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Abstract
In a nonlinear mixed-effects modeling (NLMEM) approach of pharmacokinetic (PK) and pharmacodynamic (PD) data, two

levels of random effects are generally modeled: between-subject variability (BSV) and residual unexplained variability

(RUV). The goal of this simulation-estimation study was to investigate the extent to which PK and RUV model mis-

specification, errors in recording dosing and sampling times, and variability in drug content uniformity contribute to the

estimated magnitude of RUV and PK parameter bias. A two-compartment model with first-order absorption and linear

elimination was simulated as a true model. PK parameters were clearance 5.0 L/h; central volume of distribution 35 L;

inter-compartmental clearance 50 L/h; peripheral volume of distribution 50 L. All parameters were assumed to have a 30%

coefficient of variation (CV). One hundred in-silico subjects were administered a labeled dose of 120 mg under 4 sample

collection designs. PK and RUV model misspecifications were associated with relatively larger increases in the magnitude

of RUV compared to other sources for all levels of sampling design. The contribution of dose and dosing time mis-

specifications have negligible effects on RUV but result in higher bias in PK parameter estimates. Inaccurate sampling time

data results in biased RUV and increases with the magnitude of perturbations. Combined perturbation scenarios in the

studied sources will propagate the variability and accumulate in RUV magnitude and bias in PK parameter estimates. This

work provides insight into the potential contributions of many factors that comprise RUV and bias in PK parameters.

Keywords Residual unexplained variability � Nonlinear mixed-effects � Population pharmacokinetics � Sources of
variability

Introduction

In nonlinear mixed-effect modeling (NLMEM) of phar-

macokinetic (PK) and pharmacodynamic (PD) data, we

generally refer to two levels of random effects: between

subject variability (BSV), and residual unexplained vari-

ability (RUV). The former quantifies the variability of PK/

PD parameters within the population. The latter, RUV,

quantifies the residual variability in the model after

accounting for the PK structural model, the covariate

model, and the between-subject variability model.

We generally assume when we enter PK data into a

model that most measurements are absolute with no vari-

ability, or at least an ignorable amount. That is rarely the

case even in a well-controlled clinical trial. Probably the

easiest variability to understand is variability due to the

imprecision of our analytical techniques and is considered

a given in the remainder of this paper. Other potential

errors can occur, and we categorize those errors into three

types: (i) Manufacturing, (ii) clinical trial execution, and

(iii) technical execution errors.

During the manufacturing process, certain amount of

deviation from the labeled dose is allowed. Manufacturing

error includes this content uniformity variability that, in

general, the US Pharmacopeia recommends to be less than

15% [1]. Clinical trial execution errors can occur in
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recording the time the dose is given as well as in recording

the time of sampling blood [2, 3]. Technical errors include

misspecification of the pharmacostatistical model compo-

nents including the PK structural model and RUV statis-

tical model. Other technical errors include misspecification

of covariate models or BSV models, but they are not

addressed in this analysis.

To date, the degree to which these sources of variability

contribute to the estimated value of RUV is not well

characterized. The goal of this study is to quantify the

extent to which pharmacostatistical model (PK and RUV)

misspecification, errors in recording dose time, errors in

recording blood sampling time, and drug content unifor-

mity contribute to the value of RUV and bias and impre-

cision of PK parameter estimates. We further evaluate the

impact of sample collection density on the results.

Methods

Literature review

To get a sense of RUV magnitude in recently published

models, we evaluated studies published from 2019 to 2021

from any journal indexed in PubMed and Google Scholar.

Keywords included: ‘‘Population pharmacokinetics’’,

‘‘NONMEM’’, and ‘‘First-order conditional estimation with

interaction’’. Our inclusion criteria were a pharmacokinetic

structural model, first-order conditional estimation, and the

usage of NONMEM software. For simplicity, we captured

the magnitude of RUV from proportional error models and

the proportional term from combined error models. Papers

reported the RUV as a coefficient of variation (CV) cal-

culated as the square root of the variance or using a more

exact equation [4]. When RUV was reported as a variance,

values were converted to a CV using the square root of the

variance estimate. An analytical methods section was

sometimes included and the CV of the assay was recorded

when available.

Pharmacostatistical model

A single 120 mg dose study with a two-compartment

model, first-order absorption, and first-order elimination

was assumed as the true simulated model. This provided a

rapid distributive (alpha) half-life of 0.28 h and a slower

terminal elimination (beta) half-life of 12.2 h. Individual

PK parameters were assumed to have lognormal distribu-

tions with population typical values and CVs as reported in

Table 1. A 5% CV for proportional RUV magnitude served

as a somewhat optimistic baseline for analytical variability.

Sample collection design

We conducted our simulations with 4 levels of sample

collection designs; (i) SD9: 9 samples per subject with

nominal sampling times of 0.5, 1, 2, 4, 6, 8, 12, 24 and 48

h; (ii) SD7: 7 samples per subject with nominal sampling

times of 2, 4, 6, 8, 12, 24, and 48 h; (iii) SD5: 5 samples per

subject with nominal sampling times of 2, 8, 12, 24, and 48

h; and (iv) SD4: 4 samples per subject with nominal

sampling times of 2, 12, 24, and 48 h. Sample collections

were selected based on a typical pharmacokinetic study

design for the given half-life and optimal design was not

evaluated in this study.

Perturbations to the model

Starting with the reference pharmacostatistical model,

various perturbations from the nominal values were made

to the simulation dataset (vide infra). In addition, several

levels of perturbations were included. For each perturbed

dataset, 500 replicates of 100 in-silico subjects were sim-

ulated. These datasets included the perturbed item of

interest and simulated concentrations based on those per-

turbations. These datasets were then altered to include the

original nominal value while maintaining the perturbed

concentrations for estimation creating a mismatch between

the times and concentrations. Table 1S details the simula-

tion and estimation models used in this study.

Manufacturing perturbation (MP)

Let us assume that the protocol labeled dose (PD) is 120

mg. Since the amount of drug in any individual dosing unit

can vary from that, we model the true individual dose (ID)

for the ith subject as:

ID;i ¼ PD þ ji

Table 1 Parameter values used in the simulation

Parameter Value BSV (CV%)

CL (L/h) 5 30

V (L) 35 30

Q (L/h) 50 30

VP (L) 50 30

Ka (1/h) 0.7 30

rprop (%) 5

Drug clearance, CL Central volume of distribution, V Intercompart-

mental clearance, Q Peripheral Volume, VP Absorption rate constant,

Ka Coefficient of variation for residual unexplained variability, r
BSV Between-subject variability
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where ji is a normally distributed random variable with

mean of 0 and standard deviation of K. K was chosen to

represent two levels of MP variability, CV = 10% and 20%

of DL. Therefore, the model was independently simulated

using ID,i under the two scenarios.

Clinical trial execution perturbations (CTEP)

Given the protocol dosing time (PDT), the individual true

dosing time (IDT) for the ith subject was simulated as:

IDT;i ¼ PT þ ci

where ci is a normally distributed random variable with

mean of 0 and standard deviation of G. G was chosen to

have two levels of variability associated with a standard

deviation of SD = 5 min, and 10 min. Similarly, given the

protocol sample collection times for the ith subject and jth

point (PST,i,j), the true sample collection times at the ith

point and jth subject (IST,i,j) is:

IST;i;j ¼ PST ;i;j þ qi;j

where qi;j is a normally distributed random variable with

mean of 0 and standard deviation of R. Four levels of

variability were selected for R associated with standard

deviations of SD = 5, 10, 15, and 30 min.

Technical execution perturbations (TEP)

For PK model misspecification, we chose to fit the data

using a one-compartment model with first-order absorption

and first-order elimination instead of the true two-com-

partment model mentioned above.

A combined proportional and additive RUV was used as

the perturbation. An additive component was added to the

5% proportional component and simulated with 3 different

magnitudes. The approximate lower 10th percentile of

simulated concentrations was 0.1 mg/L. Specific pertur-

bations of 10% (rAdd = 0.01 mg/L), 20% (rAdd = 0.02 mg/

L) and 40% (rAdd = 0.04 mg/L) of this relatively low

concentration were included as the additive component in

the simulation. In these scenarios, data were fit using a

proportional error model instead of combined error model.

Combined perturbations

Additional simulations were done using the true two-

compartment model with the combined perturbations

ID,10%, IDT,5, IST,5min, and rAdd = 0.04 while fitting the data

using a one-compartment model.

Software and evaluation

The R package mrgsolve version 1.04 [5] was used to

generate the simulated data. All generated datasets were

carried over to the estimation process using NONMEM

version 7.5 (ICON plc Development Inc.). Parameter esti-

mation was obtained using first-order conditional estima-

tion with interaction (FOCE-I). ADVAN4/TRANS4 was

used for two-compartment model fitting and ADVAN2/

TRANS2 was used to fit a one-compartment model. Python

(Python Software Foundation. Python Language version

3.9) was used to automate the assigning, creating control

streams and executing NONMEM for estimation. All pro-

grams/scripts used in this project can be found in the MMJ

GitHub repository (https://github.com/Mutaz94/residual)

under open-source creative commons attribution 4.0

license with a detailed documentation for research

reproducibility.

Deviations of parameter estimates (bh) from the true

parameter value (hT) were computed as fractional devia-

tions (wÞ :

w ¼
bh
hT

:

We wish to define a term that captures deviations of

parameter estimates that is caused by variabilities intro-

duced by components of real world RUV. Although the

terms bias and imprecision may seem appropriate, it must

be kept in mind that bias and imprecision are not a function

of the data themselves. If bias and imprecision are strictly

related to an estimation method, perhaps erroneous data

and subsequent erroneous parameter estimates should not

be labeled as bias. Nonetheless, we refer to bias as the

deviation from original parameter estimates and impreci-

sion as the size of typical deviation. Relative bias (rBias),

and relative root mean squared error (rRMSE) were cal-

culated to assess the bias and imprecision of estimation,

respectively.

rBias %ð Þ ¼ 1

n

XN

i¼1
wi � 1ð Þ � 100%

rRMSE %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

XN

i¼1
wi � 1ð Þ2

r

� 100%

For combined perturbations, the median RUV magni-

tude for the kth sample collection design ðmCVRUV ;k) is

calculated as:

mCVRUV ;k ¼ CVRUV ;true � medianðWRUV;kÞ

and a corresponding interquartile range (25th and 75th

percentiles).

Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:123–132 125

123

https://github.com/Mutaz94/residual


Results

Literature review

In this study, 330 published studies from the literature were

evaluated. In 239 of the 330 studies, authors used a pro-

portional error model and 89 used a combined error model.

Two used an additive error model which was not included

in the analysis. The median and interquartile range [25th–

75th] of proportional RUV CV was 25% [17.6%–37.1%].

The median reported analytical assay (n = 72) CV was

8.9% [5%–11%]. Additional information is found in the

supplementary material.

Manufacturing perturbation (MP)

MP based on 4 different study designs is demonstrated in

Fig.1. Dosage content uniformity that reflects on relative

bioavailability of the drug had negligible effect on RUV

magnitude and it contributes more to the value of rBias in

random effects (BSV) on drug clearance (CL) and central

volume of distribution (V). BSV on V had the larger effect

by dosage content perturbations with bias up to 140%

compared to CL that had bias up to 20%. A sparse study

design had more rBias than an intense design on V.

Clinical trial execution perturbations (CTEP)

With CTEP, Figs. 2 and 3 demonstrate the contribution of

sampling and dose times on RUV magnitude and bias and

imprecision on PK parameter estimates, respectively. We

saw a small effect on inaccurate dosing time data with the

5-minute perturbation on RUV magnitude which mono-

tonically increases with higher perturbations. However,

bias is noticeable with some estimated parameters. For

instance, the typical value for V and corresponding BSV

are sensitive to 5-minute perturbation and even larger with

10-minute perturbation. On the other hand, perturbations

did not have much of effect on CL and intercompartmental

clearance (Q). While dosing time perturbations have a

small effect on RUV, inaccurate sampling time data has a

more noticeable rBias. The magnitude of RUV will

increase with increasing the magnitude of inaccurate data.

This pattern is more pronounced with intense designs

compared to sparse design.

Technical execution perturbations (TEP)

Figures 4 and 5 present the TEP deviation from the base-

line RUV magnitude for both RUV model misspecifica-

tions. Residual error misspecification contributed the

largest inflation in RUV magnitude compared to other
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Fig. 1 Contribution of manufacturing perturbation on RUV and PK

parameters; left-hand panel displays the relative bias; right-hand

panel displays the relative mean squared error. The Greek symbol

Omega present between-subject variability magnitude. The grey title

boxes represent the perturbation magnitude
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Fig. 2 Contribution of inaccurate PK sampling time data on RUV and

PK parameters; left-hand panel displays relative bias; right-hand

panel displays the relative mean squared error. The Greek symbol

Omega present between-subject variability magnitude. The grey title

boxes represent the perturbation magnitude
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Fig. 3 Contribution of inaccurate dosing time data on RUV and PK

parameters; left-hand panel displays relative bias; right-hand panel

displays the relative mean squared error. The Greek symbol Omega

present between-subject variability magnitude. The grey title boxes

represent the perturbation magnitude
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Fig. 4 Contribution of residual model misspecification on RUV and

PK parameters; left-hand panel displays absolute bias; right-hand

panel displays the relative mean squared error. The Greek symbol

Omega present between-subject variability magnitude. The grey title

boxes represent the additive standard deviation magnitude
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Fig. 5 Contribution of structural PK model misspecification on RUV and PK parameters; left-hand panel displays absolute bias; right-hand panel

displays the relative mean squared error. The Greek symbol Omega present between-subject variability magnitude
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sources we studied. Structural PK misspecification did not

have a noticeable effect on CL and BSV associated with

CL.

Combined perturbations

Combined perturbations are presented in Fig. 6. The

absorption rate constant, Ka, has high bias and imprecision

with combined perturbation for sample collection designs

SD7, SD5, and SD4 thus, the figure was truncated to a

reasonably high value (500%).

The median RUV under the combined perturbations for

different sample collection designs is shown in Table 2.

Discussion

Residual unexplained variability is an outcome of the

NLMEM analysis. It is most often reported without much

regard as to what constitutes it. Assay variability is the

obvious component and information regarding this is often

reported in publications as a % CV of the assay. In our

literature review, we found the median % CV to be 8.9%

over a three-year review of published articles. This can be

compared to the reported RUV in those same papers. The

proportional component of RUV in these papers was 25%.

Clearly, there are other components that contribute to

RUV. The reader is referred to the supplemental material

for a complete listing of the analytical variability and

reported RUV.

The selection of 10%–20% variability in dose content

was based on the criteria for US pharmacopeia on batch

variability with a guideline of uniformity should be less

than 15% variability on average [1]. Thus, it is reasonable

that the produced batch has a variability in the content

corresponding to a 10% CV. We also examined 20% to

better understand the behavior of more extreme variability

in the content uniformity. The PK parameter V was more

affected by dosage content perturbations with bias in BSV

up to 140% compared to CL that had bias up to 20% with

extreme 20% CV. The large bias can be explained due to

the high imprecision in relative bioavailability; thus, the

random effect could not be precisely estimated. A sparse

study design had more bias than an intense design on V.

The reason is likely due to the greater number of samples in

the early distributive phase compared to the former. The

low density sample design has more bias than intense

design with Q and Vp BSV parameters which is expected
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Fig. 6 Contribution of combined perturbations on RUV and PK

parameters; left-hand panel displays relative bias; right-hand panel

present the relative mean squared error. The Greek symbol Omega

present between-subject variability magnitude. The figure was trun-

cated to a reasonably high value (500%), maximum observed

value[ 1050

Table 2 Median RUV

magnitude for combined

sources based on different

sample collection designs

Sample collection design Median RUV magnitude (CV) Range, CV [25th–75th]

SD9 14.1 (13.8–15.2)

SD7 16.7 (15.5–17.0)

SD5 18.4 (17.5–19.6)

SD4 21.6 (20.4–22.8)

SD Sample collection design with corresponding number of samples, CV Coefficient of variation
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due to practical identifiability related to study design [6].

The estimation of these parameters requires intense sam-

pling and they are sensitive to the times of sampling.

Data quality in a clinical trial is an important factor to

obtain reliable PK/PD model estimates [7]. In regard to

CTEP, we saw a small effect of inaccurate dosing time data

on RUV magnitude, and it was noted to monotonically

increase with higher perturbations. In an agreement with

our results, Alihozdic et al. [8] studied the effect on inac-

curate infusion time data on meropenem and caspofungain

and they conclude even 5 min inaccuracy can lead to

biased and imprecise estimation of typical population value

of V and corresponding BSV. While dosing time pertur-

bations had a small effect on RUV, inaccurate sampling

time data have a more noticeable effect. The resulting bias

is more evident with intense designs compared to sparse

design. The reason for this observation likely relates to the

curvature of the structural PK profile. When the rate of

change (dC/dt) is higher, the perturbations in time will

cause greater deviations in concentrations compared to the

later time points when dC/dt is usually smaller. Our results

agreed with Karlsson et al., Choi et al. and Ludden et al.

[9–11] and supports the consensus that the sensitivity of

parameter estimates to the deviation of recorded time

would be affected by the curvature of PK profile and the

magnitude of perturbed recorded time. As a clinical con-

sequences of inaccurate sampling time data, Santalo et al

[3] studied the deviation in sampling time with vancomycin

trough concentrations and report sub-therapeutic dosing as

a consequence of early measurement. Similarly, Wang

et al. [2] in a simulation study, reported inaccurately

recorded tacrolimus trough concentrations would lead to

inappropriate dose tailoring in up to 36% of cases.

Technical execution perturbations resulted in higher bias

and imprecision in RUV magnitude compared to other

sources. The magnitude of RUV increases with the mis-

specified structural PK model. Structural model misspeci-

fication did not have a noticeable effect on CL or BSV

associated with CL, but that isn’t the case with other

parameters. Overall, misspecification that cannot be iden-

tified by residual plots can have a consequence on sec-

ondary PK parameters such as half-life due to a biased V.

Study design also played a role here; with more data,

model inadequacy is more readily apparent. With that said,

times of sample collection are important in the estimation

of some parameter values more than others. For example,

with limited absorption data points, Ka estimates would

have high imprecision and it is common to see this value

fixed to a reasonable value.

Residual error misspecification contributed the largest

inflation in RUV magnitude compared to other sources we

studied. Choosing the wrong error model can mask the

additivity from analytical assay and lead to biased

estimates in the studied situations, including CL. The

ignored error from the additive component will propagate

to the parameters leading to the inaccuracy in parameter

estimates. Silber et al. [12] found misspecification in the

residual error model can inflate Type I error and induce

bias in covariate inclusion.

Combined perturbations propagate to the magnitude of

RUV and bias in PK parameter estimates. Recently, Al-

Sallami et al. [13] published a commentary discussing the

relationship of BSV from dose to response and the authors

argued that variability in the system propagates linearly or

nonlinearly based on the assumption of independency. This

can be also observed in the current work. The propagation

of all perturbations is not additive (the sum of variances

squared is not equal to the RUV magnitude). For example,

under the combined perturbations, the square root sum of

variances is 17% (Table 2S) without taking into consider-

ation the study sample collection design, which is larger

than the median RUV shown in Table 2. The most likely

explanation is due to the spread of variability between BSV

and RUV.

It is noteworthy that median RUV value under the

combined perturbations for all designs had smaller values

compared to the median values captured in the published

population pharmacokinetic analyses. Therefore, it might

be that combined errors in this simulation study were

underestimated compared to the literature. Despite the

predominant source of variability in the combined sources

might be model misspecification (residual and PK struc-

tural models) one should embrace this and carefully review

model evaluation steps and follow good modeling

practices.

In most of the studied scenarios, population typical

values for primary PK parameters were robust for small

perturbations in manufacturing, clinical trial execution, and

technical errors, and resulted in relatively unbiased esti-

mations. Random effects were more sensitive than fixed

effects in the presence of perturbations, and that’s due to

the way the first-order approximation handles fixed-effect

parameters (nonlinear approximation) and random-effect

parameters (linear approximation) [11, 14]. Even in the

absence of error in data, the first-order approximation

might lead to bias in random-effects with sparse designs.

Al-Banna et al. [15] evaluated the impact of sample col-

lection design on parameter estimation using a one-com-

partment model. It was concluded that one early and one

late time point would be sufficient to estimate primary

fixed-effect parameters such as CL and V but resulted in

imprecise random-effects estimation.

Limitations of this study include that we did not study

the inadequacy of covariate models nor inaccurate

covariate data. We also did not assess the unexplained

variability in scenarios with multiple dosing or
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misspecification in the covariate or BSV models. The

extent to which the results in this manuscript would differ

if other structural models or data (e.g., sampling time

points) were used cannot be determined. They may give a

general guidance but must not be over-interpreted in other

contexts. Another limitation is that we did not consider

other estimation algorithms such as SAEM, IMP,

IMPMAP, or Bayesian. It is possible for example that

SAEM would provide somewhat different results and that

parts of the bias observed in the parameter estimation are in

fact caused by the Taylor series expansion used in FOCE-I.

We did not examine this issue and any practical relevance

is unknown.

Finally, our misspecifications were chosen under an

assumption of a well-controlled trial as might be seen in

Phase 1 and Phase 2 clinical studies. Bias and imprecision

findings are likely to be higher in studies that include

outpatient dosing and multiple dosing studies that assume

steady-state conditions as might be seen in Phase 3 clinical

trials. It also needs to be considered that when parameter

estimates used for simulating future concentration-time

profiles and pharmacodynamic effects, imprecise and/or

biased values could result in model-informed decisions that

are imprecise and/or biased. The impact of these biases and

imprecisions on decision making resulting from simulated

exposure metrics such as area-under-the-curve or maxi-

mum concentrations is beyond the scope of this

manuscript.

In conclusion, we assessed the contribution of hypo-

thetical sources of variability in RUV that occur during

NLMEM and offer these takeaway points:

• Pharmacostatistical model misspecifications were asso-

ciated with relatively large increases in the magnitude

of RUV compared to other sources for all levels of

study design.

• The contribution of dose misspecification, and dosing

time misspecifications have negligible effects on RUV

but result in biased PK parameter estimates.

• Inaccurate sampling time data results in biased RUV

magnitude which is sensitive to the magnitude of

perturbations, and this effect was greater with more

intense sampling designs.

Errors of the type studied here are real and do occur in

PK studies. It is important to consider the question of what

one wants to answer from the analysis. For example, if one

is primarily interested in drug clearance, then some of these

perturbations have less consequence. Nonetheless, as

pharmacometricians, we don’t have control over the per-

turbations and our challenge is to choose a pharmacosta-

tistical model that adequately explains the data provided to

us. This work provides information that can be used to

understand and give insight for the interpretation of RUV

magnitude. It may lead to recommendations from the

pharmacometrics community that favor results from stud-

ies with lower RUV and minimize the ‘‘believability’’ of

studies with large RUV.
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