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Abstract
Lack of data is an obvious limitation to what can be modelled. However, aggregate data in the form of means and possibly

(co)variances, as well as previously published pharmacometric models, are often available. Being able to use all available

data is desirable, and therefore this paper will outline several methods for using aggregate data as the basis of parameter

estimation. The presented methods can be used for estimation of parameters from aggregate data, and as a computationally

efficient alternative for the stochastic simulation and estimation procedure. They also allow for population PK/PD optimal

design in the case when the data-generating model is different from the data-analytic model, a scenario for which no

solutions have previously been available. Mathematical analysis and computational results confirm that the aggregate-data

FO algorithm converges to the same estimates as the individual-data FO and yields near-identical standard errors when

used in optimal design. The aggregate-data MC algorithm will asymptotically converge to the exactly correct parameter

estimates if the data-generating model is the same as the data-analytic model. The performance of the aggregate-data

methods were also compared to stochastic simulations and estimations (SSEs) when the data-generating model is different

from the data-analytic model. The aggregate-data FO optimal design correctly predicted the sampling distributions of 200

models fitted to simulated datasets with the individual-data FO method.
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Introduction

Population pharmacokinetic estimation by nonlinear

mixed-effects models was introduced by Sheiner and Beal

[1–4]. In their seminal work, the authors outlined how the

nonlinear mixed-effects model can be linearized around the

expected values of the random effects. In practice, this

enabled sparse data from individuals to be included in

mathematical models of drug concentration and effect. The

original estimation algorithm was named the first-order

method, or the FO method for short. Several other, more

accurate, estimation methods were later introduced. These

estimation methods require individual-level data from

subjects.

In this paper, the term ‘‘aggregate data’’ refers to data

such as mean observed concentrations and the variance–

covariance matrix of the observed concentrations. The need

to analyze aggregate data may arise e.g. when performing a

model-based meta-analysis. A recent example of model-

based meta-analysis was published by Weber et al. [5]. In

their example, a Bayesian approach for the joint analysis of

individual-level data and aggregate mean data was devel-

oped. The mean aggregate data, extracted from literature,

were included in the calculation of overall likelihood as

data points. The observed means were contrasted with

model-predicted means and covariances of simulated dat-

apoints. The authors discussed that the mean aggregate data

were generally informative for fixed-effect parameters but

not for random-effects parameters. As such, the mean data

alone are not enough to inform pharmacometric models.

An estimation method which would allow estimation of all

parameters including fixed effects, random effects and

residual variability on the basis of aggregate data alone

would be desirable.

β
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Nonlinear mixed-effects models can be complex, and

thus it can be complex to design experiments that aim to

utilize these models. Therefore, tools that help in designing

these experiments are relevant. Optimal design refers to

calculation of expected Fisher Information Matrix (FIM),

given a study design and some assumed model. Calculation

of expected FIM for nonlinear mixed-effects models was

originally reported by Mentre and coworkers using the

first-order linearization [6]. One currently present limita-

tion of optimal design is that the same model must be

assumed for both data generation and data analysis.

The purpose of this manuscript is to outline an approach

for fitting full pharmacometric models to aggregate data

consisting of mean vector and variance–covariance matrix.

The maximum likelihood estimators for aggregate data are

presented. It is shown that the mean vector and variance–

covariance matrix can be simulated from a priori defined

models. This enables the model-based meta-analysis of

data which are extracted from multiple previously reported

models. It also allows optimal design in the case when the

data-analytic and the data-generating models differ.

Theoretical

Definitions and notation

This manuscript uses a column vector notation and ‘‘log’’

refers to natural logarithm. The word ‘‘design’’ refers to the

independent variables of the data. Usually, the most obvi-

ous design aspect is the PK/PD sampling schedule.

A design for a multi-response mixed-effects model is

composed of N subjects, each with an associated elemen-

tary design ni i ¼ 1; :::;Nð Þ; hence, a design for a popula-

tion of N subjects can be described as follows:

N ¼ n1; . . .; nNð Þ ð1Þ

Each elementary design ni can be further divided into

subdesigns:

ni ¼ ni1; . . .; niKð Þ ð2Þ

With nik, k ¼ 1; :::;K being the design associated with the

kth response such as drug concentration or drug effect. In

this manuscript dealing with aggregate data, an assumption

is made that the elementary designs can also be grouped

across individuals. However, the framework also allows

elementary designs unique to an individual.

The individual response yik is modelled as follows:

yik ¼ fk hi; nikð Þ þ hk hi; nik; eikð Þ ð3Þ

where fk(.) is the structural model for the kth response, hi is

the ith subject’s parameter vector, hk(.) is the residual error

model for response k, (often additive, proportional or a

combination of additive and proportional), and eik is the

residual error for response k in subject i. The general

prediction and residual error functions for all responses are

denoted by f() and h(), respectively. The residual error eik
are distributed with a mean of zero and additive and pro-

portional variance terms as elements of R. A matrix Y of

responses is defined as:

Y ¼

y11 y12 . . . y1K
y21 y22

..

. . .
.

yN1 yNK

2
6664

3
7775 ð4Þ

The individual parameter vector hi, with parameter(s)

that might be shared between responses, is described as

follows:

hi ¼ g b; bið Þ ð5Þ

where b is the vector of fixed effects parameters, or typical

subject parameter and bi is the vector of v random effects

for subject i. The random effects bi are assumed to be

normally distributed with a mean of zero and a covariance

matrix X of size v� v with off-diagonal elements either as

parameters to be estimated, or fixed to zero. The vector of

population parameters is thus defined as follows:

W ¼ b; vec Xð Þ; vec Rð Þ½ � ¼ b;x2
1;x12;x

2
2; . . .;x

2
v ; r

2
1; r

2
2

� �

ð6Þ

where vec :ð Þ refers to vectorization operation.

The aggregate mean response vector yk at subdesign nk
and the aggregate (co)variance response Vkl between sub-

designs n�k and n�l are defined as

yk ¼
1

N

Xn
i¼1

yik ð7Þ

Vkl ¼
1

N

Xn
i¼1

yik � ykð Þ yil � ylð Þ ð8Þ

The mean vector y consists of y1; y2; :::; yKð Þ and the

variance–covariance matrix V of the observed data is a K-

K matrix, the elements of which correspond to the elements

Vkl.

Parameter estimation when individual-level data
are available

This subsection presents already known and published

results about parameter estimation when individual-level

data are available. It is included as an introductory, rele-

vant background information.

The likelihood LðyijWÞ of observed data yi for individual
i given parameters W, is defined as
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L yijWð Þ ¼ r l yijhi; nið Þp hijWð Þdhi ð9Þ

where lðyijhi; niÞ is the conditional likelihood of yi given

individual parameters hi and design factors ni.

The overall likelihood function LðYjWÞ for the data is

the product of individual likelihood functions, or mathe-

matically LðYjWÞ ¼
Q

LðyijWÞ. To avoid floating point

errors associated with very high or low numerical values, it

is common to maximize a log-likelihood function, equal to

the sum of individual log-likelihoods.

In FO and FOCE approximations, the individual data are

treated as multi-variate normally distributed. The log-

likelihood can then be expressed as

log L yi Wjð Þð Þ ¼ � 1

2
yTres;i

~V�1
i yres;i þ log ~Vi

�� ��� �

¼ � 1

2
tr Ri

~V�1
i

� �
þ log ~Vi

�� ��� � ð10Þ

where yres;i is the vector of residuals, Ri is the outer product

of the residuals Ri ¼ yTres;i � yres;i and ~Vi is the individual

predicted variance–covariance matrix. To clarify the above

expressions, we note that

yTres;i
~V�1
i yres;i ¼

X
k

yres;ik
X
l

yres;il ~V�1
i

� �
kl

 !
¼ tr Ri

~V�1
i

� �

ð11Þ

With nonlinear mixed-effects models, there is no closed-

form solution to L yið Þ. Therefore, various approximations

have been developed. The FO approximation linearizes the

model around the expected average value of the random

effect at zero, and FOCE approximation linearizes the

model around the conditional maximum a posteriori esti-

mates of bi.

yres;FOCE;i ¼ yi � f ~hi; ni
� �

�
df ~hi; ni
� �
dbi

~bi

 !
ð12Þ

~VFOCE;i ¼
df ~hi; ni
� �
dbi

 !
X

df ~hi; ni
� �
dbi

 !T

þ diag
dh ~hi; ni; ei
� �
dei

 !
R

dh ~hi; ni; ei
� �
dei

 !T !

ð13Þ

In the above equations, expression
df hi;nið Þ

dbi
is the Jacobian

matrix of model predictions with regard to random effects,

with K number of rows and v number of columns, evalu-

ated at ~bi. Similarly, expression
dh hi;ni;�i¼0ð Þ

d�i
is the Jacobian

matrix of residual variability with regard to the residual

variability terms, evaluated at �i ¼ 0~, with K number of

rows and number of columns equal to the number of

residual variability terms. In FOCE method, ~bi is the vector

of maximum a posteriori estimates of the random effects

for individual i, given individual data yi and population

parameters W. Similarly, ~hi is the vector of individual

parameters that result from substituting ~bi to equation 5. In

FO method, ~bi is a vector of zeros, therefore the above

equations also cover FO approximation as a special case.

It is relevant to note that maximizing the log-likelihood

with regard to the FO and FOCE approximations is not

guaranteed to lead to exactly correct parameter estimates,

even if the amount of subjects in dataset would approach

infinity. The expected mismatch between the true values

and the parameter estimates becomes more pronounced as

either the variance of random effects increases, or as the

number of data points per individual decreases. Newer,

EM-based estimation algorithms such as the importance

sampling EM algorithm [7] and the SAEM algorithm

[8–10] do not have this problem. While these EM-based

algorithms are still ‘‘approximations’’ because of Monte-

Carlo sampling, they will converge to the exact maximum

likelihood parameter estimates, given a sufficiently high

number of iterations and Monte-Carlo samples of random

effects. For reasons of conciseness, the mathematical

details of importance sampling and SAEM estimation

algorithms will not be covered here.

Estimation based on aggregate data

For N individuals sharing the same study design, the FO

log-likelihood expression introduced in equation 10 can be

simplified to equation 14. For detailed steps, please refer to

Appendix 1.

log L y;VjWð Þð Þ ¼ �N

2
tr V � ~V�1
� �

þ y� ~yð ÞT ~V�1 y� ~yð Þ þ log ~V
�� ��� �

ð14Þ

In the above equation, ~y is the vector of mean model

predictions. This log-likelihood expression is highly simi-

lar to the expression used for fitting structural equation

models to variance terms. As shown by Jöreskog [11], the

observed variance–covariance matrix of observations is

Wishart distributed and therefore the log-likelihood

expression for ~Vi is identical to equation 14 with the

y� ~yð ÞT ~V�1 y� ~yð Þ term omitted.

The proposed expressions for the log-likelihood of

aggregate data are highly similar to the expression for the

log-likelihood of individual data. Both expressions involve

taking the log-determinant of the predicted variance–co-

variance matrix, the only difference is in use of ~V versus
~Vi. Further, both expressions involve taking the trace of

residual variance–covariance matrix (either Vi or V) mul-

tiplied by the inverse of the predicted variance–covariance

matrix. A major difference between the two methods is that
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the individual likelihood LðyijWÞ is calculated by inte-

grating over the random effect values while considering the

individual data yi. For the analysis of aggregate data, such a

thing is not possible, and instead it is only possible to

integrate over the (unknown) random effect values while

considering the aggregate data; the mean vector and vari-

ance–covariance matrix of observations.

Although equation 14 was transformed from the log-

likelihood of FO method, it applies generally to aggregate

data consisting of means and variance–covariance matrices

(please see Appendix 2).

FO, FOCE and Monte–Carlo approximations
of the predicted aggregate data

In this manuscript, three methods for integrating over the

random effect values bi will be proposed: The already

mentioned aggregate-data FO method, the aggregate-data

FOCE method, and the aggregate-data MC method. These

three methods are fed into computer optimization

algorithms.

The FO aggregate method is identical to the FO method

for non-aggregate data. For the FOCE aggregate method, it

is not possible to estimate maximum a posteriori values of
~bi because individual data are not available. Therefore, the

FOCE aggregate method consists of Monte Carlo integra-

tion over a set of quasi-randomly sampled values of ~bi,

similar but not identical to the optimal design FOCE-like

approximation described by Retout and Mentré [12].

~yFOCE ¼ 1

Nsim

XNsim

i

f hi; nið Þ � df hi; nið Þ
dbi;sim

bi;sim

	 

ð15Þ

~VFOCE ¼ 1

Nsim

XNsim

i

df hi; nið Þ
dbi;sim

	 

X

df hi; nið Þ
dbi;sim

	 
T

þ diag
dh hi; ni; eið Þ

dei

	 

R

dh hi; ni; eið Þ
dei

	 
T
 !

ð16Þ

where bi;sim is one simulated vector of random effect values

out of the total of Nsim simulated random effect vectors.

The differences between equations 15–16 and the FOCE-

like approximation described by Retout and Mentré [12]

are explored in the Discussion: Limitations subsection.

At this point it may be observed that numerical inte-

gration could be done directly on the raw simulated data

instead of doing numerical integration over a first-order

approximation. For this reason, the aggregate-data MC

method is introduced.

~yMC ¼ 1

Nsim
1~
T

NYsim

� �T
ð17Þ

~VMC ¼ 1

Nsim
Ysim � 1~

T

N � ~yMC

� �T
Ysim � 1~

T

N � ~yMC

� �

þ 1

Nsim

XNsim

i

diag
dh hi; ni; ei ¼ 0ð Þ

dei

	 

R

dh hi; ni; ei ¼ 0ð Þ
dei

	 
T
 !

ð18Þ

where 1~
T

N is a vector of ones of length Nsim, symbol �
refers to outer product, and Ysim is the Nsim � K matrix of

simulated responses, based on function f and a set of Sobol-

sampled values of bsim. This method allows interaction

between b and e values. It is noted that if residual error

distribution is symmetric (additive, proportional or addi-

tive ? proportional), then the MC aggregate method, at

sufficiently high Nsim, will produce exactly correct pre-

dictions of mean vector and variance–covariance matrix.

Therefore, if the above conditions are fulfilled, the MC

aggregate method will converge to the exact maximum

likelihood estimates of the aggregate data.

Applications

The aggregate data log-likelihood expressions can be

directly applied in estimation, optimal design and as a

replacement to stochastic simulation and estimation.

The expressions can be readily used to fit models to

observed aggregate data, possibly side to side with indi-

vidual-level data. For FO method, the aggregate-data esti-

mation is guaranteed to give results identical to individual-

data estimation (Appendix 1). For the aggregate-data MC

method, there is a guarantee that given a sufficiently high

Nsim and sufficiently high number of subjects in the dataset,

the parameter estimates will converge to the same ones as

with individual-data SAEM algorithm, if the data-gener-

ating model and the data-analytic model are the same.

However, if the data-generating model and the data-ana-

lytic model are different, then individual-data SAEM

algorithm will allow the random effects distributions to

differ from normality to some degree; the aggregate-data

MC algorithm is not able to do this. Therefore, when data-

generating and data-analytic models are different, the

aggregate-data MC results are likely to differ from indi-

vidual-data SAEM results. Finally, for FOCE algorithm,

there is no guarantee that the aggregate-data and individ-

ual-data methods give identical results. This is explored in

detail in section Discussion: Limitations.

The newly developed expressions are also readily

applicable to optimal design. One can simply simulate the

expected aggregate data based on equations 15–18 and take

the numerical Hessian of log-likelihood for the simulated

aggregate data with respect to model parameters. Appendix
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3 proves that taking the Hessian of the aggregate data log-

likelihood directly results in the published optimal design

expressions [12] for the FO approximation of population

Fisher Information Matrix.

Finally, the newly developed expressions for aggregate

data log-likelihood can be used as a replacement to pro-

cedures known as stochastic simulation and estimation

(SSE). In these procedures, multiple datasets are simulated

under the evaluated design, one or more models are fitted

to each of the simulated datasets, and summaries of the

parameter estimates across all fitted models are calculated.

The newly developed expressions can be used to first

simulate expected aggregate data from the data-generating

model according to equations 15–18, and then to fit the

data-analytic model to the simulated aggregate data. This

needs to be done only once with sufficiently high Nsim, and

not for multiple simulated datasets.

Methods

Four case studies are presented. The first one compares the

aggregate data log-likelihood to previously published log-

likelihood calculations in a paper containing the derivation

of NONMEM estimation methods [13]. The second case

example examines the estimation properties of the aggre-

gate data estimation methods and compares them to the

classical estimation methods based on individual data. A

simulated dataset with an increasing number of simulated

subjects is used, and convergence to the correct parameter

values is monitored. Finally, the third and fourth case

examples examine the potential of the newly derived

expressions to be used in optimal design, and as a

replacement for stochastic simulations and estimations.

We emphasize that these simulation case examples

function as sanity checks to demonstrate some specific

features of the aggregate data estimation methods. The case

examples alone do not prove anything. The actual proofs

regarding the aggregate data estimation methods are

mathematical.

Case 1: log-likelihood value comparison

This case example shows that the aggregate-data FO

approximation results in exactly identical objective func-

tion value as the individual-data FO approximation. For

this case example, the model and dataset described and

used by Wang [13] were utilized due to their public

availability. The data table can be observed in the original

publication, and will not be repeated here. As described in

the original publication [13], the model for kth measure-

ment of ith subject is specified as:

yik ¼ 10 � exp �b1 � exp bi;1
� �

� tik
� �

þ eik

where the distribution of e depends on the residual error

model. The model objective function was calculated at the

same parameter estimates as used in the original publica-

tion, namely b1 ¼ 0:5, x2
1 ¼ 0:04, r21 ¼ 0:1. Objective

function values with additive and proportional residual

error models were evaluated. The FO and FOCE algo-

rithms were used both for individual-data and aggregate-

data estimation.

Case 2: parameter estimation accuracy

This case example demonstrates that the aggregate-data

MC approximation converges to the correct parameter

estimates when the size of the dataset is sufficiently high. It

also further demonstrates that the individual-data and

aggregate-data FO approximations result in identical

parameter estimates. A two-compartment mammillary

model with first-order absorption and elimination is used.

Parameter values of 5 L/h clearance, 10 L central volume

of distribution, 30 L peripheral volume of distribution, 10

L/h inter-compartmental clearance and 1/h absorption rate

constant are used for fixed effects. Log-normally dis-

tributed inter-individual variability with log-standard

deviation of 0.3 is used for all parameters. No correlations

between random effects were defined. Additive residual

error of 0.2 mg/L is used. Pharmacokinetic sampling is

performed at 0.1, 0.25, 0.5, 1, 2, 3, 5, 8 and 12 h after

100 mg study drug dosing.

Data for 3000 subjects were simulated, and models were

fitted to datasets of 25, 50, 75, 100, 250, 500, 750, 1000,

2000 and 3000 subjects. Estimation methods were FO-ag-

gregate, FO-individual, FOCE-aggregate, FOCE-individ-

ual, MC-aggregate and SAEM-individual. For FOCE-

aggregate and MC-aggregate methods, the number of

Monte Carlo generated random effect values was either

300 or the number of subjects in the dataset, whichever was

higher.

To verify that the minimum number of 300 Monte Carlo

generated random effect vectors was adequate, the Monte

Carlo approximation standard error of the log-likelihood

was calculated via leave-one-out cross-validation. Briefly,

each of the 300 random effects vectors was sequentially

left out of the log-likelihood calculation, resulting in 300

leave-one-out log-likelihood values. The standard devia-

tion of these 300 log-likelihood values was calculated to

get the Monte Carlo approximation error of log-likelihood.

Case 3: optimal design

This case example shows that aggregate-data and individ-

ual-data FO approximations result in identical predicted
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relative standard errors. It also explores differences in

relative standard errors predicted by aggregate-data FOCE

versus individual-data FOCE approximation, and standard

errors predicted by aggregate-data MC versus Monte Carlo

approximation [14]. The model defined in Case 2 was used,

and the number of subjects was set to 100. Expected

aggregate data were simulated with FO, FOCE and MC

approximations of aggregate data (equations 15–18). Then,

the Hessian of aggregate data log-likelihood as a function

of parameters was calculated using each of the approxi-

mations. The consistency of the expected standard errors

calculated this way were compared with the expected

standard errors calculated with published expressions of

population FIM. The FO and FOCE approximated popu-

lation FIM was calculated with the established R library

PopED, with 300 random effect Monte Carlo samples for

the FOCE approximation. The Monte Carlo approximated

population FIM, as detailed by Riviere et al. [14], was

calculated with the R library MIXFIM with 5000 MC

samples and 500 MCMC samples.

Case 4: stochastic simulation and estimation

This case example demonstrates how the aggregate-data

expressions can be used to replace stochastic simulations

and estimations. The data-generating model was defined as

a transit compartmental model with mean transit time of

1 h and 2 transit compartments, both having log-normally

distributed inter-individual variability with log-standard

deviation of 0.3. The data-analytic model remained the

same as defined in Case 2. The number of subjects was set

to 100. Expected aggregate data were simulated using

equations 17–18. The data-analytic model was fitted to the

expected aggregate data using aggregate-data FO, FOCE

and MC methods, and parameter estimates together with

expected standard errors were calculated for each method.

For conciseness, this procedure is from now on referred as

‘‘aggregate-data OD’’. In this case, the data-analytic model

was different from the data-generating model and therefore

it would not have been possible to use the previously

published optimal design expressions.

The standard errors, predicted by the aggregate-data

estimation, were evaluated by comparing them to SSE

results. A total of 200 datasets were first simulated as

individual data using the data-generating model, and the

data-analytic model was fitted to each of the datasets using

the individual-data FO, FOCE and SAEM algorithms; this

procedure is henceforth referred as ‘‘individual-data SSE’’.

Then, from each of the generated datasets, an aggregate

dataset was calculated using equations 7 and 8 and the

data-analytic model was fitted using the aggregate-data FO,

FOCE and MC methods; this procedure is henceforth

referred as ‘‘aggregate-data SSE’’. The means and standard

deviations of the parameter estimates were calculated for

both individual-data FOCE estimations and aggregate-data

FOCE estimations.

Software and algorithms

R version 3.6.0 was used for computations and visualizing

the results. For numerical integration across random effect

values, Sobol-sequenced random numbers were used via

randtoolbox R library, because these low discrepancy

sequences are superior to pseudo-random numbers for

numerical integration [15]. The nlmixr R library was used

for fitting the FO, FOCE and SAEM models to individual-

level data [16]. The PopED R library was used for gener-

ating the expected FIM for FO and FOCE approximations

[17]. Although PopED uses different expressions for pop-

ulation FIM than the one featured in Appendix 1 [12], the

two sets of expressions yield identical results [18] and thus

the use of PopED is justified. The MIXFIM R library was

used to calculate the Monte Carlo exact population FIM

[14]. The R library numDeriv was used for calculation of

accurate numerical derivatives. In addition, several other R

libraries (tidyverse, Rcpp) were used to speed up the

computations and to keep the code concise. The source

code for all computations is available as an electronic

supplement.

Results

Case 1: log-likelihood value comparison

This case example demonstrates that the individual-data

and aggregate-data FO approximations result in identical

log-likelihood values. As shown in Table 1 for FO method,

there is a perfect match between the OFV values calculated

with the aggregate data method versus the OFV values

Table 1 Objective function values for the Wang 2007 model and

dataset [13], comparing the aggregate data estimation method to

results from nlmixr and the original published calculations

Approximation Residual error type Aggregate data Reference

FO Additive 0.0258 0.0258

FOCE Additive - 0.0659 - 2.0588

FO Proportional 39.2132 39.2132

FOCE Proportional 39.2008 39.2067

FOCEI Proportional 39.2027 39.4576

The reference values are those originally reported for NONMEM

[13], and subsequently replicated with nlmixr. The rows where the

aggregate data estimation matches perfectly the individual data esti-

mation are highlighted in bold
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calculated with the individual data method. For FOCE and

FOCEI, the two methods give similar but not identical

results. This indicates that the FOCE(I) aggregate data

method is not equivalent to the FOCE individual data

method.

Case 2: parameter estimation accuracy

Figure 1 shows that the FO method gives nearly identical

results for aggregate and individual data. This further

confirms that the aggregate data are a sufficient statistic of

the individual data in the case of FO method. The FO and

FOCE methods, either aggregate or individual-data based,

do not converge to the correct parameter values. This is

expected, since the FO and FOCE likelihood functions are

approximations, not guaranteed to lead to the exactly cor-

rect parameter estimates.

The SAEM method converges to the correct parameter

estimates roughly when the dataset has 3000 thousand

subjects. There seems to be some remaining bias in

parameters bka, bVc and x2
Q, however it can safely be

assumed that this remaining bias would also disappear with

further increasing dataset size, as the SAEM has been

proven to converge to the exact maximum likelihood

estimates [9]. The aggregate-data MC method also con-

verges to the correct parameter estimates albeit slower, in

this case with a dataset size up to 23,000 subjects. Again,

the actual proof is mathematical (see Appendix 2), and the

simulation example shown here serves as a sanity check.
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Fig. 1 Parameter estimate ratios for different estimation algorithms as a function of number of simulated subjects. The exact likelihood

estimation method for individual data was SAEM, and for aggregate data the aggregate-data MC estimation method
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For the aggregate-data MC estimation method with 300

MC simulated subjects, the Monte Carlo approximation

standard error of the log-likelihood function was calculated

via leave-one-out cross-validation. The approximation

standard error was 0.0011 per one subject in the dataset,

and would e.g. correspondingly be 1.1 for a dataset of 1000

thousand subjects. This approximation error was consid-

ered to be both acceptable, and to have a sufficient safety

margin. Thus, it was concluded that 300 MC simulated

subjects is an acceptable minimum to use in Case examples

2, 3 and 4.

Case 3: optimal design

Figure 2 shows that the FO method gives identical results

for aggregate and individual data, as expected (see

Appendices 1 and 3). The highest relative difference

between the two methods was a 0.045% greater RSE pre-

dicted by PopED, as compared to the aggregate data log-

likelihood, and this difference is likely to result from

numerical differences in computations.

For FOCE the method, the RSE predictions differ

between PopED and the aggregate data log-likelihood

method, as is expected based on the implementation

details. In general, the standard errors predicted for the
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Fig. 2 Predicted relative standard errors for a study of 100 subjects on

the basis of different optimal design algorithms. RSE% is relative

standard error. FO refers to first-order estimation, FOCE refers to

first-order conditional estimation, and MC refers Monte Carlo

approximation of the log-likelihood
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FOCE aggregate method are higher. Similarly, the standard

errors predicted by MIXFIM are lower than the standard

errors predicted by the MC aggregate method.

The highest relative standard errors are predicted for the

random effects variances of Vc, Vp, Q and KA, followed

by the fixed-effects estimates of KA and Vc (Fig. 2). These

predictions generally agree with the results presented in

Fig. 1.

Case 4: stochastic simulation and estimation

As seen in Fig. 3, there was an almost perfect match

between the aggregate-data OD, aggregate-data SSE and

individual-data SSE parameter estimates for FO method.

Further, for nearly all parameters there is a good agreement

between aggregate-data OD and aggregate-data SSE pro-

cedure results, for the non-FO estimation methods. These

comparisons show that the aggregate-data OD methods

reliably predict the sampling distributions of parameters

obtained from aggregate-data SSE.

However, the individual-data SSE procedure gave very

differing results for non-FO estimation methods. Generally,

random effects variances were lower for individual-data

SSE procedure for non-FO estimation methods, and

residual variance was higher. The fixed-effects estimates

also differed, with no clearly identifiable trends. This

demonstrates that when the data-generating model is

different from the data-analytic model, the individual-data

algorithms and the aggregate-data algorithms do not nec-

essarily converge to the same parameter estimates.

Discussion

In this paper, we have presented a method for estimation of

nonlinear mixed-effects model parameters based on

aggregate data of the actual observations. The aggregate

data in this paper refers to the mean vectors and the vari-

ance–covariance matrix of observations. We have shown

how the expressions can be used for fitting models, per-

forming optimal design, and replacing computation-inten-

sive SSE procedures with a faster and more deterministic

alternative: Fitting aggregate data models to asymptotically

simulated aggregate data. We have shown both mathe-

matically and via computational examples that the aggre-

gate-data FO and individual-data FO algorithms produce

identical results given data.

Using FO method, the individual-data and aggregate-

data modelling methods are mathematically identical, as

was shown in Appendix 1. This means that the parameter

estimation properties and optimal design properties are also

identical. In the case of FO method, the ~y and ~V are the

same for each individual with the same study design and

covariate values, and the observed mean vector and
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Fig. 3 The parameter estimates and their variances when the data-

generating model is different from the data-analytic model. The

‘‘Aggregate-data OD’’ refers to fitting the data-analytic model to the

expected data, simulated from the data-generating model. The

‘‘Aggregate-data SSE’’ and ‘‘Individual-data SSE’’ labels refer to

repeatedly simulating a dataset of 100 individuals and fitting a model

to both the simulated individual data, and to aggregate data calculated

from the simulated data. FO refers to first-order estimation, FOCE

refers to first-order conditional estimation, and MC refers to SAEM

algorithm for individual data, and aggregate-data MC method for

aggregate data
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variance–covariance matrix are a sufficient statistic for the

individual observed data. The implementation presented

here is expected to be faster since the log-likelihood for all

subjects with an identical design is calculated at once, and

not one individual at a time. Therefore, with N subjects, if

the individual-data FO log-likelihood evaluation takes x

time units, the aggregate-data FO method will take x/N

time units plus the time for the computation of the one

additional term that is not included in the individual-data

log-likelihood (compare Eqs. 10 and 14).

While this manuscript deals with aggregate data, the

definition of designs in equations 1 and 2 also allows data

from a single individual with a unique design, i.e. unique

sampling timepoints. This would subsequently result in

individual-level data, because the data could not be

grouped with other observations occurring at the same

sampling timepoints. If individual data are included as

‘‘aggregate data’’, then the mean vector becomes the vector

of observed data, and the variance–covariance matrix

becomes a matrix of zeros. Consequently, the aggregate-

data log-likelihood outlined equation 14 would collapse to

the individual-data log-likelihood outlined in equation 10.

In practice, the aggregate-data FO would then function

equivalently to individual-data FO estimation, whereas

aggregate-data FOCE and aggregate-data MC estimation

methods would function as computationally and statisti-

cally inefficient individual-data estimation algorithms.

The individual-data FO and the aggregate-data FO

methods gave practically identical results in Case 1 and

Case 3, however small differences in parameter estimates

were observed in Case 2. We suspect that the small dif-

ferences between the parameter estimates are caused by

differences in implementation of computations. Thus,

although the mathematical expressions of individual-data

and aggregate-data produce identical results (Appendix 1),

small differences can be seen in the computational exam-

ples due to differences in numerical implementation.

In Case 4: Stochastic simulation and estimation, we

directly fitted the data-analytic model to the expected

dataset, given the study design and the data-generating

model. The results of this analysis were compared to two

SSE scenarios, the first of which was performed based on

individual-level data, and the second of which was per-

formed based on aggregate-level data. The mean and

variability of parameter estimates from the aggregate-level

SSE was almost identical to the parameter estimate sam-

pling distributions predicted by aggregate-data OD. How-

ever, the individual-data SSE parameter estimates with

FOCE and SAEM algorithms differed from the aggregate-

data FOCE and aggregate-data MC parameter estimates.

This observation reconfirms that there are differences

between the individual-level estimation and aggregate-

level estimation algorithms, except for the FO

approximation.

For the aggregate-data MC method, the required number

of simulated subjects, Nsim, is dependent on both model and

design. A higher number of simulated subjects will likely

be required as the number of random effects increases, as

the variance of random effects increases, or as the sensi-

tivity of model predictions to random effects increases.

Additionally, design aspects such as the number and timing

of observations can affect the required number of simulated

subjects. An excessively high Nsim will result in needlessly

slow computation, whereas a too low Nsim will result in

inaccurate results. In this manuscript, the minimum number

of simulated subjects was set to 300, which was empirically

found to produce a robust calculation of log-likelihood for

the data-analytic model used in Case example 2; for details,

see section Results: Case Example 2. As a potential future

improvement, it should be possible to dynamically adjust

the Nsim so that the Monte Carlo approximation error of the

log-likelihood function satisfies some constraint.

Potential applications

Model-based meta-analysis traditionally refers to collect-

ing data from multiple studies, possibly using only litera-

ture reports of aggregate data such as means and variances.

The methods presented here allow the inclusion of aggre-

gate data in the form of variance–covariance matrices.

More so, the methods demonstrated here allow the simu-

lation of aggregate data from literature models, and using

these simulated aggregate data as part of fitting the meta-

analytic model. In other words, data can be extracted from

multiple literature-reported models and combined into a

single meta-analytic model. This is an improvement, since

thus far it has been necessary to choose one model if

multiple models have been reported for a phenomenon.

For using literature models as data, it is not necessary to

know the variance–covariance matrix of the model

parameters; it is sufficient to only know the model struc-

ture, the parameter estimates, and the design aspects such

as the PK sampling timepoints. If the literature model is not

well-informed, then the lack of information will be cap-

tured by the sparsity of the data together with the high

variances in the simulated variance–covariance matrix.

This was practically demonstrated in Case 3, where only

the model and the design were required to compute the

expected Fisher information of model parameters, from

which the variance–covariance matrix of model parameters

can be calculated.

For optimal design, the proposed expressions allow

optimizing designs of the data-analytic model when the

data-generating model is different from the data-analytic

model. In practice, this could mean using a PBPK model as
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the data-generating model and optimizing the sampling

schedule for a two-compartment population PK model. In

previous work, there have been examples of a multi-step

approach, where data are first simulated from a PBPK

model, a population PK model is fitted to the simulated

data, and then the population PK model is used as the basis

for optimal design [19–21]. The attractive alternative pre-

sented here is that a one-step approach can be used, i.e. the

‘‘fitting’’ of the population PK model is performed at the

same step as the optimal design.

Limitations

The aggregate data estimation methods proposed in the

current manuscript are based on the mean vector and the

variance–covariance matrix of observations. An important

limitation to using literature-reported data is that the

covariances of observations are rarely reported, typically

only means and variances can be extracted from the liter-

ature. If no other data than means and variances are

available, then it is still theoretically possible to fit some

simple nonlinear mixed-effects models, if the random

effects affect the variances in a uniquely identifiable way.

This scenario would be similar to fitting individual-data

nonlinear mixed effects models to datasets with only one

observation per subject, which is also theoretically possi-

ble. However, in practice it is difficult to make meaningful

inferences from such models. To conclude, if only means

and variances are available, fitting nonlinear mixed-effects

to these data may not be worthwhile. However, aggregate

data of means and variances can readily be used jointly

with individual data in nonlinear mixed-effects model

estimation.

Apart from FO approximation, population modelling

with individual data is expected to always be more pow-

erful than modelling with aggregate data. This was

demonstrated in the Case 3, in which the expected standard

errors for aggregate-data FOCE were higher than those for

individual-data FOCE, and likewise the standard errors for

aggregate-data MC estimation were higher than those

predicted by MIXFIM. The likely reason for this ineffi-

ciency of aggregate data estimation is that information is

lost when summarized only by means and variance-co-

variances, i.e. the first and second statistical moments. This

amounts to assuming that the data are normally distributed.

The third and fourth statistical moments are skewness and

kurtosis. Theoretically, implementing skewness and kur-

tosis as a form of aggregate data would likely further

improve the efficiency of aggregate data MC estimation

algorithm, however deriving the log-likelihood expressions

for skewness and kurtosis would be a challenge.

Case 4 demonstrated that the parameter estimates

obtained by aggregate data estimation can be different from

parameter estimates obtained by individual data estimation

when the data-analytic and the data-generating models are

different. Because the data-analytic model is different from

the data-generating model, the ‘‘correct’’ parameter esti-

mates for the data-analytic model are unknown. Thus,

although Fig. 3 shows that e.g. the residual variance

parameter resulting from the aggregate-data estimation was

closer to the residual variance value of 0.04 of the data-

generating model, this should not be interpreted as aggre-

gate-data estimation being superior to individual-data

estimation. It is more relevant to consider the general

properties of aggregate-data versus individual-data esti-

mation when deciding which one is more accurate:

Whereas the aggregate data estimation methods must

assume that the random effects are distributed perfectly

normally, individual data estimation methods can allow

some degree of skewness or kurtosis in random effects

distribution if it results in a better agreement between

predictions and data. As such, the aggregate-data estima-

tion methods are likely less robust towards model mis-

specification than the individual-data estimation methods.

Individual-data FOCE and SAEM estimation methods are

thus expected to be superior to the aggregate-data FOCE

and MC estimation methods in real-life pharmacometric

analyses, where the true data-generating model is

unknown. However, it is worth noting that even when

conducting individual-data modelling, identifying the dis-

tribution of random effects as clearly non-normal would

likely lead to model refinement until no obvious misspec-

ification can any longer be detected. Furthermore, even if

the individual-data estimation methods are more robust

against non-normality of the random effects, this advantage

is lost when parametrically simulating future trials from the

models.

A further reason for individual-data FOCE being supe-

rior to aggregate-data FOCE is that when individual data

are available, the log-likelihoods are calculated individu-

ally and only summed together at the end. On the other

hand, when aggregate data are used, the expected mean

vector ~y and variance–covariance matrix ~V are calculated

based on a set of quasi-random individual parameters

(equations 15–16). Then, the mean expected ~y and ~V are

used in the calculation of aggregate data log-likelihood.

However, the individual-data log-likelihood (equation 10)

involves nonlinear functions such as the inverse of ~V, and

taking a mean of inverse is not the same taking an inverse

of mean. Therefore, taking a sum of individual log-likeli-

hoods (calculated based on individually predicted ~y and ~V)
is more accurate than calculating an aggregate-data log-

likelihood on the basis of mean predicted ~y and ~V.
For the above reasons, the usefulness of the aggregate-

data FOCE approximation is limited. The approximation is
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computationally expensive because derivatives need to be

calculated for a large set of random effects, while there is

no guarantee that estimation results would be identical to

those estimated by individual-data FOCE method. The

aggregate-data MC approximation is generally faster than

aggregate-data FOCE approximation due to not having to

calculate derivatives. Further, the aggregate-data MC

approximation is guaranteed to asymptotically converge to

the correct parameter estimates if the data-analytic model

is the same as the data-generating model. Meanwhile, the

aggregate-data FO method is guaranteed to give results

identical to individual-data FO method, regardless of

whether the data-analytic model is the same as the data-

generating model. To summarize, aggregate-data FO and

MC approximations are considered useful, whereas

aggregate-data FOCE is not.

The currently proposed expressions do not include

covariates, but it should be easy to extend the framework to

include them using e.g. the results of Hooker and

coworkers [17, 22]. Further, inter-occasion variability is

not included in the currently proposed expressions, but

should be easy to include in the same manner as done by

Retout and colleagues [12]. Indeed, the currently proposed

expressions have reserved the subscript j exactly for the

purpose of denoting jth occasion for ith individual.

Conclusions

The presented methods for fitting nonlinear mixed-effects

models to aggregate data are considered a valuable addition

to the pharmacometric modelling toolbox. Future studies

should explore the properties of aggregate-data estimation

in model-based meta-analysis, and in conducting optimal

design when the data-analytic model is different from the

data-generating model.

Appendix 1: Derivation of aggregate-data
log-likelihood from individual-data FO
log-likelihood

In this Appendix, the FO log-likelihood expression for

aggregate data (equation 14) is derived from the FO log-

likelihood expression for individual data (equation 10).

We start with the log-likelihood expression for all data,

as the sum of log-likelihoods of individual data. We note

that in FO method, ~Vi is same for all individuals with the

same design factors and can thus be substituted with ~V.

log L yjWð Þð Þ ¼ � 1

2

X
i

tr Ri
~V�1
i

� �
þ log ~Vi

�� ��� �

¼ � 1

2
tr

X
i

Ri

 !
~V�1

 !
þ Nlog ~V

�� ��
 !

Observing the matrix
P
i

RiX
i

Ri ¼
X
i

yTres;i � yres;i

The mth row and nth column of this matrix correspond

to

X
i

Ri

 !

m;n

¼
X
i

yim � ~ymð Þ yin � ~ynð Þ

We can twice include the terms for mean observations

as follows

X
i

Ri

 !

m;n

¼
X
i

ym þ yim � ymð Þ � ~ymð Þ yn þ yin � ynð Þ � ~ynð Þ

Expanding the above gives

X
i

Ri

 !

m;n

¼
X
i

þymyn þ ym yin � ynð Þ � ym ~yn

þ yim � ymð Þyn þ yim � ymð Þ yin � ynð Þ � yim � ymð Þ~yn
�~ymyn � ~ym yin � ynð Þ þ ~ym ~yn

0
B@

1
CA

It can be noted that y is not affected by i. Further, ~y is

not affected by i. Even though yik � ykð Þ are different at

each value of i, the mean of these values is zero. Therefore,X
i

yim � ymð Þ yn � ~ynð Þ ¼ yn � ~ynð Þ
X
i

yim � ymð Þ ¼ 0

X
i

yin � ynð Þ ym � ~ymð Þ ¼ ym � ~ymð Þ
X
i

yin � ynð Þ ¼ 0

Also, it can be observed that the sum of residual cross-

products is actually maximum likelihood variance–co-

variance matrix:

X
i

yim � ymð Þ yin � ynð Þ ¼ N

P
i yim � ymð Þ yin � ynð Þ

N

¼ NVmn

Substituting this back to Rm;n and removing the terms

that amount to zero gives

X
i

Ri

 !

m;n

¼ N Vmn þ ym � ~ymÞðyn � ~ynð Þð Þ

With this result, we can writeX
i

Ri ¼ NV þ N y� ~yð ÞT y� ~yð Þ

Further substituting this into the log-likelihood expres-

sion for individual data, and omitting the subscript i, gives
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log L yjWð Þð Þ ¼ � 1

2
tr NV ~V

�1
� �

þ N tr y� ~yð ÞT y� ~yð Þ ~V�1
� �

þ N log ~V
�� ��� �

¼ � 1

2
N tr V ~V�1

� �
þ y� ~yð ÞT ~V�1 y� ~yð Þ þ log ~V

�� ��� �

Which is termed the aggregate data log-likelihood in the

current manuscript.

Appendix 2:Derivation of the general
aggregate-data log-likelihood

With a model that only produces aggregate-level data

predictions, the log-likelihood for any individual datapoints

is

log L yjWð Þð Þ ¼ � 1

2

X
i

yTres;i
~V�1yres;i þ log ~V

�� ��� �

where ~V is the population-level variance–covariance

matrix, and yres;i is the vector of individual residuals, cal-

culated on the basis of population-level mean predictions

and individual data.

Using the same steps as outlined in Appendix 1, it is

then possible to show that the aggregate-data log-likeli-

hood can be expressed as

log L yjWð Þð Þ ¼ � 1

2
N tr V ~V

�1
� �

þ y� ~yð ÞT ~V�1
y� ~yð Þ þ log ~V

�� ��� �

This is an exact expression for the aggregate-data log-

likelihood. Therefore, maximizing the log-likelihood of

this expression as a function of W will result in the exact

maximum likelihood estimates with respect to data, similar

to the EM individual-data estimation algorithms such as

stochastic approximation EM and importance sampling

EM algorithms.

Appendix 3:Derivation of the expected FIM
when the data-generating model is the same
as the data-analytic model

Retout et al. [23], derived expressions for the expected FIM

given a log-likelihood function.

Translating and extending their notation into the format

used in the current manuscript and omitting the constant

gives

log L W; yð Þð Þ ¼ y� ~yð ÞT ~V�1 y� ~yð Þ þ log ~V
�� ��

The authors [23] used expressions

d log ~V
�� ��

dkk
¼ tr ~V�1 d ~V

dkk

	 


and

d ~V�1

dkk
¼ � ~V�1 d ~V

dkk
~V�1

To show that

E
d2 � log L W; yð Þð Þð Þ

dbdbT

	 

ffi df T b; nð Þ

db
~V�1 df b; nð Þ

db

E
d2 � log L W; yð Þð Þð Þ

dbdkk

	 

ffi 0

E
d2 � log L W; yð Þð Þð Þ

dkkdkj

	 

ffi 1

2
tr ~V�1 d ~V

dkj
~V�1 d ~V

dkk

	 


These expressions were derived with the assumption

that the fixed effects do not affect the predicted variance,

and the random effects do not affect the predicted mean.

Later, the assumptions have been relaxed to allow for fixed

effects to affect the predicted variance [12]. The only

change is that the expression

tr ~V�1 d ~V
dkj

~V�1 d ~V
dkk

	 


becomes more general

tr ~V�1 d ~V
dwj

~V�1 d ~V
dwk

 !

and enters also the expressions where fixed-effects are

present.

We show that the differentiation of the aggregate data

log-likelihood function directly results in the expected FIM

expressions [12]. We investigate the most general case

where fixed effects can affect both predicted means and

variances, and also random effects can affect predicted

means and variances.

We go through each of the terms of the aggregate data

log-likelihood expression (expression 14). We note that a

change in parameters can affect the predicted ~V and ~y but

not the observed V and y, and we note that V ~V�1 ¼ I. We

further note that ~V is symmetric, ~V ¼ ~VT and that the

matrix multiplication order can be rearranged within the

trace operator. Starting with the first term,

d2tr V ~V
�1

� �

dwkdwj

¼ � d
dwk

tr V ~V
�1 d ~V

dwj

~V
�1

 !

¼ �tr V ~V
�1 d ~V

dwk

~V
�1 d ~V

dwj

~V
�1 þ V ~V

�1 d2 ~V
dwjdwk

~V
�1 � V ~V

�1 d ~V
dwj

~V
�1 d ~V

dwk

~V
�1

 !

¼ tr 2V ~V
�1 d ~V

dwk

~V
�1 d ~V

dwj

~V
�1 � V ~V

�1 d2 ~V
dwjdwk

~V
�1

 !

¼ tr 2
d ~V
dwk

~V
�1 d ~V

dwj

~V
�1 � d2 ~V

dwjdwk

~V
�1

 !

Next, we note that

d y� ~yð Þ
dwj

¼ � d~y
dwj
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Therefore

d2 y� ~yð ÞT ~V�1 y� ~yð Þ
� �

dwjdwk

¼
d � d~y

dwj

� �T
~V�1 y� ~yð Þ þ y� ~yð ÞT ~V�1 d ~V

dwj

~V�1 y� ~yð Þ � y� ~yð ÞT ~V�1 d~y
dwj

	 


dwk

¼ 2
d~y
dwj

 !T

~V�1 d~y
dwk

� 2 �y� ~yð ÞT ~V�1 d2~y
dwkwj

¼ 2
d~y
dwj

 !T

~V�1 d~y
dwk

Because of terms including y� ~yð Þ ¼ 0 canceling out.

Finally,

d2 log ~V
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dwjdwk
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dwk
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dwj
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� ~V�1 d ~V
dwj

~V�1 d ~V
dwk

 !

Putting all of the parts together,

E
d2 � log L W; yð Þð Þð Þ

dwjdwk

 !

ffi � � 1

2

	 

tr 2

d ~V
dwk

~V�1 d ~V
dwj

~V�1 � d2 ~V
dwjdwk

~V�1

 ! 

þ2
d~y
dwj

 !T

~V�1 d~y
dwk

þ tr ~V�1 d2 ~V
dwkdwj

� ~V�1 d ~V
dwj

~V�1 d ~V
dwk

 !!

¼ 1

2
tr 2

d ~V
dwk

~V�1 d ~V
dwj

~V�1

 !
� tr

d ~V
dwk

~V�1 d ~V
dwj

~V�1

 ! 

�tr
d2 ~V

dwjdwk

~V�1

 !
þ tr

d2 ~V
dwjdwk

~V�1

 !
þ 2

d~y
dwj

 !T

~V�1 d~y
dwk

!

¼ 1

2
tr

d ~V
dwk

~V�1 d ~V
dwj

~V�1

 !
þ d~y

dwj

 !T

~V�1 d~y
dwk

Finally, with these identities we can conclude that under

the assumptions of FO approximation, in which the random

effects are not able to affect mean predictions,

E
d2 � log L W; yð Þð Þð Þ

dbjdbk

 !
ffi d~y

dbj

 !T

~V�1 d~y
dbk

þ 1

2
tr ~V�1 d ~V

dbj
~V�1 d ~V

dbk

 !

E
d2 � log L W; yð Þð Þð Þ

dbjdkk

 !
ffi 1

2
tr ~V�1 d ~V

dbj
~V�1 d ~V

dkk

 !

E
d2 � log L W; yð Þð Þð Þ

dkjdkk

	 

ffi 1

2
tr ~V�1 d ~V

dkj
~V�1 d ~V

dkk

	 


Which is identical to the results derived by Retout et al.

[12]. To summarize, in this Appendix we have derived the

previously published expressions for expected population

FIM using only the expected aggregate data. This approach

has pedagogical value because it may be more intuitive for

some people than deriving the expected population FIM

from individual-data log-likelihood expressions.
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20. Dumont C, Mentré F, Gaynor C et al (2013) Optimal sampling

times for a drug and its metabolite using SIMCYP(�) simulations

as prior information. Clin Pharmacokinet 52:43–57. https://doi.

org/10.1007/s40262-012-0022-9

21. Thai H-T, Mazuir F, Cartot-Cotton S, Veyrat-Follet C (2015)

Optimizing pharmacokinetic bridging studies in paediatric

oncology using physiologically-based pharmacokinetic mod-

elling: application to docetaxel. Br J Clin Pharmacol 80:534–547.

https://doi.org/10.1111/bcp.12702

22. Hooker AC, Foracchia M, Dodds MG, Vicini P (2003) An

evaluation of population D-optimal designs via pharmacokinetic

simulations. Ann Biomed Eng 31:98–111
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