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Abstract
Dosing requires consideration of diverse patient-specific factors affecting drug pharmacokinetics and pharmacodynamics.

The available pharmacometric methods have limited capacity for modeling the inter-relationships and patterns of vari-

ability among physiological determinants of drug dosing (PDODD). To investigate whether generative adversarial net-

works (GANs) can learn a generative model from real-world data that recapitulates PDODD distributions. A GAN

architecture was developed for modeling a PDODD panel comprised of: age, sex, race/ethnicity, body weight, body surface

area, total body fat, lean body weight, albumin concentration, glomerular filtration rate (EGFR), urine flow rate, urinary

albumin-to-creatinine ratio, alanine aminotransferase to alkaline phosphatase R-value, total bilirubin, active hepatitis B

infection status, active hepatitis C infection status, red blood cell, white blood cell, and platelet counts. The panel variables

were derived from National Health and Nutrition Examination Survey (NHANES) data sets. The dependence of GAN-

generated PDODD on age, race, and active hepatitis infections was assessed. The continuous PDODD biomarkers had

diverse non-normal univariate distributions and bivariate trend patterns. The univariate distributions of PDODD

biomarkers from GAN simulations satisfactorily approximated those in test data. The joint distribution of the continuous

variables was visualized using three 2-dimensional projection methods; for all three methods, the points from the GAN

simulation random variate vectors were well dispersed amongst the test data. The age dependence trend patterns in GAN

data were similar to those in test data. The histograms for R-values and EGFR from GAN simulations overlapped

extensively with test data histograms for the Hispanic, White, African American, and Other race/ethnicity groups. The

GAN-simulated data also mirrored the R-values and EGFR changes in active hepatitis C and hepatitis B infection. GANs

are a promising approach for simulating the age, race/ethnicity and disease state dependencies of PDODD.
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Introduction

The composition, physicochemical properties, and labeling

of drug products are carefully controlled during drug

development and manufacturing to assure product quality

and performance. However, optimal drug dosing decisions

in real-world clinical settings require consideration of the

interactions of the drug product with patient-specific

characteristics that can be highly variable. Factors related

to the absorption, distribution, metabolism, and elimination

processes responsible for drug pharmacokinetics (PK) and

pharmacodynamics (PD) are particularly important patient-

specific physiological determinants of drug dosing

(PDODD).

The goal of the covariate modeling step in pharmaco-

metric model development is to identify patient-specific

factors that can explain variability of the PK parameters in

the structural model [1, 2]. The specific sites at which the

critical interactions of the drug product with physiological

processes occur often cannot be sampled or characterized

in the clinical setting and their potential impact must be

inferred from other biomarkers that covary with these

processes. Age, sex, race/ethnicity, body weight and body
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surface area are examples of patient-specific covariates that

are typically assessed in pharmacometric modeling because

they are easily obtained. There are however an ever-in-

creasing number of observable surrogate markers that can

be leveraged as potential sources of information regarding

whole body and organ-specific function, e.g., the blood,

liver, and kidney, in the clinical setting.

PDODD can exhibit complex inter-dependencies that

can include both non-linear multivariate trends and patterns

of variability containing pairwise correlations and higher-

order associations, e.g., body weight has complicated

dependencies on age, sex, race/ethnicity. Conceptually, all

the underlying relationships among all the salient patient-

specific characteristics in the population can be represented

as a high-dimensional joint distribution that subsumes the

trends, pairwise correlations, and multivariate associations

among the constituent variables.

Parametric methods such as multivariate distributions,

copulas, and Bayesian models can characterize different

aspects of the joint distribution, but these methods require

extensive user input that limits their utility to small num-

bers of variables and known distributions [1–3]. Approa-

ches requiring less user input, e.g., information theoretic

and machine learning (ML) algorithms such as random

forests, have also been investigated for identifying and

modeling the inter-dependencies among key pharmaco-

metric covariates [4, 5].

This research investigates an innovative approach that

can learn models for complex high-dimensional PDODD

joint distributions and their dependence on age, race/eth-

nicity, and disease state from real-world ‘‘big data’’ and

generate random variate PDODD vectors. The approach

uses an emerging artificial intelligence (AI) deep learning

method called generative adversarial networks (GANs),

which has been used to create realistic simulations of

complex patterns in images [6]. Users can employ the

learned model to simulate PDODD vectors without the

need to access or analyze the underlying real-world data.

Methods

Panel of physiological determinants of drug
dosing (PDODD)

Dataset We used public-domain data from the National

Health and Nutrition Examination Survey (NHANES)

conducted by the National Center for Health Statistics

(NCHS) in the United States. The NHANES collects data

from laboratory measurements, physical screening, and

surveys; the data are made available to the public every 2

years [7].

The PDODD panel consisted of age, sex, race/ethnicity,

body weight, body surface area, total body fat, lean body

weight, albumin concentration, glomerular filtration rate,

urine flow rate, urinary albumin-to-creatinine ratio, alanine

aminotransferase to alkaline phosphatase R-value, total

bilirubin, active hepatitis B infection status, active hepatitis

C infection status, red blood cell, white blood cell, and

platelet counts.

Data required for the PDODD panel were extracted and

pooled from the 2011–2012, 2013–2014, 2015–2016, and

2017–2018 NHANES data release cycles.

Data pre-processing Subjects 12 years and older were

included. In NHANES, subjects 80 years-old and over are

coded as 80 years.

Race was recoded from the RIDRETH1 Race/Hispanic

origin variable. The Mexican American and Other Hispanic

participants were recoded as Hispanic; the other races

(Non-Hispanic White, Non-Hispanic Black, Other –

including Multiracial) were retained unchanged.

Body surface area (BSA, m2) was calculated from

Weight kgð Þ and Height cmð Þ using the Dubois and Dubois

Eq. (8):

BSA ¼ 0:007184Weight0:425Height0:725

Estimated glomerular filtration rate (EGFR, ml/min 1.73

m2) was obtained from serum creatinine measurements

using the CKI-EPI study 2021 formula [9].

EGFR ¼ 142b 0:9938Age
� �

minðLBXSCR=j; 1ÞamaxðLBXSCR=j; 1Þ�1:2

In the equation: LBXSCR is serum creatinine in mg/dl; b
is a constant that is 1.012 for females and 1 for males, Age

is in years; j is a constant that is 0.7 for females and 0.9 for

males, a is a constant that is - 0.241 for females and

- 0.302 for males; min and max are minimum and maxi-

mum functions [9].

RVALUE is a computed measure of liver function [10]

obtained from serum alanine aminotransferase (LBXSATSI)

and serum alkaline phosphatase (LBXSAPSI) activity

measurements in a standard complete metabolic panel

(CMP).

RVALUE ¼ LBXSATSI=ULNLBXSATSIð Þ= LBXSAPSI=ULNLBXSAPSIð Þ

ULNLBXSATSI and ULNLBXSAPSI are the upper limits of

normal (ULN) for alanine aminotransferase (ALT) and

alkaline phosphatase (ALP), respectively. ULNLBXSATSI was

set to 29 IU/L for males and 22 IU/L for females [11].

Based on Gonzalez et al. [12], ULNLBXSAPSI for the His-

panic group was 123.2 IU/L for females and 123.8 IU/L for

males; for the non-Hispanic White group it was 97.1 IU/L

for females and 109.6 IU/L for males; for the non-Hispanic

Black group it was 109.9 IU/L for females and 116.3 IU/L

for males; the values non-Hispanic White group were used
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for the Other – including multi-Racial group. The previ-

ously described recoded Race variable was employed.

The average urine flow rate was calculated from three

separation urine collections using NHANES guidelines

[13].

Active hepatitis B virus (HBV) infection status was a

binary variable that was set to unity for anti-HBV core

antigen antibody (anti-HBc Ab, LBXHBV) positive sub-

jects who tested positive for HBV surface antigen (HBsAg,

LBDHBG) and 2 for anti-HBc Ab tested subjects not

meeting the criterion. Active hepatitis C virus (HCV)

infection status was a binary variable that was set to unity

for anti-HCV screening antibody (anti-HCV Ab) positive

subjects who tested positive for HCV-RNA (LBXHCR)

and 2 for anti-HCV Ab screening antibody subjects not

meeting the criterion.

The continuous biomarker data were log-transformed,

and minmax scaled to the range �1,1½ �. There were a few

zeroes in the bilirubin variable; a small positive number

(0.0009), which was 10-fold lower than the lowest reported

measured value was added prior to log-transformation.

Data pre-processing and variable computations were

conducted with the R statistical computing platform [14].

The pooled data were randomly split into training (80%)

and test (20%) data sets. Listwise exclusion was employed.

GAN architecture

A generative adversarial network (GAN) is comprised of

two neural networks called generator and discriminator that

are trained competitively. During training, the generator

transforms random vectors from a latent space to synthe-

size generated data vectors. The discriminator is a binary

classifier that is trained to distinguish real data vectors from

generated data vectors. Upon successful training, the joint

distribution of the generated data vectors approximates the

joint distribution of the real data. Supplementary Fig. 1

shows the characteristic features of a typical GAN and

describes the key functions of its components.

Two fully connected hidden layers of size 256 were used

in both generator and discriminator. In the generator,

batch-normalization and ReLU activation functions were

used after each fully connected layer. A variational Gaus-

sian mixture model was used to identify the modality of the

data and apply normalization specific to the mode. After

two hidden layers, the synthetic row representation is

generated. The scalar values of this representation are

generated using tanh activation, while the mode indicator

and discrete values are generated by Gumbel softmax.

In the discriminator, we used leaky ReLU function and

dropout on each hidden layer. The PacGAN framework

with 10 samples in each pack was used to reduce mode

collapse [15]. A key consideration during the design of the

GAN architecture for PDODD modeling was the tabular

nature of the data, which lacks the local correlation struc-

tures present in image analysis [16].

The model was trained for 1000 epochs with batch size

of 300 and five discriminator steps. Upon successful

training, a simulated dataset containing 10,000 GAN-sim-

ulated random variate data vectors was computed. The

GAN-generated data distributions were compared to the

distribution of the test data.

The GANs for modeling PDODD were prototyped using

PyTorch, an open-source library for AI and machine

learning based on the Python programming language [17].

Data analysis

Data analyses and visualization were conducted in the R

statistical computing platform [14].

In exploratory analysis, descriptive statistics (frequen-

cies, mean, standard deviations, median, inter-quartile

range. and range) were obtained from the input data set

prior to GAN modeling. The ggpairs package was used to

generate pairs panel plots containing bivariate densities,

univariate densities, and bivariate scatter plots with loess

fits of the input dataset. Box plots of RVALUE and EGFR

in the groups with and without active hepatitis C or active

hepatitis B infection were obtained and independent sam-

ple t-tests were used to evaluated differences between the

groups.

GAN performance was assessed by comparing the

GAN-generated biomarker distributions to the test data. A

random sample of GAN-generated variates of the same size

as the test data set was employed.

For visualization of univariate distributions of the con-

tinuous PDODD variables, probability density histograms

and quantile-quantile plots (QQ plots) of test data vs.

GAN-generated data were compared.

For visualization of the multivariate distribution, the

t-distributed stochastic neighbor embedding (t-SNE), uni-

form manifold approximation and projection (UMAP) and

principal components analysis (PCA) were used to obtain

the two-dimensional projections of the 14-dimensional

data. The Rtsne, umap packages and prcomp function in R

were used [18–20]. The perplexity and theta hyperparam-

eters for t-SNE were set to 50 and 0.5, respectively.

Results

Study population and biomarker panel

The study data were a subset from the population based

NHANES study participants (n = 27,832). We excluded

participants (n = 11,324) who were less than 12-years-old
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age at the screening visit. Table 1 summarizes the demo-

graphic characteristics and descriptive statistics for the

drug disposition biomarkers for n = 27,832 participants

included.

Supplementary Fig. 2 summarizes the probability mass

functions of the discrete PDODD variables: sex, race/eth-

nicity; active hepatitis B virus and hepatitis C virus

infection status are also summarized. The proportions of

males and females was similar across the different race/

ethnicity groups. The overall of active hepatitis B and

hepatitis C infection frequencies were 0.59% and 1.24%

(Table 1), respectively.

The pairs plots in Fig. 1A and B summarize the uni-

variate densities (along diagonal), bivariate densities

(contour density plots in lower triangular region) and

trends (loess fits in bivariate plots in upper triangular

region) among the log transformed and minmax scaled

continuous PDODD variables. The set of variables was

divided into two sets of seven variables so that the number

of plots in the pair plot panel was manageable. The loess

fits in Fig. 1A and B highlight the different non-linear

trends among the continuous variables. The bivariate

contour density plots show that a variety of different non-

normal distribution patterns of variations are present

among the PDODD.

Continuous PDODD panel joint distribution
simulations

We compared the random-variate data vectors from GAN

simulations to the test data. The multivariate joint distri-

bution of the PDODD panel contains 14 continuous vari-

ables and four categorical variables (sex, race/ethnicity,

active hepatis C infection and hepatis B infection) cannot

be visualized directly.

We first evaluated GAN for simulating the continuous

variables in the PDODD panel containing 14 continuous

variables using univariate probability density histograms

and quantile-quantile plots (QQ plots) of the empirical data

distributions. The probability density histograms of GAN-

simulated data are compared to the corresponding test data

in Fig. 2 A-N for the 14 continuous variables in the

PDODD panel. There was extensive overlap of the GAN-

simulated univariate distributions with the test data uni-

variate distributions. The QQ plots, (Supplementary Fig. 2)

were all clustered around the line of identity, which con-

firms satisfactory approximation of the univariate distri-

butions of the continuous variables by the GAN.

In the next step, we assessed 2-dimensional projections

of the joint distribution of the 14 continuous variables. We

used three separate projection methods: t-SNE, UMAP and

PCA. The results in Fig. 3 show that the projections of the

GAN-simulated data vectors were well dispersed among

the projections of the test data vectors for all three meth-

ods. The loess lines, which were used to evaluate regions of

deviation, showed only modest deviations. These evalua-

tions are consistent with a satisfactory approximation of the

multivariate joint distribution of the PDODD panel.

Many PDODD exhibit complex patterns of age depen-

dence. To further assess GAN approximation of the mul-

tivariate joint distribution of the PDODD panel, we

visualized the age-dependence of bivariate distributions

using scatter plots (Fig. 4). We used loess lines to deter-

mine whether the inter-dependence trends of the continu-

ous PDODD variables from the GAN simulation were

satisfactory approximated the trends in test data. The GAN-

simulated data points were well dispersed with the test data

points in bivariate scatter plots with age. The loess lines

overlapped extensively. This indicates that GAN simula-

tions provide a satisfactory model for PDODD age

dependence trends and variability patterns.

Conditional GAN simulations of race/ethnicity
and disease states on PDODD

The categorical and continuous variables in the PDODD

panel were modeled simultaneously in our GAN approach.

We conducted assessments of the conditional distributions

of RVALUE and EGFR with the categorical variables of

race/ethnicity, active hepatitis C infection status and active

hepatitis B infection status. We selected RVALUE and

EGFR, which are biomarkers of hepatic and renal function,

respectively, as representative continuous PDODD for

these conditional assessments because of the importance of

liver and kidney function in drug metabolism and

elimination.

Effect of race/ethnicity The percentage of females were

similar in the GAN-simulated data (51.9%) and test data

(52.7%). The percentages of Hispanics and African

Americans were similar in the GAN-simulated data (30.1%

Hispanic and 18.4%) and test data (30.3% and 18.5%).

Figure 5 shows the probability density histograms of

RVALUE and EGFR variables in the Hispanic, White,

African American, and Other race/ethnicity groups. There

was extensive overlap between the GAN-generated data

and the test data histograms. This indicates the potential

utility of the GAN approach for incorporating race/eth-

nicity differences in PDODD.

Effect of disease state Some disease states can cause

alterations to PDODD. We used hepatitis B and hepatitis C

as an exemplar for evaluating whether GAN models could

recapitulate PDODD distributions in disease. Active hep-

atitis B and hepatitis C status were inferred from the lab-

oratory test results in NHANES. Active hepatitis C and
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hepatitis B infection were infrequent (1.24% and 0.59%,

respectively; Table 1).

Supplementary Fig. 4 shows box plots of RVALUE and

EGFR in the groups with and without active hepatitis C or

active hepatitis B infections in the NHANES-derived data

prior to GAN modeling. The RVALUES were higher in the

group with active hepatitis C (mean: 3.52 vs.1.42,

p\ 0.001, t-test) and in the group with active hepatitis B

(1.87 vs. 1.46, p = 0.001, t-test); the EGFR was lower in

the group with active hepatitis C (87.7 vs. 101 ml/min 1.73

m2, p\ 0.001) and modestly lower in the group with

active hepatitis B (96.5 vs. 101 ml/min 1.73 m2,

p = 0.019).

There were 19 subjects and 1863 subjects without active

hepatitis C in the GAN-simulated data (1.00%) compared

to 15 subjects with active hepatitis C and 1867 subjects

Table 1 Detailed summary statistics of the demographics and biomarkers from data set combined from NHANES 2011–2012, 2013–2014,

2015–2016 and 2017–2018

Variable

name

Variable description Actual N (%

Missing)

Percent

RIAGENDR Sex

Female

Male

27,832 (0)

14,258 (0)

13,574 (0)

–

51.2

48.8

RIDETH1 Race/Ethnicity

Non-Hispanic Black

Mexican American

Other Hispanic

Non-Hispanic White

Other–Including multi-racial

27,832 (0)

6422

4095

2915

9678

4722

–

23.1%

14.7%

10.5%

34.8%

17.0%

HEPB Active hepatitis B infection status 145/24,767 (11%) 0.59%

HEPC Active hepatitis C infection status 232/18,422 (33%) 1.24%

N missing (%) Mean (SD) Median (IQR) Min – Max

RIDAGEYR Age in years at screening 0 (0) 43.3 (20.9) 42 (24–61) 12–80

BMXWT Weight (kg) 1495 (5.4) 78.8 (22.5) 75.7 (62.9–90.7) 27.7–243

BSA Body surface area (m2) 1534 (5.5) 1.86 (0.268) 1.84 (1.67–2.03) 1.02–3.1

DXDTOFAT Total fat (g) 12,789 (46) 25,500

(12,000)

23,400

(16,800–31,800)

4900- 102,000

DXDTOLE Total lean excluding bone mineral content (g) 12,499 (44.9) 49,700

(12,900)

48,278

(39,700–58,100)

19,800–112,000

LBXSAL Albumin, serum (g/dL) 3142 (11.3) 4.25 (0.361) 4.3 (4–4.5) 2- 5.6

URDACT Albumin creatinine ratio (mg/g) 1812 (6.5) 48.7 (663) 7.41 (4.78–14.4) 0.21–92,500

LBXRBCSI Red blood cell count (million cells/uL) 2657 (9.5) 4.69 (0.503) 4.68 (4.36–5.02) 1.67–8.3

LBXWBCSI White blood cell count (1000 cells/uL) 2657 (9.5) 7.21 (3.44) 6.9 (5.7–8.4) 1.4–400

LBXPLTSI Platelet count (1000 cells/uL) 2658 (9.6) 241 (61.3) 235 (200–276) 8- 818

URDFLOW Urine flow rate average (mL/min) 4007 (14.4) 1.1 (1.36) 0.783 (0.481–1.34) 0.006–76.7

EGFR Glomerular filtration rate indexed ml/(min 1.73

m2)

3145 (11.3) 101 (26) 102 (84.8–120) 2.02–194

RVALUE Ratio of alanine aminotransferase to alkaline

phosphate

3152 (11.3) 1.46 (1.18) 1.23 (0.846–1.75) 0.0509- 43.3

LBXSTB Total bilirubin (mg/dL) 3157 (11.3) 0.591 (0.308) 0.5 (0.4–0.7) 0- 7.1

The total number of cases was n = 29,547 cases

RIDAGEYR is age in years and subjects 80 years-old and over are coded as 80 years. Only subjects 12 years and older included.BSA was

calculated from Weight (kg) and Height (cm) using the Dubois and Dubois equation:BSA m2ð Þ ¼ 0:007184Weight kgð Þ0:425Height cmð Þ0:725.
RVALUE is a measure of hepatic injury based on the ratio of serum alanine aminotransferase and alkaline phosphate activities normalized to

their respective upper limits of normal. EGFR is glomerular filtration rate calculated from serum creatinine and age in ml/min per 1.73 m2 of

body surface area. URDFLOW is a derived variable calculated from 3 possible urine flow measurements. HEPB is based on positivity for both

HBV surface antigen and anti-HBVc Ab. HEPC is based on positivity for both HCV-RNA and anti-HCV Ab
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AGE WEIGHT BSA TOTAL FAT TOTAL LEAN ALBUMIN ALB-CR RATIO

AGE
W

EIGHT
BSA

TOTAL FAT
TOTAL LEAN

ALBUM
IN

ALB-CR RATIO

RED CELLS WHITE CELLS PLATELETS URINE FLOW EGFR R-VALUE BILIRUBIN

RED CELLS
W

HITE CELLS
PLATELETS

URINE FLOW
EGFR

R-VALUE
BILIRUBIN

A

B

Fig. 1 A is a pairs panel plot of

seven continuous variables: age,

weight, body surface area

(BSA), total fat mass, total lean

mass, albumin, and urine

albumin-to-creatinine ratio. B is

the corresponding pairs panel

plot of seven other continuous

variables: red blood cell count,

white blood cell count, platelet

count, urine flow, estimated

glomerular filtration rate

(EGFR), alanine

aminotransferase to alkaline

phosphatase R-value, and

bilirubin. All variables were log

transformed and minmax scaled

to the range [- 1, 1]. The

diagonal contains the univariate

probability density functions.

The lower triangular region

represents the bivariate density

of the variables along the row

and column as a contour plot

(green lines). The upper

triangular region shows loess fit

lines (black lines) to the

bivariate scatter plots (points are

not shown to reduce clutter) of

the variables along the row and

column. The light gray shadows

around the loess fit lines are

confidence intervals of the fit
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without active hepatitis C in the test data (0.80%); the

frequencies differences were not different (p = 0.61, Fisher

exact test). The frequencies of active hepatitis B were also

not different between the GAN-simulated and test data sets

(p = 0.84, Fisher exact test).

Figure 6 shows the probability density histograms of

the GAN-simulated RVALUE, EGFR values in the groups

with active hepatitis C status or active hepatitis B. Again,

there was extensive overlap of the GAN histograms with

the test data histograms in all the groups.

Together, these results demonstrate that the GAN

strategy can generate satisfactory approximations for high

dimensional biomarker joint distributions in disease.

Discussion

In this research we developed and evaluate an innovative

approach for generative modeling of the joint distribution

of PDODD and the dependencies on age, race/ethnicity,

and disease state.

In addition to demographic characteristics such as age,

sex, and race/ethnicity, we included a panel of diverse

biomarkers that are important determinants of dosing

decisions, drug disposition, and treatment outcomes across

therapeutic classes. Body weight and body surface area are

widely used for individualizing doses clinically. We also

included total fat and lean body mass measurements (from

0

.5

1

-1 0 1
RIDAGEYR

GAN

TEST

A

0

1

-1 0 1
BMXWT

B

0

1

-1 0 1
BSA

C

0

1

-1 0 1
DXDTOFAT

D

0

.5

1

-1 0 1
DXDTOLE

E

0

2

-1 0 1
LBXSAL

F

0

2

-1 0 1
URDACT

G

0

1

2

-1 0 1
LBXRBCSI
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0
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L

0
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M

0

2

-1 0 1
LBXSTB

N

Fig. 2 It compares the

univariate probability density

histograms from test data (teal

bars) to the corresponding

GAN-simulated values. The

overlap between the two

histograms is shown in the

darker gray-teal. The x-axes of
Fig. 2 A-N, respectively,

correspond to logarithm and

minmax transformed values of

RIDAGEYR: Age in years at

screening; BMXWT: Weight

(kg); BSA: Body surface area

(m2); DXDTOFAT: Total fat

(g); DXDTOLE: Total lean

excluding bone mineral content

(g); LBXSAL: Albumin, serum

(g/dL); URDACT: Albumin-

creatinine ratio (mg/g);

LBXRBCSI: Red blood cell

count (million cells/lL);
LBXWBCSI: White blood cell

count (1000 cells/lL);
LBXPLTSI: Platelet count

(1000 cells/lL); URDFLOW:

Urine flow rate average (mL/

min); EGFR: Glomerular

filtration rate indexed ml/(min

1.73 m2); RVALUE: Ratio of

alanine aminotransferase to

alkaline phosphate; LBXSTB:

Total bilirubin (mg/dL)
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dual energy X-ray absorptiometry) as hydrophobic drugs

preferentially partition into adipose tissue and lean body

mass is useful for dosing in obesity [21]. Albumin is the

most abundant plasma protein and albumin binding is

important for many acidic drugs [22, 23]. Some drugs

partition extensively into red blood cells causing discrep-

ancies between blood and plasma drug concentrations [24].

We included white blood cell and platelet counts (obtained

from the complete blood count) because baseline levels of

these cells can affect dosing decisions for drugs that cause

lymphopenia, neutropenia, and thrombocytopenia. We

used several measures of hepatic and renal function

because the liver and kidney are important sites for drug

metabolism, transport, and elimination. The renal function

biomarkers included urine flow rate, glomerular filtration

rate, and urine albumin to creatinine ratio. The albumin-to-

creatine ratio assesses proteinuria and could be a predictor

for high renal clearance of protein drugs. The hepatic

biomarkers included the alanine aminotransferase to alka-

line phosphatase ratio RVALUE, which is useful for dis-

tinguishing hepatocellular liver injury from cholecystic

disease and bilirubin. Hepatocellular injury with jaundice

forms the basis for Hy’s law, which is a reliable approach

for predicting drug-induced liver injury [25, 26].

Our approach, which included both whole body and

organ-specific measures, has several distinctive features

useful for drug disposition modeling but also weaknesses,

many of which might be addressable. Our PDODD panel

could be criticized for lacking biomarkers for specific drug

classes or diseases. Because the primary purpose here was
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projections of the continuous variables from the test data (teal points)

and the GAN-simulated data (salmon points). The solid lines

represent the loess fits to the test data (teal line) and the GAN-

simulated data (dark red line); the gray envelope represents the

confidence interval around the loess lines. The 2-dimensional

projections were obtained for logarithm and minmax transformed

values of RIDAGEYR: Age in years at screening; BMXWT: Weight

(kg); BSA: Body surface area (m2); DXDTOFAT: Total fat (g);

DXDTOLE: Total lean excluding bone mineral content (g);

LBXSAL: Albumin, serum (g/dL); URDACT: Albumin-creatinine

ratio (mg/g); LBXRBCSI: Red blood cell count (million cells/lL);
LBXWBCSI: White blood cell count (1000 cells/lL); LBXPLTSI:
Platelet count (1000 cells/lL); URDFLOW: Urine flow rate average

(mL/min); EGFR: Glomerular filtration rate indexed ml/(min 1.73

m2); RVALUE: Ratio of alanine aminotransferase to alkaline

phosphate; LBXSTB: Total bilirubin (mg/dL) (Color figure online)

118 Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:111–122

123



to conduct rigorous proof-of-concept for problems relevant

to drug disposition, we intentionally selected measures that

were easily and reliably obtained in the routine clinical

setting. However, not all measures routinely available in a

test were included. In certain cases, we were limited by the

date collected in NHANES, e.g., albumin was included but

we did not have data for alpha-1 acid glycoprotein or

oromucosoid, which binds basic and neutral drugs [22, 23].

Among the disease and disease exposures for which we had

data available, we included hepatitis because it can cause

liver damage and because positivity for hepatitis is rela-

tively common.

Notably our PDODD panel consisted of two classes of

biomarkers. One class of PDODD biomarkers was directly

extracted from clinical test results (e.g., weight, urine flow,

cell counts, albumin, bilirubin) whereas PDODD

biomarkers in the other class were computed from two or

more direct measurements, e.g., body surface area, EGFR

and RVALUE. We did not consider large scale ‘‘omics’’

data as the clinical utilization of these methods is not

established. Based on the proven versatility of GAN for

modeling complex, high dimensional distributions in image

generation applications, we anticipate that larger panels of

biomarkers could also be accommodated.

GAN provide an elegant approach for the statistical

problem of modeling high dimensional joint distributions,

which is particularly challenging because the data con-

tains higher-order correlation patterns. The GAN

approach is a generative model because it can be trained

to approximate high-dimensional joint distributions from

the instances presented from the datasets. GAN do not

require the user to specify the functional form of the joint

distribution; the distribution structure is encoded in the

neural networks during training. Once successfully

trained, the generator can be used to generate random

data vector variates concordant with the underlying data
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Fig. 4 The scatter plots show

the age dependence of the test

data (teal points) and the GAN-

simulated data (salmon points).

The solid lines represent the

loess fits to the test data (teal

line) and the GAN-simulated

data (dark red line). The x-axis
on all figures is logarithm and

minmax transformed values of

RIDAGEYR: Age in years at

screening; The y-axes of
Fig. 4 A-M, respectively,

correspond to logarithm and

minmax transformed values of

BMXWT: Weight (kg); BSA:

Body surface area (m2);

DXDTOFAT: Total fat (g);

DXDTOLE: Total lean

excluding bone mineral content

(g); LBXSAL: Albumin, serum

(g/dL); URDACT: Albumin-

creatinine ratio (mg/g);

LBXRBCSI: Red blood cell

count (million cells/lL);
LBXWBCSI: White blood cell

count (1000 cells/lL);
LBXPLTSI: Platelet count

(1000 cells/lL); URDFLOW:

Urine flow rate average (mL/

min); EGFR: Glomerular

filtration rate indexed mL/(min

1.73 m2); RVALUE: Ratio of

alanine aminotransferase to

alkaline phosphate; LBXSTB:

Total bilirubin (mg/dL) (Color

figure online)
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distribution. Examples of alternatives to the generative

modeling are resampling, Bayesian modeling, and copula-

based methods. Resampling methods provide sample

vector sets that are verbatim subsamples of the data set

used. Bayesian modeling requires priors, which can be

challenging to specify for high-dimensional data sets.

However, Bayesian models are useful in the setting of

modeling the distributions of multivariate functions of

random variables. The mathematical foundations of cop-

ulas are more complex than resampling and Bayesian

models. Copula methods require the user to specify the

marginal distributions of each individual biomarker and

additionally provide a copula distribution to encode

functional form for the higher-order correlation structure

amongst the variables.

Our results demonstrate the utility and elucidate the

potential of the GAN approach for modeling PDODD.

Study highlights

What is the current knowledge on the topic? Personal-

ized medicine requires consideration of patient-specific

factors that affect drug disposition. Age, race, hepatic and

renal function disease states, and other factors can affect

the dosing decisions.

What question this study addressed? To evaluate

generative adversarial networks (GANs), a deep learning-

based artificial intelligence technology, for modeling

patient specific physiological determinants of drug dosing.

What this study adds to our knowledge? The results

demonstrate that GANs can be used to generate simulated

samples that mimic the joint distribution of complex

physiological determinants of drug dosing.

How this might change clinical pharmacology and

therapeutics? The GAN approach could be a powerful and
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versatile method for generating disease-relevant biomarker

profiles and virtual patient datasets for clinical trial simu-

lations and pharmacometrics.
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