indicating the lack of significant differ-

ence. This was considered the final model, and the

parameter estimates are given in Table 2. Estimation pre-

cision was reasonable, with relative standard errors

(RSEs)\ 40% for most parameters except DEgus and the

independent pathway kout and IC50 parameters. The con-

dition number of the model was * 200 which was rea-

sonable. The VPC results, shown in Fig. 3 (right side),

notably improved from the independence model and, with

the overall variability, appeared to reasonably describe the

observed data.

Fecal calprotectin

Equations 11–12 were fitted to the data. Estimates of

Emax,gus and Emax,gol approached 1 and thus were fixed at

1. No additional BSV effects were supported by the data.

The final model parameter estimates are given in Table 2.

Estimation precision was reasonable, with RSE\ 30% for

all parameters. The condition number of the model was

\ 10 which was reasonable. No additional BSV terms

were supported other than for the baseline. The VPC

results for fecal calprotectin and the rate of achieving

fecal calprotectin\ 100 lg/g are shown in Figs. 4 and 5,

respectively. The model reasonably described the

observed data.

Discussion

To our knowledge, longitudinal ER modeling of categori-

cal clinical endpoints has not yet been conducted for

combination drug therapy. We have shown that the latent

variable IDR framework conveniently allows mechanism-

based assessments. For the clinical symptoms endpoints

(e.g., rectal bleeding score, stool frequency score and

symptomatic remission), the 2-way independence models

consistently overpredicted the combination treatment

response but underpredicted the single treatment responses.

This suggested potential pharmacodynamic interactions in

the sense that, if the parameter estimations were to be

changed to increase the single treatment predictions, the

independence models would also push the combination

treatment response prediction higher and thus even further

away from the observed data. The findings that the

Table 2 Final exposure-response model parameter estimates

Parameter Unit Description Symptomatic

remission

(% RSE)

Rectal bleeding

(% RSE)

Stool frequency (%

RSE)

Fecal

calprotectin

a1 Intercept -6.48 (10) -0.879 (23.4) -2.47 (10.8)

d0 Distance between intercepts 2.06 (6.97) 3.32 (4.86)

d2 Distance between intercepts 4.79 (12.5) 2.42 (6.24)

Var(g) BSV variance 6.4 (16.1) 5.23 (19.5) 6.82 (12.6) 2.13 (6.26)

kout,gus 1/day Drug effect onset rate constant 0.00882 (44.9) 0.0102 (79.2) 0.00777 (55.8) 0.0171 (13.8)

IC50,gus lg/mL Potency 0.0805 (53) 0.071 (191) 0.217 (71.5) 0.419 (27.7)

DEgus Maximum drug effect on the latent

variable scale

3.02 (30.4) 2.33 (52.2) 1.92 (36.3)

kout,gol 1/day Drug effect onset rate constant 0.0103 (62.2) 0.0109 (47.2) 0.00508 (0.0729) 0.0494 (23)

IC50,gol lg/mL Potency 0.387 (64) 1.81 (53.7) 1.13 (65.3) 2.06 (30.4)

DEgol Maximum drug effect on the latent

variable scale

2.6 (38.6) 4 (37.8) 4.33 (31.1)

kout,APA 1/day Drug effect onset rate constant 0.0833 (24.1) 0.0656 (48.6) 0.0694 (17.5)

DEAPA Maximum drug effect on the latent

variable scale

11.8 (14.3) 6.17 (35.8) 7.1 (14.4)

log(BFC) log( lg/
g)

Baseline fecal calprotectin 7.08 (1.56)

Var(e) Residual error on log scale 1.48 (11.8)

Key: RSE relative standard error, BSV between-subject variability
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combination treatment responses are less than the inde-

pendence model-predicted single treatment responses are

consistent with the Agonist – Partial Agonist mechanism.

The 3-way interaction models notably improved the model

fits as compared to the 2-way independence models. The

estimated maximal effect and the rate of onset, i.e., DE and

kout, under the Agonist – Partial Agonist pathway were

much larger than those under the single pathways, indi-

cating strong interaction effects with faster onset. The

fact that the guselkumab and golimumab IC50 parameters

could not be separately estimated between the different

pathways may be attributed to the lack of data. The simi-

larity of the final model structures also lends additional

confidence in the appropriateness of the selected models.

Other mechanism-based models, such as those given in

[11], may be used if deemed appropriate, especially if the

mechanism of drug interaction is known.

As symptomatic remission is defined in terms of rectal

bleeding and stool frequency scores, the question arises as

to why not use the developed rectal bleeding and stool

frequency models to predict symptomatic remission.

However, an attempt of this resulted in substantial biases
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Fig. 3 Visual predictive check results of the rectal bleeding score independence and interaction models by treatment group. Key: VPCI, visual

predictive check interval; Independence: 2-way independence model; Interaction: 3-way interaction model
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(data not shown), despite the apparent adequacy of the

rectal bleeding and stool frequency models in describing

the observed data. An attempt of jointly modeling rectal

bleeding and stool frequency using the shared random

effect framework [29] did not help either. This finding may

be explained because rectal bleeding and stool frequency

models must predict not only mean outcomes, but also

BSVs of all model parameters and their correlations. It

recently has been shown that this task is difficult to achieve

with only categorical data, and the joint modeling with an

additional endpoint with continuous data granularity would

be necessary to facilitate effective identification of the

important random effects [30]. For this reason, a separate

model was developed for symptomatic remission, a com-

monly used stringent clinical endpoint for signs and

symptoms in UC.

For the continuous clinical endpoint fecal calprotectin,

the 1-way independence model reasonably described the

data. Including an additional Agonist – Partial Agonist

interaction term into the model resulted in no
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improvement, which further confirmed the adequacy of the

1-way independence model. The ability of the model to

describe the rate of achieving fecal calprotectin\ 100 lg/
g added further confirmation, as a model may describe the

originally fitted endpoint but fail to describe a derived

endpoint [31].

Longitudinal ER modeling of clinical endpoints facili-

tates effective decisions in clinical development [2]. For

combination studies, using the full exposure and clinical

endpoint time course information can be particularly

important to assess the potential mechanism of drug

interaction and to more effectively inform on possible

clinical outcomes under alternative dosing regimens. Due

to the limited number of dose groups and patients in this

application, the findings, including the interaction mecha-

nism, should be considered exploratory.
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Conclusion

The latent variable IDR approach provides a convenient

framework which allows mechanism-based interaction

assessment of combination therapies using categorical

clinical endpoints. The approach also extends readily to

continuous clinical endpoints.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s10928-
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