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Abstract
Quantitative systems pharmacology models are often highly complex and not amenable to further simulation and/or

estimation analyses. Model-order reduction can be used to derive a mechanistically sound yet simpler model of the desired

input–output relationship. In this study, we explore the use of artificial neural networks for approximating an input–output

relationship within highly dimensional systems models. We illustrate this approach using a model of blood coagulation.

The model consists of two components linked together through a highly dimensional discontinuous interface, which creates

a difficulty for model reduction techniques. The proposed approach enables the development of an efficient approximation

to complex models with the desired level of accuracy. The technique is applicable to a wide variety of models and provides

substantial speed boost for use of such models in simulation and control purposes.
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Introduction

Quantitative systems pharmacology (QSP) is an approach

that uses mathematical models to describe the dynamic

interactions between drugs and (patho)physiologic and

biochemical systems. QSP models are increasingly used in

drug-development to provide a deeper understanding of the

mechanisms of actions of drugs and to identify feasible

disease targets for preclinical investigations [1–3]. Detailed

modelling of complex biological systems often produces

models with a large number of parameters and states [4]

and often also across multiple time scales [5]. Despite the

rapidly developing computational power and hardware,

Monte Carlo simulations of such detailed models often

require infeasible amounts of time [6]. Additionally,

parameter estimation of complex non-linear models is both

intrinsically difficult and computationally intensive due to

high dimensionality and also may be unreliable if the

model is not formally proven to be identifiable.

An alternative approach to using the full QSP model

could involve the use of model-order reduction techniques.

Model-order reduction (or shortly model reduction) aims to

alleviate one or more issues of complexity of QSP models

to yield a simplified representation of the desired input–

output relationship from the full-order model [7–11].

Recently Hasegawa et al. has shown that a reduced model,

produced by lumping a QSP model of bone remodelling

[5], was able to be used to extrapolate to new data for two

examples (denosumab and alendronate) based on the bone

model [12]. In the latter case, the reduced model from the

denosumab example was successfully reused for alen-

dronate without reference to the original QSP model and

without further development of the reduced model.

The coagulation network is a QSP model that describes

the coagulation process as a series of ordinary differential

equation (ODEs) representing the interaction of positive

and negative feedback and feedforward reactions that result

in the formation and subsequent degradation of a fibrin clot

[4], which was extended in the work of Gulati et al. [13].

The model contains a number of drug targets that include

warfarin, heparins, and other anticoagulants. The network

model describes both the in-vivo characteristics of the

coagulation system (formation and elimination of various
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coagulation proteins) and the in-vitro characteristics that

arise when a clotting time test is performed (e.g. INR). See

Fig. 1 for an illustration of the two components in the

system. Importantly, the in-vivo and in-vitro components

are discontinuous due to a discrete change in the system

that occurs in-between these two components. The in-vitro

component is initiated with a snapshot of the in-vivo

concentrations of all states at a specific point in time (i.e.

the time of the ‘‘blood sample’’ for which a coagulation

time test is intended). The in-vitro component is initiated

after a dilution of all system states and the addition of an

activating agent (e.g. tissue factor). The system is then

restarted with all elimination rate constants for factors set

to zero (as clotting factor degradation does not take place

in the in-vitro setting).

For unfractionated heparin (UFH), the in -vitro effects

on the system are measured by anti-factor Xa activity (aXa)

and activated partial thromboplastin time (aPTT). As

illustrated in Fig. 1, the two components, in-vivo and in-

vitro, are linked through a high-dimensional discontinuous

interface (in this case a 62-state vector). Both in-vivo and

in-vitro components independently run 62 ODEs using 184

and 188 parameters, respectively.

The dimensionality and discontinuity of the interface

creates a difficulty for model reduction techniques. While

several techniques have been applied to the coagulation

network model, including proper lumping as applied to the

in-vivo component [14] and a non-parametric polynomial

applied to warfarin [15], these techniques have either been

limited to a single component or to provide a specific

solutions only. A more general solution remains important.

The general technique of lumping involves a search for an

optimal lumping scheme among all possible combinations

of lumped states that retains the desired characteristics of a

reduced (lumped) model when compared with the full-

order model [14]. However, the search space grows very

fast with the dimension of the model to be reduced leading

to potentially long lists of combinations to be tested [7]

which is particularly challenging for nonlinear models. In

addition, lumping and similar parametric approaches have

been optimised for continuously differentiable functions. In

this case, due to the high-dimensional discontinuous

interface between the in-vivo and in-vitro components, it is

possible that a single lumping schema does not exist. For

polynomial fitting, the number of polynomial terms grows

rapidly with increasing numbers of input variables (n) and

orders of interactions. As a result, polynomial fitting

becomes problematic for high dimensional inputs espe-

cially when higher order interactions between input vari-

ables are to be considered due to combinatorial explosion

of interaction terms [16].

Artificial neural networks (ANNs) have been widely

used in many research fields to model complex non-linear

I/O relationships. The universal approximation theorem

states that a multi-layer artificial neural network with an

arbitrary number of neurons can approximate any contin-

uous function of real variables arbitrarily well [17]. This

makes ANNs a potentially useful tool for approximating

complex multi-dimensional and non-linear I/O relation-

ships that are typical of QSP models. They have shown to

be an efficient tool for order-reduction of various types of

models in fields such as systems engineering and control

[18].

Different approaches have been proposed for using

ANNs in the domain of model reduction. These range from

constructing nonparametric surrogate models to emulate a

specific input–output behaviour of a complex model based

on simulated and experimental data [19] to parametric

Fig. 1 Schematic representation of the coagulation network model

related to dose–response relationship of an anticoagulant. Green

colour refers to module inputs and the orange colour refers to module

outputs. The switch symbol indicates a discrete change in the system

that corresponds to taking a blood sample, i.e. switching off

elimination rates, addition of an activating agent, etc. ODEs ordinary

differential equations, aPTT activated partial thromboplastin time,

INR international normalised ratio
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methods where ANNs are combined with other model

reduction methods such as proper orthogonal decomposi-

tions to generate reduced-order models that retain mean-

ingful parameters from the full-order model [20]. Despite

their apparent utility, we are not aware of the use of ANNs

for simplifying QSP models.

Aims

The aim of this article is to explore the use of ANNs as a

model reduction technique to approximate a QSP model.

Here we use the coagulation network QSP model applied to

unfractionated heparin as the motivating example. Specific

aims include:

a) To find the minimum ANN architecture that can

approximate the full-order coagulation QSP model

across the in-vivo and in-vitro interface, with an

arbitrary accuracy.

b) To train an ANN with pseudodata from the full-order

model. We use the term pseudodata to indicate that

the QSP model is used to simulate I/O data over a

range of input variables and no real data is used for

training.

c) To test the performance of the trained ANNs to

predict new I/O data within the range of the training

data.

In this work, we chose UFH dose–response in paediatric

patients [21] as the target I/O relationship of the coagula-

tion network for the following features that make the

problem complex and difficult to perform using other

model reduction techniques:

• The coagulation model contains multiple sources of

non-linearity: The coagulation system contains both

amplification (positive loop gain) and damping subsys-

tems which means its response to perturbation is non-

linear and difficult to predict. In addition, maturation of

the system and drug pharmacokinetics add additional

layers of non-linearity.

• The specific I/O relationship to be investigated here

spans both in-vivo and in-vitro components (i.e. across

the high dimensional interface).

It is important to note that the use of this systems model

in this setting does not imply that the model has been

validated in this patient group. We are using this as an

exploratory example to illustrate the techniques and the

utility of these techniques.

Methods

The model reduction technique considered in this work

consisted of two steps:

1. Simulation of pseudo I/O data from the full-order

model.

2. Training and validation of a minimal ANN architecture

that can approximate the I/O relationship up to an

arbitrary performance target.

All QSP simulations, data processing, and neural net-

works construction and training were performed in

MATLAB with the Neural Network Toolbox (Release

2018b The MathWorks, Inc., Natick, Massachusetts, Uni-

ted States). The computer used to run this analysis was

equipped with 64 GB of RAM and a 36-core processor that

supported 72 parallel threads. However, none of the sim-

ulation or training processes were parallelised to facilitate

runtime comparability across models and platforms. The

complete code for the process described in this article is

provided in supplemental 3 including the simulated train-

ing, evaluation and validation pseudo data. We note that

ANN training involves a stochastic component of initial-

ising network weights and biases. This means that re-run-

ning the code would be anticipated to produce slightly

different results from those reported here.

Simulation of pseudo data

The full-order QSP model was used to simulate training

data in the form: f x1; y1ð Þ; x2; y2ð Þ; . . .; xQ; yQ
� �

g where Q

is the number of training examples, xq is a 4-dimensional

input vector, and yq is the corresponding 2-dimensional

output of the full-order model. The input vector consisted

of four variables including patient covariates (weight and

age) and dosing information (intravenous infusion dose and

duration). Input variables were randomly sampled as

follows:

1. Age (in years) was sampled from a log-normal

distribution: lnðageÞ�Nð0:7; 1:1Þ. This was to ensure

that enough data are available in the highly nonlinear

region of the maturation function of the model

(0–0.5 year).

2. Infant weight (in kg) was simulated from a published

empirical model of paediatric age-matched weights

[22]. The model utilised a fifth order polynomial

function to describe the trend of weight with age and a

constant coefficient of variation to describe the inter-

individual variability.

3. Infusion rates of UFH were sampled from a uniform

distribution in the range of 10–30 IU/kg/hour. Rates
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were then converted to total infusion doses before

being presented to the full-order QSP model.

4. Infusion durations were sampled from a uniform

distribution in the range of 0–12 h.

The output vector was the QSP model predicted aPTT

and aXa at the end of infusion for each virtual patient. The

simulated dataset consisted of 10,000 input–output pairs of

data. The size of training set was selected so that it is likely

to be more than adequate for statistically representing the

input–output behaviour of the full-order model. It contains

more than 3 times the amount of data than the commonly

accepted empiric 10 9 rule (which states that the amount

of training data should generally not be less than tenfold

the number of parameters of the proposed ANN model

[23]). The simulated data was randomly split into a training

set (80%) that was used for ANN parameter estimation and

an evaluation set (20%) used to test the performance of the

network and determine when training should be stopped

(see ANN training section below). The same split was

employed for all training experiments throughout this

work.

To test the ability of trained neural networks to learn the

relationship between each input variable and the output

variables, four validation data sets were simulated. In each

set, one input variable was varied over the range of the

training data while the other variables were fixed to the

median value of the training data and the corresponding

outputs were simulated from the full-order QSP model.

Such data sets are expected to contain combinations of

input variable values that are unlikely to be present in the

training data set, which challenges the ANN’s ability to

interpolate the individual effects of each input variable on

outputs. Additionally, full response-time profiles were

simulated from the full-order model for two hypothetical

patients receiving UFH infusion at a rate of 20 IU/kg/hour.

Patient 1 was chosen in the highly nonlinear range of the

maturation function (age 0.5 years and weight of 6 kg)

while patient 2 was close to the full maturation process

(age 12 years and weight of 40 kg). The validation data

sets were not incorporated into any part of the training

process.

Feedforward ANN

In this section, we present an introductory overview of the

computations performed within a neural network for

readers who are not familiar with the topic. A more

detailed description of the concept of feedforward ANNs

is provided elsewhere [24]. Where possible we have used

notation that is consistent with the general notation used

in statistics and pharmacometrics literature, which is

sometimes slightly different from that used in the neural

network literature. The ANN used in this work is a feed-

forward neural network. A feed-forward neural network

consists of artificial neurons (nodes) arranged in three or

more layers, an input layer, output layer, and one or more

hidden layers in-between as shown in Fig. 2. A neuron is

a computation unit that typically receives multiple inputs,

calculates a weighted sum of the inputs, adds a bias to the

weighted inputs to form the net input, and then passes the

net input to an activation function to produce the output as

shown in Eq. 1 and Eq. 2 below. This node may be con-

nected to one or more nodes in the next layer with the

activation output becoming the input for the next node

layer.

nm;i ¼
XSm�1

j¼1

ðwm;i;jam�1;jÞ þ bm:i; ð1Þ

where nm;i is the net input of the ith neuron in the mth layer,

Sm�1 is the number of neurons in the previous (m� 1th)

layer, wm;i;j is the connection weight between neuron j of

Fig. 2 Schematic presentation of a feedforward neural network. The

computations performed by a neuron are shown in the inset box. The

input layer is denoted as layer 0 (shown in pink shading), the hidden

layers are depicted in blue, and the output layer in green. Nodes are

shown as circles. Solid lines represent connectivity in a direction of

left to right. The notation a and w represent the activations (either

input to a node or output from a node) and weights and b represent the

bias (Color figure online)
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the m� 1th layer to the neuron i in the mth layer, am�1;j is

the output of the neuron j in the m� 1th layer, and bm:i is

the bias of the neuron i in the mth layer. Note that in this

notation style every variable can have up to three indices.

The first index represents the layer number, the second

represents the number of a node within that layer, and the

third represents the node number of a connected previous

layer. Note, we omit the node index when we are referring

to all nodes within that layer. For example, if nm;i refers to

node i in layer m, then ðnm;�Þ refers to all nodes in layer m

(e.g. the sum of all inputs) which we write as ðnmÞ. The

activation function is described by.

am;i ¼ f m nm;i
� �

; ð2Þ

where f m is the activation function of layer m. Two types of

activation functions have been used in this work. The

hyperbolic tangent (tanh) function (given by Eq. 3) was

used for all hidden layers while the identity function was

used for the output layer.

f m nm;i
� �

¼ 2

1 þ e�2nm;i
� 1 ð3Þ

Equations 1–3 apply to all neurons of the neural net-

work except for neurons of the input layer. Input neurons

contain the input data and perform no computations or

transformations. These data then form the activation

function for the first hidden layer. Therefore, the output of

this layer (a0Þ is the same as the values of input variables to

the network (xq) as shown in Eq. 4:

a0 ¼ xq ð4Þ

For computational efficiency, outputs of all neurons are

computed layer-wise using matrix operations. For example,

let Sm be the number of nodes in layer m 2 f0; 1; . . .;Mg
with M denoting the last layer. Then, S0 will be the number

of nodes in the first layer which is the same as the number

of input variables, and SM will be the number of nodes in

the output layer which is also the same as the number of

output variables. Here S0 ¼ 4 andSM ¼ 2. The output of the

input layer is the vector of inputs to the network (xq 2 RS0 )

as in Eq. 4.

In each subsequent layer, i.e. hidden layers, the weights

matrix of a layer (Wm) which has a dimension of Sm � Sm�1

is multiplied by outputs from the preceding layer (has a

dimension of Sm�1 � 1). Each row of the weights matrix of

a layer m represents a vector of weights of a neuron within

that layer. The product of weights matrix with outputs from

previous layer is the weighted input to that layer (and has a

dimension of Sm � 1). The bias vector (bm) which has the

same size as the weighted inputs vector are added together

to produce the net input (nm in Eq. 1). The net input is then

passed to the element-wise activation function to produce

the layer output (am) as shown in Fig. 3; Eq. 5. The output

of a hidden layer represents the input to the next layer, up

to the last layer of which the output is the output of the

network (by) as shown in Eq. 6, hence the name output

layer.

am ¼ fmðWm � am�1 þ bmÞ ð5Þ
by ¼ aM ð6Þ

The parameter vector h (h�RNh ) is the concatenation of

all learnable parameters of the network, i.e., weight

matrices and bias vectors, as shown in Eq. 7.

h ¼ ½w1;1;1;w1;1;2; . . .;w1;S1;S0
; b1;1; . . .; b1;S1

; . . .;wM;SM ;SM�1
; . . .; bM;SM �

T

ð7Þ

The number of elements of the parameters vectors (Nh)

is given by

Nh ¼
XM

m¼1

SmðSm�1 þ 1Þ ð8Þ

For a further speed up of neural network computations,

all sets of input variables can be passed to the network at

once as an input matrix (X) which has the dimension S0 �
Q where Q is the number of sets. Thus, every row repre-

sents an input variable and every column is a set of inputs.

The outputs of the network will therefore be an SM � Q

matrix. We work through a simple example in Supple-

mental 1.

ANN architecture selection

ANN architecture refers to the number of hidden layers and

nodes and the arrangement of nodes within hidden layers.

The architecture affects the accuracy with which ANNs can

approximate a given continuous function. Ideally, a mini-

mal network that achieves the desired accuracy should be

selected. Commonly, optimisation of architecture is usually

done through a manual search over a very limited archi-

tecture space. This approach has a high potential to select a

larger than minimal network architecture and could be time

consuming.

In this work, we propose a new approach for selecting

the minimal architecture. For our purpose, we assumed that

the target network architecture should have fewer param-

eters than the original full-order QSP model (Nh B 364).

This is an arbitrary simplifying assumption to provide a

reasonable upper bound to the search space of ANN

architectures. This corresponds to 52 neurons if one hidden

layer architecture is employed (Eq. 8). An exhaustive list

of all possible network architectures that satisfy the fol-

lowing criteria was created [25]:
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a) Has up to 52 hidden neurons arranged in 1–5 hidden

layers.

b) Number of nodes in first hidden layer C input layer

c) Number of nodes in last hidden layer C output layer

d) Number of nodes in any hidden layer B preceding

hidden layer.

The list of candidate architectures contained & 104

networks. For our purposes here, of model reduction,

candidate architectures were sorted in ascending order of

increasing approximation power in order to enable a more

efficient search algorithm described below. The approxi-

mation power of an architecture was assumed to be directly

proportional to:

a) The total number of nodes.

b) The total number of hidden layers.

c) The total number of parameters.

d) The mean difference in number of nodes within

hidden layers which represents the consistency

between network width and depth [26].

A binary search-based algorithm was employed to find

the minimal architecture that achieves the desired tolerance

of the system predictions (performance goal) [27]. The

binary search is an efficient search algorithm for finding

elements from a sorted list. It is based on repeatedly

dividing in half the portion of the list that contains the

element of interest and excluding that half that is known

not to contain it until the item of interest is found. The

binary search algorithm is efficient for long sorted lists as

its implementation time is proportional to the log of the list

size. This means that the algorithm can accommodate lar-

ger lists without significant increase in implementation

time. Steps of the search algorithm employed are illustrated

in Fig. 4. To ensure the robustness of the procedure against

the influence of random initialisation of parameters, the

training of networks was restarted with different initial

parameters for up to 5 times if a network fails to achieve a

performance goal (our tolerance). Tolerance is defined in

Eq. 10.

Data processing

Normalisation of all input and output variables was per-

formed by mapping the minimum and maximum values to

the range [- 1, 1] using the following equation:

xn ¼ 2
x� xmin

xmax � xmin

� �
� 1 ð9Þ

where x is a vector of a variable to be normalised (a row

from the input matrix X), xn is the normalised variable, xmax
and xmin are the maximum and minimum values of x,

respectively. The same normalisation process was per-

formed with the same maximum and minimum values of

each input variable for all training, evaluation and valida-

tion datasets. This processing makes the training more

efficient as the gradient of the network error becomes

independent of the scale of the variables and prevents the

activation function from being saturated [28] (see section

‘‘ANN training’’ below). When the trained network is put

to use, all new inputs to the network are transformed the

same way as training inputs while network outputs are

reverse transformed back to the original units of the

training data.

ANN performance and training

The ANN training and validation performed here is based

on [29] with a recent application provided by [30]. Details

are provided, briefly, here.

The performance of ANNs was measured by the mean

squared error (MSE) of the normalised outputs as shown in

Eq. 10 and Eq. 11.

Fig. 3 Layer-wise computation

of layer m outputs for one set of

inputs. Black lines represent

matrix multiplication while blue

lines represent element-wise

operations
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P hð Þ ¼ 1

SMQ

XSM

s¼1

XQ

q¼1

es;q
2 ð10Þ

es;q¼ bys;q � ~ys;q ð11Þ

where bys;q and ~ys;q are the normalised outputs from the

network and pseudodata, respectively.

ANN training is an iterative process that aims to find the

values of the parameter vector h that maximises the per-

formance of the network (i.e. minimises the squared

prediction error from Eq. 11). Every iteration involves two

steps; a forward pass followed by a backward pass. In a

forward pass, inputs are presented to the network to pro-

duce outputs according to Eqs. 5 and 6 and errors are

calculated according to Eq. 11. The backward pass

involves back-propagating errors through network layers

and updating parameters in the direction that decreases the

errors. Different algorithms do exist for error back-propa-

gation and parameter update of which the Levenberg–

Marquardt algorithm was used in this work, which is an

Fig. 4 Block diagram of the

binary search algorithm used to

find the minimum network

architecture that achieves a

performance target
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efficient training algorithm for networks of sizes up to few

hundred parameters [29]. Details of this algorithm are

provided in Supplemental 2.

Results

Virtual data

A total of 10,000 virtual patients’ ages were randomly

generated from a log-normal distribution

(lnðageÞ�Nð0:7; 1:1Þ) to ensure more training data were

available at the highly non-linear region of the maturation

function. For each virtual patient, random infusion rate and

duration were sampled from a uniform distributions in the

range of [10, 30] IU/Kg/hour, and [0, 12] hours, respec-

tively. The dose input to the QSP model was the total

infusion amount. Therefore, the simulated infusion rate

variable was converted to total infusion amount and used

for both QSP simulations and ANN training for

consistency.

The simulated output vector consisted of QSP model

predicted aPTT and aXa at the end of infusion for each

patient. The simulated dataset was randomly split into a

training set (80%) that was used for parameters estimation

and a validation set (20%) used to test the performance of

the network on external data. The same split was employed

for all training experiments throughout this work. Figure 5

shows histograms of the simulated input and output vari-

ables. Four additional validation data sets were simulated

where all inputs were fixed to the median value of the

training data set except for one input which was varied over

the range of the training data. Each additional validation

data set consisted of 1000 pairs of I/O data.

Training options

The combination factor l was initially set to 0.1 and the

adjustment factor b to 10 (see supplemental 2 for expla-

nation of these training parameters). Training with

Levenberg–Marquardt algorithm was continued until any

of the stopping criteria is satisfied. Table 1 shows stopping

criteria and the proportion of experiments a criterion was

satisfied.

ANN architecture selection

The total number of the sorted candidate architectures that

satisfied the criteria was 9206. The binary search algorithm

required a total of 13 training experiments to find the

minimum network architecture required to achieve a given

performance goal. Figure 6 shows the path of the search

process for different performance goals. The minimum

network architecture required to approximate the coagu-

lation model was as low as 7 nodes, 2 hidden layers, and 43

parameters which achieved an MSE of 10–3. A perfor-

mance goal of 10–6 was achievable through a network with

25 nodes, 4 layers and 179 parameters. Table 2 shows the

minimum network architectures required to achieve dif-

ferent performance goals.

Computational cost

The bottle neck for the proposed approach was the simu-

lation of pseudodata for training and validation of neural

networks from the original QSP model. Simulation of

10,000 training pseudodata example took 5.8 h of pro-

cessing time. Training of neural networks on the pseudo-

data took a median of 17.3 s (range 1.9–59.9 s) per

network. Table 3 summarises the training and subsequent

simulation cost using the minimal neural networks of dif-

ferent performance levels. Of note, re-simulation of the

whole of the pseudodata sets using the trained neural net-

work models with different accuracy levels took a median

of 0.02 s (range 0.018–0.027 s). Note that the simulation

time is the result of a single run rather than a standard

speed benchmarking test. Nonetheless, it gives a rough idea

of ANN simulation speed compared to the full-order QSP

model.

Validation performance

All trained feed forward-ANNs performed on the valida-

tion dataset almost as well as on the training set as shown

in Table 4. Figure 7 shows the distribution of prediction

errors from various networks. It can be seen that the vali-

dation and training performance are similar in magnitude

(Table 4) and precision (Fig. 7).

The high correlation between validation and training

performances of different neural networks, as shown in

Table 4, suggests that neural networks were able to be

generalised to previously unseen combinations of input

variables. This is further confirmed by the performances of

the 4 ANNs explored here to describe the additional vali-

dation data sets, which was comparable to that of the

training and main validation data set as shown in Fig. 8.

Smaller networks (e.g. network A), with lower accuracy

goals, had relatively more biased distribution of errors

around the zero. In comparison, network D, the largest

ANN considered, showed approximation errors that were

distributed very tightly around zero with minimal bias and

an MSE very close to the training goal. This suggests that

larger networks may be able to generalise better to input

combinations not seen in the training data. This could

possibly have an influence on the amount of training data

required to achieve a certain validation performance.
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However, this has not been tested here and further inves-

tigations are warranted to determine the optimal training

set size for a given network size and validation perfor-

mance target.

The full response-time profile for the two hypothetical

patients as predicted by both the full-order QSP model and

different networks are shown in Fig. 9. It is noted that

some predictions (e.g. patient 1) were consistently over

predicted by some ANNs. However, this was not a sys-

tematic bias as shown by Fig. 7 which demonstrates that

the distribution of the errors are almost symmetric around

zero on both training and evaluation datasets. We note also

that the difference of 2–-10 s in aPTT and\ 0.05 IU/mL

for aXa are of no practical significance. The figure shows

that profiles of both patients were predicted reasonably

well. However, smaller networks were less able to accu-

rately predict the aPTT profile for patient 1 whose age lied

in the highly nonlinear region of the maturation function.

Nonetheless, the accuracy improved greatly with increas-

ing the size of the network.

Fig. 5 Histogram of training

and validation data input and

output variables. The last

column of the aPTT subplot is

presented as numbers to reduce

scale

Table 1 Stopping criteria for network training

Criteria Stopping value Proportion satisfied (% of all training experiments)

Number of iterations [ 1000 25

Performance Goala \ 10–3, 10–4, 10–5, or 10–6 75

Gradient \ 10–7 0

Number of validation failuresb [ 10 0

lc [ 1010 0

Training time [ 300 s 0

aThe desired tolerance of the system predictions errors
bThe maximum number of training iterations with no improvement in validation performance
cCombination factor; an algorithm specific training parameter (see supplement 2 for detailed explanation)
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Fig. 6 Binary search process for minimal network architecture at

different performance goals. First two experiments are not shown to

reduce scale. Red points indicate an architecture that didn’t achieve

goal and hence followed by upward search step (red lines) and vice

versa for green points. The last architecture to achieves a given

performance goal is the selected minimum architecture (different

minimum architectures are labelled by letters A, B, C, and D).

Experiment number is the number of iteration in the binary search

algorithm outlined in Fig. 4 (Color figure online)

Table 2 Minimum network

architectures that achieved

different performance goals

Network Performance goal (MSE) Hidden nodes Hidden layers Parameters Hidden layers sizes

A \ 10–3 7 2 43 5, 2

B \ 10–4 11 2 77 7, 4

C \ 10–5 14 3 90 7, 4, 3

D \ 10–6 25 4 179 12, 5, 4, 4

Table 3 Training epochs and time for neural networks with different performance levels

Network Hidden nodes Parameters Training iterations Training time (seconds) Simulation time (seconds)a

A 7 73 253 2.8 0.018

B 11 77 335 6.5 0.018

C 15 97 694 16.3 0.027

D 25 179 871 51 0.022

aFor simulation of 10,000 input–output pairs
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Discussion

This work proposes a model reduction approach for a QSP

model. In this work, we use the original QSP model to

generate pseudodata which we then use to train and vali-

date the ANN. The ANN here represents a non-parametric

approach to model reduction [7] as it contains no mecha-

nistic structural elements. It can however be used to sim-

ulate future data as well as potentially to be used as a

Table 4 Validation and training performances of different neural

network architectures

Network Training Performance Validation Performance

A 9.9 9 10–4 12 9 10–4

B 9.9 9 10–5 11 9 10–5

C 9.9 9 10–6 11 9 10–6

D 9.9 9 10–7 8.9 9 10–7

Fig. 7 Distribution of

Normalised training and

validation errors of different

networks architectures

Fig. 8 Approximation errors (as

per Eq. 14 in supplement 2) of

various network architectures

on the additional validation data

sets. Each panel represents a

validation dataset. Numbers on

the top right insets are the mean

squared errors for the respective

network architecture and

validation dataset
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controller for infusion rates of heparin. There exist other

non-parametric training-based methods for function

approximation, e.g., polynomial or k nearest neighbour

(kNN) regression. Such methods have a similar advantage

to ANNs of not having any particular requirement about

the model structure. However, such methods don’t scale-up

appropriately to problems with high dimensional correlated

inputs which is not an uncommon scenario in QSP models

[16]. Additionally, kNN regression can be prohibitively

slow for large datasets and high dimensional inputs [31].

On the other hand, ANNs are better suited to handle high

dimensional inputs and large training sets. Although the

example used in this work consisted of a 4-dimensional

input (which might be amenable to a kNN regression

approach), the method proposed here provides a generic

solution to any QSP model reduction problem. ANNs have

characteristics that make them well-suited for construction

of model-based controller systems [32]. In particular they

can be trained to describe any given input–output rela-

tionship, are computationally very efficient, i.e., can be

simulated and re-estimated quickly, and can be easily

inverted (at least numerically), i.e., predict outputs from

inputs and vice versa. The first two properties have been

demonstrated in this work. Although this work did not look

at the inversion methods for ANNs, the ease of simulation

suggests that numerical inversion could be very efficient.

Once an appropriately trained ANN is in hand it can be

incorporated in a closed-loop control system as shown in

Fig. 10 which outlines a proposed system for the control of

the haemostatic system state through heparin infusion.

The choice of network architecture is important for

achieving the desired accuracy level. Most current litera-

ture do this by a trial and error search through a very

limited search space. Such process normally takes an

average of 5–15 experiments [33, 34]. In this work, a more

systematic search process was followed. The algorithm is

based on sorting candidate network architectures first based

on their rank order. The accuracy of the sorting criteria

depends on many factors such as the random initialisation

of weights and biases and the nature of the function being

approximated. The binary search process used here was

shown to be efficient when applied to a reasonably sized

network given a performance target. This approach can

search a much wider search space compared to a heuristic

approach. We used training performance as a network

selection criterion as both training and validation data were

simulated under the same model with no noise being

introduced into the data. Training and evaluation dataset

size (Q) was selected empirically to exceed the amount of

data expected to be needed to represent the input–output

behaviour of interest. Further investigation of the effect of

dataset size on the performance of trained ANNs is war-

ranted as this may help to achieve further reduction in the

computational cost of the approach.

Fig. 9 Full response-time

profile for two hypothetical

patients receiving heparin

infusion at a rate of 20 IU/Kg/

hour as predicted by full-order

(solid lines) and reduced-order

models (dashed lines). Patient 1

(top plots) had an age of

0.5 years and a weight of 6 kg.

Patient 2 (bottom plots) had and

age of 12 years and a weight of

40 kg. QSP: the full-order

quantitative systems

pharmacology model. Letters

A–D indicating different

artificial neural networks. aPTT
activated partial thromboplastin

time
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The proposed model reduction technique is applicable to

a wide variety of models. It is particularly useful when

input to output mapping is a primary goal, which is critical

for control problems. This technique can also be useful

when the structure of the model is untenable to other

reduction techniques as in our case example of non-con-

tinuously differentiable input–output relationships. More-

over, this technique can be considered when the structure

of the full-order model is not known, such as models

provided by third parties. In such cases, only the ability to

evaluate the model as a set of inputs and outputs is suffi-

cient for using an ANN. We note that the feedforward

neural networks employed here do not handle sequential

inputs (a changing infusion rate for example). However,

the same approach can be applied to train and validate

other types of neural networks that can handle such inputs,

e.g. recurrent neural networks [35].

Importantly, the non-parametric nature of the reduced-

order model presented in this work means that none of the

full-order model parameters, structure, or mechanisms are

retained in the reduced model. This is a limitation of the

method when tackling problems that require simulation of

the model over a range of parameter value, for example to

estimate biologically relevant parameters. In such scenar-

ios, parametric methods such as proper lumping would be

useful [7]. Alternatively, parameters of interest could be

included in the training data as an input variable and hence

will be available in the reduced-order model for further

analysis. It is also possible to approximate only certain

modules of the model through a feed forward ANN leaving

the rest of the model structurally intact for further analysis,

yielding a hybrid partial black-box approach that is

embedded within a full mechanistic model. This then

allows speed and numerical efficiency for ANN modules

that are not of particular mechanistic interest while

retaining mechanistic structure in other areas. As with all

model reduction techniques that use the QSP model to

generate pseudo-data, the QSP model needs to provide a

sufficient description of the system. This differs from

parametric model reduction methods which although align

mechanistically to the original QSP model are amenable to

future parameter estimation which provides some degree of

freedom in the application of the model. In theory, there-

fore, a parametric reduced-order model when used in

estimation could outperform the original QSP model. In

contrast, a non-parametric reduced-order model can only

be, at best, be as good as the full-order model in describing

an input–output relationship.

The multi-modular nature of the coagulation network

model increases the computational cost of simulations as

that involves repeated evaluation of the in-vitro compo-

nents throughout a single in-vivo simulation. The repeated

evaluations of a component or module within the model is

computationally expensive and results in long model run

times. Such problems are known as the ‘‘many-query’’

problem [36] which can be caused by the structure of the

model, as in this example, or the type of the problem under

consideration, e.g., stochastic simulation or parameter

estimation. This problem becomes more significant as the

number of simulations required to perform a certain task

increase, e.g. during estimation. Using feed forward ANNs

for approximating computationally expensive models

(components or modules) can provide a substantial speed

boost to these models while maintaining the desired

accuracy levels making previously untenable simulation,

estimation, or control problems more amenable. In this

work we saw a 106 times improvement in speed when the

trained ANN was used to generate pseudo-data compared

to the original QSP model.

It is important to highlight that all training data-based

approximation methods require enough data that is repre-

sentative of the behaviour of the function to be approxi-

mated including any potential emergent properties.

However, the training data do not necessarily have to

include all possible combinations of input variables. In this

work, patients with age-matched weights were randomly

simulated and used as training data. In the additional val-

idation data sets, each input variable was varied over the

Fig. 10 Schematic presentation of a proposed closed-loop controller to achieve and maintain a desired therapeutic response/effect by adjusting

the infusion rate of the drug
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whole range of training data one at a time while other input

variables were held constant. These validation data sets

will certainly contain combinations of input variables that

are different from those in the training data. Our results

have shown that, with increasing the approximation power

of feed-forward ANNs, their ability to separate the influ-

ences of input variables on outputs and hence predict

previously unseen combinations of input variables increa-

ses (see Fig. 8). This suggests that larger networks (with

more nodes and layers) may require less training data and

can provide better interpolation power, which may reduce

computational cost of simulating training data. In addition,

training data used here were pseudo-data simulated from

the full-order model which is much easier and cheaper to

obtain than real data. This represents a significant advan-

tage of using ANNs for model reduction. It is important to

note that the use of a QSP model to simulate pseudo-data is

premised on prior validation of the model.

Conclusions

In conclusion, the proposed model reduction technique

using ANN enabled the development of efficient approxi-

mations to a complex model with the desired level of

accuracy. The technique is applicable to any I/O relation-

ship within the coagulation network model and other

similar QSP models and provides substantial speed boost

for use of such models in simulation and control purposes.

Additionally, the proposed technique does not require any

experimental data although it could benefit from them if

available.

Acknowledgements None

References

1. Bai JPF, Earp JC, Pillai VC (2019) Translational quantitative

systems pharmacology in drug development: from current land-

scape to good practices. AAPS J 21(4):72. https://doi.org/10.

1208/s12248-019-0339-5

2. Sadekar S, Figueroa I, Tabrizi M (2015) Antibody drug conju-

gates: application of quantitative pharmacology in modality

design and target selection. AAPS J 17(4):828–836. https://doi.

org/10.1208/s12248-015-9766-0

3. Betts AM, Haddish-Berhane N, Tolsma J, Jasper P, King LE, Sun

Y, Chakrapani S, Shor B, Boni J, Johnson TR (2016) Preclinical

to clinical translation of antibody-drug conjugates using PK/PD

modeling: a retrospective analysis of inotuzumab ozogamicin.

AAPS J 18(5):1101–1116. https://doi.org/10.1208/s12248-016-

9929-7

4. Wajima T, Isbister GK, Duffull SB (2009) A comprehensive

model for the humoral coagulation network in humans. Clin

Pharmacol Ther 86(3):290–298. https://doi.org/10.1038/clpt.

2009.87

5. Peterson MC, Riggs MM (2010) A physiologically based math-

ematical model of integrated calcium homeostasis and bone

remodeling. Bone 46(1):49–63. https://doi.org/10.1016/j.bone.

2009.08.053

6. Johansen AM (2010) Monte carlo methods. In: Peterson P, Baker

E, McGaw B (eds) International encyclopedia of education, 3rd

edn. Elsevier, Oxford, pp 296–303. https://doi.org/10.1016/B978-

0-08-044894-7.01543-8

7. Derbalah A, Al-Sallami H, Hasegawa C, Gulati A, Duffull SB

(2020) A framework for simplification of quantitative systems

pharmacology models in clinical pharmacology. Br J Clin Phar-

macol. https://doi.org/10.1111/bcp.14451

8. Hasegawa C, Duffull SB (2017) Selection and qualification of

simplified QSP models when using model order reduction tech-

niques. AAPS J 20(1):2. https://doi.org/10.1208/s12248-017-

0170-9

9. Snowden TJ, van der Graaf PH, Tindall MJ (2018) Model

reduction in mathematical pharmacology. J Pharmacokinet

Pharmacodyn 45(4):537–555. https://doi.org/10.1007/s10928-

018-9584-y

10. Gulati A, Faed JM, Isbister GK, Duffull SB (2015) Application of

adaptive DP-optimality to design a pilot study for a clotting time

test for enoxaparin. Pharm Res 32(10):3391–3402. https://doi.

org/10.1007/s11095-015-1715-1
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