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Abstract
The current approach to selection of a population PK/PD model is inherently flawed as it fails to account for interactions

between structural, covariate, and statistical parameters. Further, the current approach requires significant manual and

redundant model modifications that heavily lend themselves to automation. Within the discipline of numerical optimization

it falls into the ‘‘local search’’ category. Genetic algorithms are a class of algorithms inspired by the mathematics of

evolution. GAs are general, powerful, robust algorithms and can be used to find global optimal solutions for difficult

problems even in the presence of non-differentiable functions, as is the case in the discrete nature of including/excluding

model components in search of the best performing mixed-effects PK/PD model. A genetic algorithm implemented in an

R-based NONMEM workbench for identification of near optimal models is presented. In addition to the GA capabilities,

the workbench supports modeling efforts by: (1) Organizing and displaying models in tabular format, allowing the user to

sort, filter, edit, create, and delete models seamlessly, (2) displaying run results, parameter estimates and precisions, (3)

integrating xpose4 and PsN to facilitate generation of model diagnostic plots and run PsN scripts, (4) running regression

models between post-hoc parameter estimates and covariates. This approach will further facilitate the scientist to shift

efforts to focus on model evaluation, hypotheses generation, and interpretation and applications of resulting models.
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Introduction

The current approach to population PK/PD model selection

is formally known as downhill search and belongs to a

class of optimization methods known as local search [1].

Local search uses information about a small number of

similar candidate models (perhaps only two models) to

make step-wise changes in the model. Within the set of

optimization algorithms, downhill search is the most

efficient (completing with the fewest evaluations of model

quality), but the least robust. At the other extreme (least

efficient, but most robust) is an exhaustive search.

Exhaustive search entails examining all possible combi-

nations of structural, statistical, and covariate model fea-

tures and would give rise to millions of potential models

for even a standard population pharmacokinetic model

search space. Out of necessity, the traditional approach to

population PK/PD modeling greatly reduces the sample

space of models by proceeding in a stepwise manner, with

the user first identifying the best base structural model, and

then searching for significant covariate relationships and

statistical models. Not only is this approach labor intensive

in that it requires a great deal of manual work by the user, it

is also not guaranteed to find the optimal solution due to

interaction between structural, statistical, and covariate

model components [2]. Further, this method involves many

repetitive (i.e. testing various covariate model functional

forms) and predictable (i.e. testing 1, 2, 3 compartment)

processes that lend themselves to automation.
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Genetic algorithms

Genetic algorithms (GA) are a class of optimization algo-

rithms inspired by the mechanisms of evolution [3]. By

applying selective pressure to a population of potential

solutions of a problem and combining features of well

performing solutions, GAs proceed in an analogous manner

as fit organisms surviving and producing offspring. Over

time, generations will progressively become stronger and

solutions improved. Just like evolution, genetic algorithms

are guided in part by random processes. However, it is

important to note they are certainly not a uniform random

search. On average, a uniform random search would be

expected to be no more efficient than an exhaustive grid

search. While a uniform random search will sample models

with uniform probability, genetic algorithms exploit his-

torical information from previous iterations to direct the

search towards better solutions. As such, in the trade off

between most efficient, least robust (downhill) and least

efficient, most robust (exhaustive search), GA lies some-

where near the middle: more robust than downhill, but

much more efficient than exhaustive search.

Theory

Genetic algorithms were developed by Dr. John Holland

et al. at the University of Michigan in the 1960s [4]. The

motives for his efforts were to formally explain adaptive

processes seen in natural systems and to construct methods

in which these adaptive processes could be implemented in

computer systems. Since then, GAs have been applied

across many fields and industries including molecular and

evolutionary biology, mathematics, engineering, and

political sciences. Their robust nature allows them to be

applied to many types of difficult optimization problems.

To understand and appreciate the mechanisms of the

genetic algorithm, it is important to have an understanding

of evolution and in particular the concept of survival of the

fittest. The phrase survival of the fittest was coined by

biologist Herbert Spencer in his book Principles of Biology

[5]. The concept is a core element of the Darwinian theory

of evolution and describes the preservation of species that

are most suited to their environment and possess traits

which increase their ability to reproduce. The word ‘fit’ in

this context, of course, does not refer solely to physical

strength, but any attribute that increases the chances of

survival. Evolution then, driven by survival of the fittest,

becomes a trial-and-error iterative procedure towards

establishing ‘fitter’ organisms as generations pass. This is

essentially a naturally occurring optimization algorithm,

where efficiency is likely important to the continuation of

the species. This is the driving principle in the genetic

algorithm applied in this setting.

The algorithm begins with an initial ‘‘population’’ of

models, and continues through several generations, modi-

fying and running different models through each genera-

tion until no better solution can be found. GA has been

implemented in several available software platforms

including R, Matlab, Julia and Python.

Model components commonly included
in population pharmacokinetic model search
space

Structural

Absorption

– Lag time: presence or absence of a lag time

– Transit compartments: the number of absorption site

transit compartments, if any

– Absorption rate: zeroth or first order absorption, or

both.

– Non-linear processes: saturable absorption (decreased

bioavailability with increased dose), saturable degrada-

tion at absorption site (increased bioavailability).

Distribution

– Number of compartments: 1, 2, 3 compartments ([ 3

compartments is often indistinguishable from 3

compartments).

Elimination

– Saturable clearance: presence or absence of saturable

clearance.

PD model

– Pharmacodynamic models: Indirect response (I-IV),

direct response, biophase, etc.

Initial estimates for NONMEM quasi-Newton

minimization.

Statistical model components

– Residual error on dependent variable/s: additive, pro-

portional, or combined

– Inter-individual variability (IIV) on structural parame-

ters: lognormal or absent
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Covariate model components

Linear relationship

With a linear relationship, the typical value of a parameter

changes linearly for each unit change in the covariate

value. The relationship is shown in Eq. 1:

TVParam ¼ THETAA þ ðCovi � dCovÞ � THETAB

� �

ð1Þ

Covi is the value of the covariate for an individual, dCov

is the population median value of the covariate, TVParam is

the typical value of the parameter in a subject with Covi,

THETAA is the typical value of the parameter for a subject

with the median value of the covariate, and THETAB is the

linear slope parameter for the change of TVParam for each

unit change in the covariate.

Exponential relationship

With an exponential relationship, the typical value of a

parameter changes exponentially for each unit change in

the covariate value. The relationship is shown in Eq. 2:

TVParam ¼ THETAA � e Covi�cCov
� �

�THETAB ð2Þ

The value of THETAB now represents the change in

log(TVParam) for each unit change in the covariate.

Power relationship

With a power relationship, the change in the typical value

of the parameter with a change in the covariate value is

described by a power function. The relationship is shown in

Eq. 3:

TVParam ¼ THETAA �
Covi
dCov

� �THETAB

ð3Þ

The value of THETAB now represents the change in

log(TVParam) for each unit change in log(Covi).

Current approach to population PK/PD modeling

The traditional approach to selecting the optimal popPK/

PD model proceeds in a stepwise manner. The general

process is shown in a diagram from the NONMEM user’s

guide [6], shown below in Fig. 1. After careful examina-

tion of the data through exploratory analyses, the user

begins by testing the simplest biologically plausible model

given the drug’s mechanism and the results of the data

exploration. Typically, model fitness and the selection of

an optimal model is guided by an objective function

(usually the - 2LL) as well as various graphical indicators

such as residual plots and visual predictive checks.

The current approach is a local search and is not guar-

anteed to find the globally optimal combination of model

components. In fact, a paper by Sherer et al. compared this

approach to a genetic algorithm based global search and

found in seven out of seven datasets the traditional

approach failed to find the global solution identified by the

GA [7]. A population PK model and a tumor growth tra-

jectory example are provided to illustrate the application of

this approach.

Fig. 1 Schematic for model building from NONMEM manual (used

with permission)
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Methods

Software

The genetic algorithm was adapted from an established

implementation described in Sherer et al. [7]. The graphical

user interface was developed with R version 3.3.2. The

application has external software dependencies of NON-

MEM and Perl-Speaks-NONMEM. NONMEM version 7.3

and PsN 4.8.1 were used for application development and

testing. The program is available cross-platform and has

been tested on Windows and Linux (github.com/mhismail/

nmga).

The genetic algorithm implementation

The general outline of how the algorithm proceeds is

shown in Fig. 2. Each step in the GA evolution is described

in the following sections.

The chromosome

The term ‘chromosome’ refers to the representation of a

candidate solution as a vector of parameters, or charac-

teristics. If a user defines the search space to explore N

model features the chromosome becomes:

Chromosome ¼ P1;P2; . . .;PN½ �

where Pi represents the selected value for the ith parameter.

For example, the chromosome of a candidate population

PK/PD model may look something like:

Chromosome ¼ 2 cmt;WTonCLlinear; . . .;RUVprop

� 	

The above representation shows an encoding in which

model features are represented as character strings. Upon

receiving instructions to run a model with the features

encoded in the chromosome, the program translates the

chromosome representation of the model into a syntacti-

cally correct control stream, to be described in later

sections.

In previous iterations of the GA developed by Eric

Sherer, Robert Bies and Mark Sale [1, 7], the chromosome

was encoded as a binary string. Each model feature was

represented as a string of zeros and ones. The direct

encoding of the model as character strings, implemented

here, has two main benefits over binary encoding. First, it is

more interpretable and the user can easily understand

which model is being run based on its chromosome. Sec-

ond, it prevents the issue of degeneracy—in which some

values of a parameter will be redundantly expressed,

biasing solutions towards those values.

Initial population

The genetic algorithm begins by randomly selecting,

without replacement, an initial population of models to be

run. In general, the number of models in the initial popu-

lation should be larger with an increasing number of model

features to be tested, to allow for representation of all

features. The models are then run in parallel and upon

completion, the fitness of each is determined.

Defining model fitness

To allow the algorithm to proceed autonomously, there

must be some objective measure of model performance. In

the realm of genetic algorithms, this value is termed the

fitness of the candidate solution. The fitness function used

in the current program is by default the Akaike information

criterion (AIC) as shown in Eq. 4 [8].

Fitness ¼ AIC ¼ �2log Lð Þ þ 2 � p ð4Þ

where L is the likelihood of the data given the model, and p

is the number of total parameters, including fixed effects

parameters (thetas) and random effect parameters (omegas

Fig. 2 Schematic of genetic

algorithm approach to model

selection
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and sigmas). While the AIC is the default fitness function,

the user may specify a different information criteria or to

include additional penalty terms depending on the intended

goal of the project and on the personal preferences of the

user. A project which aims to identify model parameters

with adequate certainty may place greater emphasis on a

successful covariance step. A project where the purpose of

the modeling is to be used for simulations of new dosing

scenarios may place more emphasis on predictive checks/

external validation. Due to the uniqueness of each model-

ing assignment the following penalty terms can be added to

the fitness function:

– User defined penalty for unsuccessful convergence

– User defined penalty for unsuccessful covariance step

– User defined penalty for highly correlated parameters

– User defined penalty for large eigenvalues

After the fitness of the models are determined, the

genetic operators described in the next sections apply

selective pressure and sporadic random changes (i.e.,

mutations) to determine the next generation of models.

Selection

The selection operator decides the next generation of

models/individuals based on the fitness of the models in the

previous generation. There are several selection methods

for genetic algorithms, the most commonly known are

roulette-wheel selection, rank selection, and tournament

selection3. Roulette wheel selection assigns a probability to

each model to be selected proportional to its fitness. Its

name comes from a roulette wheel being partitioned into

Nmods sections, with the size of each section being propor-

tional to the performance of the model as shown in Eq. 5.

Probability ið Þ ¼ Fitness ið Þ
PNmods

j¼1 Fitness jð Þ
ð5Þ

After probabilities are assigned, the operator samples

with replacement from the discrete distribution the models

which will continue to the crossover and mutation phases.

This method suffers when one fitness value dominates—

leading to premature convergence—and when fitness val-

ues are close in magnitude—leading to nearly uniform

sampling—as is the case in the NONMEM objective

function between models. This issue can be partially

resolved by scaling the fitness values so that extreme val-

ues do not dominate the distribution. The rank selection

method attempts to quell these disadvantages by instead

assigning probabilities proportional to the rank of the

individual model in the generation. In this case, the most fit

model in the generation would be assigned the highest

rank—‘‘#1’’, the least fit model would have the lowest

fitness function value and lowest rank, so for a generation

with 100 model candidates, that would be ranked #100.

Other models are assigned an appropriate ordering/rank

based on their relative fitness function values. Models

would then be selected based on their rank with the highest

rank (i.e., #1 model) having the highest probability of

selection. The tournament selection method, another rank

based method which is implemented in the current pro-

gram, iterates through each individual model in the

generation, and for each chooses a random opponent from

the remaining individual models. The one with the better

fitness value is carried into the crossover pool. The process

is shown by the following pseudo-code:

Crossover

Once the selection procedure is complete, the algorithm

then applies the crossover operator to the selected models.

Crossover is meant to mimic biological reproduction by

combining features of well performing models in search of

potentially better performing models. Two point crossover

was implemented, which randomly selects two points along

the parents’ chromosomes, and exchanges all features

between those two points. A single crossover example is

shown below in Fig. 3, however this process occurs for all

models in the generation. Each row represents a specific

model and the columns represent the features included in

the model. The triangles in the figure represent randomly

selected crossover points. Once crossover is complete, the

models are then carried forward to the mutation phase.

Mutation

The mutation operator randomly changes features of the

model with a low probability. The purpose of mutation is to

prevent the algorithm from converging to a local minima
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by introducing new combinations of features throughout

the entirety of the search. The mutation probability is

typically set to a low value, as a high probability would

convert the algorithm to essentially a random walk. Each

feature of each model has a probability of 0.05 of being

mutated, i.e. replaced with a different feature. Pseudocode

to illustrate this function is shown below:

Elitism

Throughout the operations of crossover and mutation, it is

always possible the best performing model from the pre-

vious generation will be lost. To preserve the best per-

forming model through generations, elitism is

implemented. After crossover and mutation are complete,

the elitism operator randomly selects one model from the

new generation to be replaced with the best performing

model from the previous generation unaltered. Genetic

algorithms will perform better if the most fit model is

always included in the crossover pool [9], and elitism

ensures this.

Downhill (local) search

While the genetic algorithm is very good at finding a

solution near the global minimum quite fast, it can struggle

to find the optimal solution locally. Take for example a

search space in which one of the features being tested is a

covariate relationship. The genetic algorithm may discover

that including a covariate effect (linear, exponential, or

power) drastically improves the model fit. However, the

genetic algorithm cannot determine which of the three is

the best until they are all introduced into the population by

chance crossover and mutation. This single change typi-

cally must be implemented by mutation, which is a rare

event. To expedite the identification of the locally optimal

solution, the GA can be combined with a local search to

form what is known as a hybrid GA. The local search

implemented in this program is similar to the traditional

approach to population model building. Starting from the

current best model, all models that differ from the best

model by exactly one feature are built and run. This

downhill search is implemented every fifth generation and

the best model is carried forward as an elite.

Fig. 3 Illustrated crossover showing the random selection of the crossover point (top panel) and the resulting change in the models (bottom

panel)
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Two scenarios are explored to evaluate the model

selection approach. Step-wise and genetic algorithm

approaches (as implemented in the app) were applied to:

(1) a simulated pharmacokinetic dataset and; longitudinal

tumor growth measurements from a xenograft study.

Simulated PK dataset A two compartment model was

used to simulate a PK dataset. This dataset comprised 100

subjects receiving a 150 mg dose at time zero. Six con-

centrations were simulated for each subject. Three con-

centrations were simulated at random time points between

0 and 12 h and three samples were simulated a random

time points between 12 and 48 h. Two continuous covari-

ates were included in the dataset and were correlated with a

r of 0.5. One continuous covariate (Cont_A) was related to

clearance and volume of distribution. Two categorical

covariates were simulated (Cat_A and Cat_B). Only Cat_B

was related to parameters in the model (related to clearance

only). A proportional residual error model was used for the

simulation. The two continuous covariates were correlated

with an r of 0.5. Inter-individual variability was included as

an exponentiated term on CL, central volume of distribu-

tion and the first order absorption rate (Ka).

Mr. Yu and Dr. Bies were not aware of the model being

simulated. The only elements that were considered were

the scope of search to be considered for evaluating possible

model candidates. The scope of search was evaluating if

the PK model was 1, 2 or 3 compartment, whether there is

inter-individual variability on any of these parameters,

whether there is lag time for absorption (in addition to a

first order process for absorption). The categorical and

continuous covariates were assessed on CL or central

volume of distribution only. If categorical, an

exponentiated form was used to describe the relationship. If

continuous, an exponentiated, additive and power law

model structure were all considered for the model search

space. Mr. Yu conducted the stepwise analysis. The fitness

function used is shown below in Eq. 6:

Fitness ¼ �2LLþ 2 � NPar þ 10 � PConverge þ 10

� PCovariance ð6Þ

where �2LL is minus two times the log likelihood (i.e.,

NONMEM objective function value), NPar is the number of

parameters, PConverge is a flag for the penalty for non-con-

vergence of the mode1 (0 for successful convergence, 1 for

unsuccessful convergence) and PCovariance is a flag for the

penalty for an unsuccessful covariance step (0 for suc-

cessful convariance step, 1 for unsuccessful covariance

step). The genetic algorithm was run with 200 models per

generation for 30 generations. All models were run in

NONMEM 7.4 using the FOCE-Interaction estimation

method.

Tumor growth profiles A series of tumor xenograft

growth profiles were modeled with two investigators

blinded to each others results. 24 mice with established

LNCaP xenograft tumors were randomized into four

groups: control, vehicle treatment (five intact mice); intact

(not castrated) with diazepam treatment (five mice), cas-

trated mice with vehicle treatment (seven mice) and cas-

trated mice receiving diazepam treatment (seven mice).

Castration and treatment were treated as dichotomous and

time dependent (i.e., these were not instantiated immedi-

ately) depending on when the intervention was initiated in

the experiment [10]. Models evaluated included the

Simeoni growth with either cell distribution or signal

Fig. 4 Matrix of models

comprising the search space for

the tumor growth measurements
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distribution killing and the Koch growth model with either

cell or signal distribution killing [11]. The models evalu-

ated are shown in Fig. 4.

Results

Workflow

Beginning from a one compartment base model NONMEM

control stream with no covariate effects, the workflow

implementing the genetic algorithm on a PK dataset will be

shown.

Placeholders, termed token groups, are added to the

NONMEM control stream by the user. These placeholders

will eventually be replaced by tokens, which are snippets

of NONMEM code, to produce a syntactically correct

NMTRAN control stream. For example, to test a covariate

effect, changes need to be made to the $PK block to

include the mathematical relationship, and the $THETA

block to include the initial estimate of the slope parameter.

Thus, a placeholder would be added in those two locations.

In this example, the following model components will be

explored:
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Structural

– Number of compartments: 1 or 2.

Statistical

– Presence or absence of IIV on clearance and central

volume parameters.

Fig. 5 Screenshot of genetic

algorithm menu options for an

example covariate

implementation (weight on

clearance)

Fig. 6 Genetic algorithm software output table showing descriptive results of a series of models. The highlighted model corresponds to the

parameters shown on the right side of the figure
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Covariate effects

– Linear, exponential, power, or no covariate relationship

between age, weight, and sex on clearance.

– Linear, exponential, power, or no covariate relationship

between age, weight, and sex on central volume.

Expanding a full grid of possible models, there are over

8000 unique combinations of the above components for

this simple search space. Here is the control stream again

with the token groups added in the appropriate locations.

Note, only blocks with changes are shown in the interest of

compactness.

Now that the placeholders have been included, the user

then uses the graphical user interface (GUI) to add features

they would like to test. Shown in Fig. 5 below is the GUI

when adding a covariate effect. First the placeholder cor-

responding to that covariate effect should be selected from

the token group list, then the user specifies which rela-

tionships to test (token sets), and whether or not to center

the covariate by its median.

Once all components to be tested have been added, the

user can choose to view all possible models and run them

manually or go directly to initiating the genetic algorithm.

When viewing the ‘‘All Models’’ modal, shown in

Fig. 6, the user can perform several actions to a selected

model including running the model directly from the user

interface, deleting or editing the model, and opening the

model location in a file explorer window. Once a model is

run, either manually or by the GA, the user can see

parameter estimates and generate Xpose [12] diagnostic

plots.

To initiate the genetic algorithm, the user simply selects

the corresponding button in the main interface and selects

‘‘Start’’. The initial population will then be shown and

NONMEM will be called through PSN [13] to run each

model in parallel across multiple cores.

Shown in Fig. 7 are the results of the initial population.

The program repeatedly queries running tasks, and once it

finds all NONMEM instances are complete, it will start the

next generation. This continues until the user manually

ends the search.
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Each generation can be viewed by clicking on the but-

tons at the bottom of the model. Included on the right side

of the interface, shown in Fig. 8, is a plot illustrating the

progression of the search. The black line indicates the

fitness of the best model and the red line shows the average

fitness in the nth generation. Instead of returning the results

of just the best model based on fitness, all model results are

returned. The user can then look at the top performing

Fig. 7 Genetic algorithm model list showing the different models and the goodness of fit plot for the GA for part of generation 1

Fig. 8 Genetic algorithm model list snapshot showing model list and the fitness functions (median and best) for generations 1 through 16 (right

had side of figure)
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models and apply further criteria to selecting the most

appropriate model based on diagnostic plots or some other

model diagnostic. The code for the app is provided as a

supplemental file entitled PKGA.R and App.R and is also

available at the github repository (github.com/mhismail/

nmga).

Population PK analysis results

A two compartment model with first order absorption was

simulated. Covariate effects of phenotype (e.g. poor

metabolizer) and Weight (power model) were included on

clearance. IIV was included on clearance and central vol-

ume. The residual error model was proportional. The

parameter used to generate the dataset from this model are

shown in Table 1.

Step-wise model search

A forward addition threshold of 0.05 and backward elim-

ination thresholds of 0.01 were used for model search.

GA model search

The genetic algorithm approach considered the following

search scope: (1) one, two or three compartment model; (2)

inter-individual variability present/absent as additive or

exponentiated forms on all parameters; (3) continuous

covariate relationships on any of the parameters as multi-

plicative, additive and exponentiated; (4) categorical

covariate relationships on any of the parameters as present/

absent with an exponentiated form (switching from a

unique effect for each category). The control stream and

token set utilized for this analysis are provided as supple-

mental files (nmdata1.csv and GAPK.ctl).

Table 1 Parameter values for the ‘‘true’’ PK model used for simulation along with the estimated parameters for the best models identified using

the stepwise and genetic algorithm methods

Parameter Estimated true model

(used for simulations)

Stepwise model: (0.05 forward,

0.01 reverse) (%RSE) [%SHR]

GA model: best OFV (no

covariance step so no RSEs)

GA model: best

fitness function

Original model

structure

(simulation)

Ka (hr-1) 0.942 0.936 0.86 0.858 0.9

Alag (hr-1) – – 0.00166 – –

CL (L/h) 10.7 (4%) 10.2 (4%) 1.03 1.39 10.3

V2 (L) 6.2 (13%) 6.03 (15%) 0.75 5.06 1.5

V3 (L) 79 (5%) 78.1 (5%) 77.8 76.01 82

Q (L/h) 6 (6%) 0.94 (7%) 5.71 5.52 6

CONT_A

on CL

0.8 0.7 (27%) 0.484 0.41 0.8

CONT_A

ON V2

0.02 – 1.15 – 1.2

CONT_B on

V2

– – 3.18 – –

CAT_A on

V2

– – 0.000384 0.1 –

CATB on

CL

7.9 10.2 (8%) – – 8.0

CATB on

V2

– 1.14 1.49

BSV on CL 33.3% (6%) [3%] 28.3% (8%)[4%] 31.6% 31.9% 30%

BSV on V2 19% (66%) [81%] – 43.6% 0.1% 44.7%

BSV on V3 – – 0.001 0.1% –

BSV on Q – – – 0.1% –

PROP RUV 0.114 (7%) [6%] 0.34 (7%) 0.335 0.34 0.346

Additive

RUV

– – 0.0054 0.0054 –

Objective

function

value

- 2174 - 2187 - 2161 - 2153 NA
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Stepwise analysis results

For the stepwise approach using the p\ 0.05 forward and

p\ 0.01 backward, a two compartment model additive and

proportional residual error resulted in a model with an OFV

of - 2187. The continuous covariate A and categorical

covariate B was identified as significant on clearance, BSV

was identified on CL.

The true model used for simulation was implemented

and parameter values estimated (Table 1). The objective

function value that resulted was - 2174.09.

GA search results: best objective function value

The model with the lowest OFV (but not the lowest fitness

function value) had an OFV of - 2161 and a fitness

function value of - 2039. This model comprised a two

compartment structure with first order elimination and an

absorption lag. BSV was included on CL, V2 and V3.

CovA, Cont_A was on CL, all covariates on v2 (cat a cat b

Cont_A Cont_B). The parameter values are shown in

Table 1.

GA search results best fitness function

The model with the lowest fitness function (- 2069) had

an OFV of - 2153. The model comprised a two com-

partment structure with first order elimination and no

absorption lag. BSV was included on CL and V2. The

Cont_A and CATB covariates were included on clearance

and the Cont_A on v2. The parameters are shown in

Table 1.

Tumor growth profiles

Based on the computation power, we set to run 38 models

per generation. It took on average 1 h to run a generation.

The algorithm found the best model after 15 generations

defined as no further improvement in the ‘‘best’’ model in

each generation. Approximately 500 unique models were

run. The Koch growth combined with cell distribution

killing model performed best for the test dataset. The

model with the best fitness had the following IIV charac-

teristics: exponential IIV model on k0; exponential IIV

model on k1; exponential IIV model on baseline tumor

volume; no IIV on Tau of group 2; proportional IIV on K

of group 2; exponential IIV on Tau of group 3; additive IIV

on K of group 3; no IIV on Tau of group 4; and propor-

tional IIV on K of group 4. The residual error model

selected was proportional error model. The best fitness

function of the GA selected model is 4885 for the Koch

growth plus cell distribution killing model, while the

typical approach to model building conducted by a ‘‘blin-

ded’’ colleague resulted in a fitness of 5135 for a Simeoni

model combined with signal distribution killing model. The

GA control stream is provided (GATUMOR.ctl) and the

dataset (tumor.csv) as supplemental files.

Discussion

The application of GA to population pk model selection

requires the separation of the hypothesis generation process

(human intelligence/experience required) from the

hypothesis testing process (can be automated). In tradi-

tional model selection, these processes occur alternately.

That is, initial hypotheses are generated, models are run,

diagnostics are generated, hypotheses are tested, then

additional hypotheses are generated, and the process repeat

many times. The genetic algorithm implemented here

capitalizes on the decreasing cost and increasing capabili-

ties of computing power in recent years, while more fully

addressing the issue of interactions between model com-

ponents in the popPK/PD model search. While it proceeds

autonomously, the genetic algorithm will never replace the

expertise of an experienced user. The experienced user still

needs to define biologically plausible model components

and apply project specific criteria to selecting the most

appropriate model. The work flow described suggests that

all (human driven) hypothesis generation occurs prior to

the GA run. Experience suggests that modeling using GA

still requires cycling through iterations of hypothesis gen-

eration followed by hypothesis testing. However, many,

many hypotheses can be tested autonomously, and diag-

nostics examined for only a small number of those. Thus,

GA may typically be run perhaps two or three times,

essentially batching hypotheses and permitting human

evaluation and additional hypothesis generation much

fewer times. By automating control stream text editing to

generate new combinations of model features and initiating

model runs, it will allow the user to spend less time on

monotonous tasks and more time leveraging the model

output information to generate additional hypotheses and to

provide insight to the development of the drug.

The tumor growth profile model selected using the

genetic algorithm had a substantially lower OFV than that

identified using stepwise modeling.

The PK model identified by the GA was close (what

were the actual characteristics) to the one used for the

simulations. Importantly, while the GA selected the same

number of compartments as the traditional and the ‘‘true’’

model, the estimates for Cl and central volume were quite

different. It seems that this value is not well defined, as the

OFV was different. Further exploration of this difference

could be done by using the GA to search not only for the
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number of compartment etc., but also on different initial

estimates. It is also noted that the GA had a parsimony

penalty of 2 points, based on the AIC, where the traditional

step wise had a penalty of 10 points. This difference in

penalty could influence the final selection of covariates,

with the stepwise approach (having the larger penalty per

parameter) resulting in selection of more parsimonious

models. The PK model identified by the stepwise user (0.05

forward and 0.01 reverse), resulted in a model that was

quite different from the one used for the simulations, but

with a lower objective function value than that discovered

using the GA (with a 10 point per parameter penalty).
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