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Abstract
Currently employed methods for qualifying population physiologically-based pharmacokinetic (Pop-PBPK) model pre-

dictions of continuous outcomes (e.g., concentration–time data) fail to account for within-subject correlations and the

presence of residual error. In this study, we propose a new method for evaluating Pop-PBPK model predictions that account

for such features. The approach focuses on deriving Pop-PBPK-specific normalized prediction distribution errors (NPDE),

a metric that is commonly used for population pharmacokinetic model validation. We describe specific methodological

steps for computing NPDE for Pop-PBPK models and define three measures for evaluating model performance: mean of

NPDE, goodness-of-fit plots, and the magnitude of residual error. Utility of the proposed evaluation approach was

demonstrated using two simulation-based study designs (positive and negative control studies) as well as pharmacokinetic

data from a real-world clinical trial. For the positive-control simulation study, where observations and model simulations

were generated under the same Pop-PBPK model, the NPDE-based approach denoted a congruency between model

predictions and observed data (mean of NPDE = - 0.01). In contrast, for the negative-control simulation study, where

model simulations and observed data were generated under different Pop-PBPK models, the NPDE-based method asserted

that model simulations and observed data were incongruent (mean of NPDE = - 0.29). When employed to evaluate a

previously developed clindamycin PBPK model against prospectively collected plasma concentration data from 29 chil-

dren, the NPDE-based method qualified the model predictions as successful (mean of NPDE = 0). However, when

pediatric subpopulations (e.g., infants) were evaluated, the approach revealed potential biases that should be explored.

Keywords Population physiologically-based pharmacokinetic modeling � Normalized prediction distribution errors �
Pediatric subpopulations � Potential biases

Introduction

In recent years, utilization of physiologically-based phar-

macokinetic (PBPK) modeling analyses by pharmaceutical

sponsors has dramatically increased, as evidenced by the

number of regulatory submissions employing PBPK mod-

eling techniques received by the United States (U.S.) Food

and Drug Administration (FDA). Between 2004 and 2014,

the U.S. FDA received 39 new drug application (NDA)

submissions incorporating PBPK modeling techniques;

whereas, in the following three-year period (2015 to 2017),

55 submissions were received [1]. Despite the increased

use of PBPK modeling analyses in regulatory submissions,

to date no clear standards for evaluating the adequacy of

model predictions have been adopted by key regulatory

agencies such as the U.S. FDA and the European Medici-

nes Agency (EMA). In 2016, draft documents providing

prospective guidance for reporting the results of PBPK

model analyses were circulated by the U.S. FDA and EMA

[2, 3]. Though both documents highlighted the importance

of establishing confidence in model predictions with

respect to the study’s purpose/question, this notion was
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weakened by the lack of clear criteria for assessing the

quality of model predictions. This omission is likely due to

the limited amount of literature devoted to PBPK model

evaluation practices. Considering the diverse utilization of

PBPK models (e.g., prediction of drug-drug interactions,

pediatric dose selection, assessing impact of hepatic dis-

ease), as well as the type and availability of clinical

information on-hand to facilitate model evaluation, appli-

cation of a single standardized metric and criteria for all

cases is likely untenable. Nevertheless, assessments of a

model’s capacity to recapitulate continuous (e.g., time-

based) drug concentration data from specific biological

matrices (e.g., plasma) is a common approach for evalu-

ating PBPK model performance [4–6]. Pharmacokinetic

(PK) datasets used to facilitate such evaluations can range

in terms of size (e.g., number of subjects/samples) and

sample collection intervals (e.g., sampling time). Larger

PK datasets consisting of multiple, timed samples per

patient are common among adult subjects [7]. In contrast,

for specialized populations such as pediatrics, where sparse

and opportunistic PK sampling designs are employed,

disparately collected plasma-concentration–time datasets

may represent the only measure available for PBPK model

evaluation [8, 9].

In addition to providing predictions towards a typical

individual, PBPK models can be used to generate predic-

tions for specific populations through the use of stochastic

population algorithms. Such algorithms allow for the cre-

ation of virtual populations of subjects whose anatomy and

physiology (e.g., system-specific parameters) differ based

on inferences and knowledge of real-world biological

variability [10]. By characterizing differences in simulated

drug disposition among virtual population members, pop-

ulation-PBPK (Pop-PBPK) models can provide users with

realistic estimates of the average tendency and range of

inter-subject variability in compound PK. To assess Pop-

PBPK model performance against observed concentration–

time data, one commonly used approach is to compute the

proportion of observed data that corresponds with model-

derived prediction intervals (PI) [5, 6, 9, 11]. Though

convenient to compute, such numerical predictive checks

(NPC) can provide erroneous conclusions regarding model

performance as they fail to account for within-subject

correlations (e.g., multiple samples per subject) and the

presence of residual error [12]. Furthermore, most studies

fail to define thresholds for the proportion of observed data

falling outside model generated percentiles for model

acceptance/rejection, making it difficult to assess if the

modeling exercise was successful [9, 13].

In this study, we propose a new paradigm for assessing

the adequacy of Pop-PBPK model predictions for contin-

uous PK data (e.g., plasma concentration–time values). The

approach focuses on deriving Pop-PBPK-specific

normalized prediction distribution errors (NPDE), a metric

that is commonly used for population PK model validation

[14]. NPDE are simulation-based metrics that are com-

puted using a decorrelation step. Correspondingly, they are

assumed to have improved properties for evaluating mod-

els against datasets containing correlated observations (i.e.,

multiple observations per subject) [15, 16]. We first

introduce the aforementioned model evaluation technique

and then demonstrate its functionality using a simulation-

based study design. We then provide a real-world example

of the utility of the proposed technique for evaluating a

previously published pediatric PBPK model for clin-

damycin [9].

Methods

Software

PK-Sim� (version 7.2, https://open-systems-pharmacol

ogy.org) was used for development of all Pop-PBPK

models. Data management (e.g., formatting) and graphical

plots were conducted/produced in R (version 3.4.3, R

Foundation for Statistical Computing, Vienna, Austria) and

RStudio (version 1.1.383, RStudio, Boston, MA, USA)

with the ggplot2, cowplot, xlsx, and rlist packages. NPDE

were computed in R using the npde package [15]. The

piecewise cubic hermite interpolating polynomial (pchip)

function from the pracma package in R was used for all

data interpolations. Visual predictive checks were gener-

ated in R using the vpc package [17].

NPDE evaluation methodology

In their original conception, NPDE were formulated to

evaluate the performance of mixed-effect models defined

by the following general structure [14]:

yij ¼ f tij; hi
� �

þ eij ð1Þ

where yij is the observed value for subject i at time tij,

f tij; hi
� �

is the model predicted value for subject i, which is

a function of time (tijÞ and individual subject parameters

(hiÞ, and eij is the stochastic residual error component.

Monte-Carlo simulations based on the above statistical

model that introduce variability towards inter-individual

(e.g., hi) and error (e.g., eij) components are used to gen-

erate a distribution of K-simulated values for each obser-

vation (i.e., individual predictive distributions). Following

a decorrelation step, where both observed data and model

simulations are decorrelated based on the empirical

covariance matrix of model simulations, NPDE values can

be obtained by Eqs. 2 and 3 [15]:
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pdeij ¼
1

K

XK

k¼1
1yij

sim kð Þ�\yij
� ð2Þ

npdeij ¼ /�1ðpdeijÞ ð3Þ

where pdeij is the prediction discrepancy error, yij
� is

decorrelated observed value, yij
sim kð Þ� is the decorrelated

simulated value, and /�1 is the inverse of the cumulative

normal density function for N(0,1). pde defines the

decorrelated quantile of an observation within an individ-

ual predictive distribution. For a formal description of

relevant formula associated with the decorrelation process,

the reader is referred to a previous publication by Comets

et al. [15]. By forgoing the decorrelation step, indices such

as prediction discrepancies (pd) and normalized prediction

discrepancies (npd) can be computed using similar pro-

cesses as described in Eqs. 2 and 3, respectively. For

graphical depictions of trends over time or across predicted

values, use of npd are sometimes preferred due to the

tendency of the decorrelation process to introduce graphi-

cal artifacts within npde based plots [18].

In order to compute Pop-PBPK specific NPDE values,

PBPK generated individual predictive distributions that

incorporate inter-subject and residual variability are

required. To generate such distributions, PBPK modeling

software (e.g., PK-Sim�) is used to produce individual-

ized-populations (number of individuals = K) for each

observed subject based on their age, weight, height, race,

and sex. Population algorithms incorporated into PBPK

modeling platforms introduce stochastic variability toward

system-specific model parameters (e.g., organ volumes,

perfusion rates, plasma protein concentrations, enzyme

abundance, etc.) based on knowledge or inferences of

biological variability specific to the organism of interest

[10, 19]. In addition, during the model development pro-

cess, users may choose to introduce or modify variability

towards relevant system-specific parameters. Based on this

approach, generated individualized-populations will con-

sist of subjects who share the same demographic quantifiers

(e.g., age, weight, height, race), but exhibit unique differ-

ences in terms of their underlying anatomic/physiologic

parameter values (e.g., liver blood flow, liver weight,

plasma protein abundance, hepatic enzyme abundance,

etc.). Conceptually, PK variability associated system-

specific parameters introduced by population algorithms or

the user can be viewed as model-based approximations of

inter-subject variability. Pop-PBPK models for each sub-

ject are parameterized with drug-specific properties (e.g.,

lipophilicity, LogP; molecular weight, MW; acid–base

dissociation constant, pKa); absorption, distribution,

metabolism, and excretion (ADME) data (e.g., fraction

unbound in plasma, fup; intrinsic clearance towards specific

enzymes; CLint); and subject-specific dosing information to

generate K sets of concentration–time estimates.

Concentration–time estimates produced by the PBPK

modeling software are read into R where simulated con-

centrations from each individualized-population are inter-

polated at congruent time points to those depicted in the

observed dataset (e.g., actual sampling times). Interpolated

concentrations are formatted into a simulated dataset using

a similar structure to that of the observed dataset. NPDE

are computed using the npde package in R based on

observed and interpolated (i.e., simulated) datasets [15].

The inverse method (eigenvalue decomposition) was used

to decorrelate observed and simulated concentration values

[20]. For models that appropriately describe observed data,

NPDE should conform to a normal distribution with a

mean of 0 and variance of 1 [14]. Unlike real-world (ob-

served) datasets, where residual error is assumed to be

present, Pop-PBPK model predictions do not include

residual variability. To define the extent of residual vari-

ability associated with Pop-PBPK model predictions, we

propose an iterative workflow (Fig. 1). During the initial

NPDE assessment, the simulated dataset is created by

directly interpolating Pop-PBPK model predictions (i.e., no

residual variability added). Expectedly, the estimated

variance of initially generated NPDE values will be con-

siderably higher than the nominal value (i.e., 1), indicating

that the degree of variability associated with Pop-PBPK

model predictions is under-estimated. By defining an error

sub-model, such as that depicted by Eq. 4, residual error

can be introduced into simulated datasets in R.

Csim;error ¼ Csim�ee; e�N 0; SDð Þ ð4Þ

In the above equation, Csim;error is the simulated con-

centration value with residual error added, Csim is the

simulated concentration value without error, and e is a

random error term, which follows a normal distribution

with a mean of 0 and standard deviation of SD. Following a

repetitive process of increasing the magnitude of residual

variability associated with model simulations, re-comput-

ing NPDE values, and assessing their variance, the residual

error component of the model can be approximated. Based

on the proposed workflow, the magnitude of residual error

is increased until the variance of NPDE approximates a

value of 1 (i.e., standard deviation * 1). For information

on appropriate data formatting and use of the npde R

package, the reader is referred to the npde user guide [20].

Using the proposed NPDE-based approach, assessments

of Pop-PBPK model quality can be facilitated using a

variety of measures: (1) the mean of NPDE; (2) goodness-

of-fit plots; and (3) the magnitude of residual error.

A Student’s t-test (two-sided) can be used to evaluate if the

mean of NPDE values statistically differ from the theo-

retical value of 0 (p value\ 0.05). Goodness-of-fit plots
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can be constructed to assess for the presence of systematic

trends associated with model predictions. Lastly, the

magnitude of residual variability, as approximated by the

proposed workflow (Fig. 1), provides a quantitative mea-

sure of the magnitude of unspecified variability required

for model simulations to recapitulate the observed PK data.

Assessment of NPDE for qualifying PBPK model
predictions using simulation-based study designs

The utility of the proposed NPDE-based approach for

evaluating the quality Pop-PBPK model predictions was

demonstrated using two simulation-based study designs.

Both studies assessed model performance among neonates.

The first was a positive-control study, whereby the ability

of the NPDE-based workflow to identify a case where

observed data and model simulations were derived from

the same Pop-PBPK model was assessed. The second was a

negative-control study that assessed the ability of the

NPDE-based workflow to identify a case where observed

data and model simulations were generated from different

Pop-PBPK models. Specific details pertaining to the design

and analysis of the positive and negative control studies are

denoted below.

Positive-control study

Compound physico-chemistry and ADME For the posi-

tive-control study, Pop-PBPK models were developed for a

theoretical compound whose physico-chemical and ADME

properties are denoted in Table 1 [12]. Tissue-to-plasma

partition coefficients (Kp) were estimated in-silico

according to the tissue-composition based approach pre-

sented by Rodgers and Rowland [21–23]. The compound,

which exhibited affinity for albumin, displayed a high

degree of plasma protein binding in adults (fraction

unbound in plasma, fup = 0.1). Hepatic CYP3A4 was

solely responsible for compound clearance. A preliminary

simulation assessing administration of a 100 mg intra-

venous (IV) bolus dose of the theoretical compound to a

30 year-old White American male (80.4 kg, 178.5 cm)

displayed a hepatic extraction ratio (ER) of 0.17 (i.e., low

ER compound).

Observed subjects Using PK-Sim’s� population module,

demographic information for 30 unique neonatal subjects

(postnatal age\ 30 days) were generated based on a

White American population with a male:female ratio of

50:50. Generated subject demographics included postnatal

age, weight, height, and sex. In addition, each subject was

stochastically assigned 9 unique PK sampling times over a

24 h period. Sample times were defined for different

Fig. 1 NPDE model evaluation

workflow. NPDE normalized

prediction distribution errors,

PBPK physiologically-based

pharmacokinetic

202 Journal of Pharmacokinetics and Pharmacodynamics (2020) 47:199–218

123



collection intervals as described in Supplementary

Table S1, with each interval-specific sampling time being

randomly selected. The ontogeny for hepatic CYP3A4 as

defined by PK-Sim� is displayed in Supplementary

Table S2. These proportional scalers define the effect of

maturation on isozyme function with a value of 1 signi-

fying complete maturation (i.e., adult values).

Individual predictive distributions (individualized-popula-
tion PBPK simulations) Individual predictive distributions

of plasma concentrations for each observed subject were

generated using PK-Sim’s� population module. For each

observed subject, a virtual population consisting of 500

individuals was created with the same postnatal age,

weight, height, sex, and race. The population algorithm

introduced stochastic variability towards organ weights,

blood flows, plasma albumin concentrations, and hepatic

CYP3A4 abundances between members of the same indi-

vidualized-population [10, 19]. Resulting individualized-

populations consisted of subjects with the same gross

demographic measures but with underlying inter-subject

anatomical and physiological differences capable of per-

petuating PK alterations. Pop-PBPK model simulations

were generated in PK-Sim� for each of the 30 individu-

alized-populations following administration of a 1.5 mg/kg

IV bolus dose of the above defined theoretical compound

(Table 1). For each individualized-population, model sim-

ulated peripheral venous plasma concentrations were

interpolated at the 9 sampling times points defined for each

observed subject. This process created individual predic-

tive distributions for each subject-specific sampling time

consisting of 500 simulated concentration values, one for

each individualized-population member.

NPDE-based model evaluation
Assessment of type-I-error. To explore the influence of

different numbers of subjects and samples per subject on

performance of the proposed NPDE-based model evalua-

tion approach, assessments were performed over 12 sepa-

rate study designs with over 500 iterations for each design

(Table 2). The frequency of type-I-errors (i.e., incorrectly

asserting observations and models simulations are diver-

gent) associated with use of the proposed NPDE-based

model evaluation approach was assessed for the positive-

control study (observations and model simulations were

derived from the same Pop-PBPK model). For each itera-

tion, observed datasets were created based on the following

process. First, single individuals from each individualized-

population were selected and their interpolated concentra-

tion–time values were combined to form an observed

dataset. Next, to provide a resemblance to a real-world PK

data, which implicitly contains residual variability, an

exponential residual error with a standard deviation (SD) of

0.20 was stochastically added onto interpolated concen-

tration values using Eq. 4.

Simulated datasets were created by combining interpo-

lated concentrations over all individualized-populations.

The resulting dataset contained individual predictive dis-

tributions for each subject-specific sampling time point

(500 concentrations per sampling time), albeit without

residual error. The magnitude of residual error associated

with model simulations was algorithmically estimated

using the optimize function in R (one dimensional opti-

mization). Example code for this optimization process has

been provided in the supplementary materials. Using the

Table 1 Theoretical compound

physico-chemistry and ADME

information [12]

Physico-chemistry LogP 2.5

pKa NA (neutral)

MW 350 g/mol (0 halogens)

ADME fup 0.1

Binding protein Albumin

CLint,3A4 (hepatic) 0.25 1/min/umol CYP3A4

CLint,3A4 intrinsic clearance intrinsic clearance of (hepatic) isozyme CYP3A4, fup plasma fraction

unbound, LogP logarithm of the octanol–water partition coefficient (lipophilicity), MW molecular weight,

pKa negative logarithm of the acid dissociation constant, NA not applicable

Table 2 Evaluated study designs for positive and negative-control

studies

Number of subjectsa Samples per subjectb

5 3 6 9

10 3 6 9

20 3 6 9

30 3 6 9

aSuccessive (subject) groups contain observed subjects from previous

groupings in addition new subjects
bCollection intervals for the 3 sample time points were 10–15 min,

60–70 min, and 8–8.5 h. For 6 sample time points, collection inter-

vals were 10–15 min, 25–30 min, 60–70 min, 120–140 min, 8–8.5 h,

and 12–13 h. For 9 sample time points, collection intervals were

1–3 min, 10–15 min, 25–30 min, 60–70 min, 120–140 min, 4–4.5 h,

8–8.5 h, 12–13 h, and 22–24 h (post-dose administration)
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estimated residual variability, PBPK model specific NPDE

values were computed. The proportion of iterations where

the mean of NPDE was asserted to be statistically different

than 0 (p value\ 0.05; two-sided Student’s t test) provided

an estimate of the type-I-error for the proposed model

evaluation approach.

To evaluate the influence of misspecification of the

magnitude of residual error on the frequency of type-I-

errors, NPDE values were computed for different scenarios

where the magnitude of residual error added onto model

simulations varied. For each iteration, the mean NPDE

value was statistically evaluated under a scenario where no

residual error was added onto model simulations. Two

additional scenarios where excess residual error was added

onto model simulations to provide NPDE distributions with

SD of less than the ideal value (i.e., 1) were evaluated.

Under these scenarios, the magnitude of residual error was

optimized to provide NPDE with SD of 0.75 and 0.5.

Statistical evaluations for the mean of NPDE values under

these scenerios were conducted in a similar manner as

described above.

Additionally, for each iteration, a conventional NPC was

performed to assess Pop-PBPK model performance [12].

Under this approach, the proportion of observed concen-

trations falling outside a Pop-PBPK model defined 90% PI

generated for 100 virtual neonates whose distribution of

postnatal age, sex (i.e., 50:50), and race mirrored that of

observed subjects was calculated. The PI was generated for

simulated plasma concentrations following administration

of a 1.5 mg/kg IV bolus dose of the theoretical compound

described in Table 1. In a manner congruent to current

PBPK modeling practices, no residual error was added to

model simulations for construction of the 90% PI. The

exact binomial test was used to evaluate if the proportion of

observations falling outside the model’s 90% PI was sta-

tistically greater than the expected proportion (0.10). Sta-

tistical significance was asserted using a p value\ 0.05.

Descriptive example. Following the workflow depicted

in Fig. 1, NPDE-based model evaluation measures (i.e.,

mean of NPDE, goodness-of-fit plots, and magnitude of

residual variability) were computed for a single iteration of

the positive-control study consisting of 10 subjects with 6

samples per subjects. Generated goodness-fit-plots con-

sisted of npd vs time, npd vs predicted concentrations,

normal quantile–quantile (Q-Q), and prediction-corrected

visual predictive check (pc-vpc) plots [24]. pc-vpc repre-

sent a modification of traditional visual predictive checks

whereby observed and simulated concentrations are nor-

malized by their expected model simulated value (i.e.,

typical value). This modification reduces the magnitude

variability that occurs when data from subjects receiving

dissimilar dosages or who differ in terms influential

covariates are binned together, enhancing the ability of

these plots to detect model misspecifications. Goodness-of-

fit plots were developed based on simulated datasets with

added residual error, as defined by the evaluation workflow

(Fig. 1).

For comparison, conventional metrics employed for

PBPK model evaluation including residual plots, bias and

precision indices, and NPC of the proportion of data falling

outside the model’s 90% PI were computed/generated.

Conventionally computed residuals (RES) were calculated

according to Eq. 5.

RES ¼ OBSi;t � PREDMEDi;t
ð5Þ

where OBSi;t is the observed concentration–time value for

subject, i, at time, t, and PREDMEDi;t
represents the median

simulated concentration (without added residual error)

corresponding to the individual predictive distribution for

subject, i, at time, t. In this context, PREDMEDi;t
provides an

approximation of the expected concentration from model

simulations (i.e., the typical value). Conventional measures

of bias included mean error (ME; Eq. 6) and average-fold

error (AFE; Eq. 7); whereas, conventional measures of

precision included root mean squared error (RMSE; Eq. 8)

and absolute average-fold error (AAFE; Eq. 9).

ME ¼ 1

n

X
OBSi;t � PREDMEDi;t

� �
ð6Þ

AFE ¼ 10
1
n

P
log

PREDMEDi;t
OBSi;t

� �

ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
OBSi;t � PREDMEDi;t

� �2

r

ð8Þ

AAFE ¼ 10
1
n

P
log

PREDMEDi;t
OBSi;t

� ����
���

ð9Þ

The computed NPC evaluated if the proportion of

observations falling outside the Pop-PBPK model’s 90% PI

was statistically greater than the expected proportion

(0.10). As described above, the 90% PI was generated

based on a 100 virtual neonates whose demographics dis-

tribution (i.e., age, race, and sex) mirrored that of observed

subjects.

Negative-control study

Compound physico-chemistry and ADME For the nega-

tive-control study, observed and simulated datasets were

generated using Pop-PBPK models for two different, albeit

similar, theoretical compounds. To generate the observed

dataset, a modified compound was created whose physico-

chemical and ADME properties were similar to that dis-

played in Table 1 with one alteration; the reference (adult)

fup was increased to 0.13. In contrast, the simulated dataset
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was derived based on Pop-PBPK model simulations for the

unaltered theoretical compound with a reference fup of 0.10

(Table 1).

Observed subjects Observed subject demographics and

PK sampling times were the identical to those defined for

the positive-control study. Thus, analysis of the negative-

control study was based on 30 neonatal subjects, each

assigned a unique PK sampling scheme comprised of 9

sample times over 24 h.

Individual predictive distributions (individualized-popula-
tion PBPK simulations) Using a similar methodology as

described for the positive-control study, two sets of indi-

vidual predictive distributions were generated for each of

the 30 observed subject. The first set was comprised of

Pop-PBPK simulations for the theoretical compound

described in Table 1 (i.e., fup = 0.10) and was identical to

the distributions generated for the positive-control study.

The second set was comprised of Pop-PBPK simulations

for the above-defined modified theoretical compound

(fup = 0.13). Accordingly, two competing individual pre-

dictive distributions, one for the unaltered theoretical

compound (fup = 0.10; Table 1) and one for modified

theoretical compound (fup = 0.13), were generated for each

subject-specific sampling time.

NPDE-based model evaluation
Power. Model-based statistical evaluations for power were

performed over 12 separate study designs (Table 2) using

500 iterations per design. Power (i.e., correctly asserting

observations and models simulations are divergent) asso-

ciated with use of the proposed NPDE-based model eval-

uation approach was assessed for a case where observations

and model simulations were derived from different Pop-

PBPK model simulations.

For each iteration, observed datasets were created from

individual predictive distributions for the modified theo-

retical compound (fup = 0.13) using a similar approach as

described for the positive control study. Exponential

residual error with a SD of 0.20 was stochastically added

onto concentrations from the observed dataset using Eq. 4.

Simulated datasets were based on the unmodified theoret-

ical compound (fup = 0.10; Table 1) and were identical

those created for the positive control study.

At each iteration, PBPK model derived NPDE values

were computed using the proposed model evaluation

workflow (Fig. 1). Power was computed as the proportion

of iterations where the mean of NPDE values was asserted

to be statistically different than 0 (p value\ 0.05). The

influence of misspecification of the magnitude of residual

error on the power the proposed model evaluation approach

was assessed in a similar manner as described for the

positive-control study. A conventional NPC evaluating the

proportion of observed data that coincides with a Pop-

PBPK model defined 90% PI generated for 100 virtual

neonates receiving a 1.5 mg/kg IV bolus dose of the

unmodified theoretical compound (fup = 0.10; Table 1)

was computed.

Descriptive example. The model evaluation workflow

was conducted for a single representative iteration of the

negative-control study consisting for 10 subject with 6

samples per subject.

Evaluation of a previously developed pediatric
PBPK model for clindamycin using the proposed
NPDE-based approach

Pediatric PBPK model description

The proposed NPDE-based model evaluation approach was

used to qualify predictions from a published pediatric

PBPK model for IV clindamycin [9]. The model was

originally developed using 68 opportunistically collected

clindamycin plasma concentration samples from 48 sub-

jects, who ranged in postnatal age from 1 month to

19 years. As IV preparations of clindamycin are formu-

lated using its prodrug, clindamycin-phosphate, the model

was developed to simulate exposures of both compounds.

Elimination pathways for clindamycin-phosphate include

conversion to clindamycin by plasma alkaline phosphatase

and renal filtration. For clindamycin, elimination is mod-

ulated by both hepatic (CYP3A4 and CYP3A5) and renal

processes (filtration and tubular secretion). Specific details

pertaining to drug-physico-chemistry and PBPK model

parametrization (e.g., ontogeny functions, partition coeffi-

cients) are denoted in the published manuscript [9].

Observed subjects

Clindamycin plasma-concentration samples were collected

from children enrolled in a prospective phase-I clinical trial

(NCT02475876). Study inclusion was confined to children

with postnatal ages between 1 month to 17 years receiving

IV clindamycin for prophylaxis or treatment of a confirmed

or suspected infection. Patients concomitantly receiving

medications known to inhibit or induce hepatic CYP3A4

were excluded from the analysis. Up to 7 PK samples were

collected per patient over one or two occasions (i.e., doses).

Samples were collected pre-dose, 0–10 min after the end of

the infusion, 2–4 h after start of the dose infusion, and

30 min prior to the next dose. Records pertaining to the

complete dosing history for the current course of clin-

damycin were available for each patient. Of note, the

abovementioned represents the ideal PK sampling scheme;
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however, as sampling was conducted during the course of

clinical care, deviations with respect to the timing and

number of samples collected per patient were observed.

Individual predictive distributions (individualized-
population PBPK simulations)

Simulated clindamycin peripheral venous plasma concen-

trations were computed using the previously developed

clindamycin pediatric PBPK model [9]. For each subject,

individualized-populations consisting of 500 virtual indi-

viduals with the same demographic quantifiers (e.g., age,

sex, weight, height, and race) were created using PK-

Sim’s� population module. Pop-PBPK model simulations

were generated for each individualized-population using

each subject’s recorded dosing scheme. Model simulated

peripheral venous concentrations were interpolated at

identical time points that PK samples were collected for

each respective subject. This process created individual

predictive distributions for each subject-specific sampling

time that consisted of 500 simulated concentrations.

Model evaluation

The NPDE-based model evaluation workflow (Fig. 1) was

employed to qualify Pop-PBPK model predictions. Evalu-

ations were conducted based on two approaches. The first

approach was a full analysis where the entire study cohort

(i.e., PK data from all subjects) was evaluated together.

The second was a segmented analysis that grouped subjects

using the following age classifications: infant ([ 1 month–

2 years), young children (2–6 years), and children/adoles-

cent (6–18 years) [25]. Children and adolescent were

evaluated as single group as physiological processes

modulating PK (e.g., clearance) were inferred to be fully

mature beyond 6 years of age [26, 27]. Observed datasets

were created by combining observed clindamycin plasma

concentrations from subject belonging to each age-group of

interest into a single dataset. Simulated datasets were cre-

ated by combining model generated individual predictive

distributions of plasma concentrations over each age-group

of interest. Dissimilar to our developed simulation-based

studies, clindamycin PK samples were permitted to be

collected over two occasions (e.g. samples collected over

intervals that spanned[ 1 dose). Owing to temporal

changes in PK parameters (e.g., clearance or volume of

distribution), plasma concentrations within the same indi-

vidual may exhibit interoccasion differences [28]. In gen-

eral practice, PBPK model simulations do not account for

interoccasion variability. However, calculated NPDE val-

ues based on simulations that lack interoccasion variability

and observed datasets where interoccasion variability is

prevalent will typically exhibit inflated variances.

Consequently, the defined evaluation workflow (Fig. 1)

will necessitate that larger (i.e., inflated) residual errors be

apportioned toward model simulations. To circumvent this

issue, NPDE were computed separately for each occasion

among subjects where PK samples were collected over

multiple occasions. This was achieved by assigning unique

identification numbers for PK samples collected around

different doses (e.g., after the first dose [occasion 1]; and

around the sixth dose [occasion 2]). This modification was

instituted in both observed and simulated datasets.

Conventional metrics for qualifying PBPK models, as

described previously for simulation-based studies, were

also examined. 90% PI(s) for clindamycin plasma con-

centrations were computed using Pop-PBPK simulations

pertaining to three separate virtual populations (i.e.,

infants, young children, and children/adolescents). Popu-

lations, consisting of 100 virtual subjects each, were gen-

erated based on the demographic distributions (i.e., age,

race, and sex) of observed subjects falling into each of the

abovementioned age classifications. Separate simulations

were conducted using each individual’s specific dosing

regimen in conjunction with the applicably aged virtual

population. NPC were computed using the same method-

ology as described for simulation-based studies.

Results

Evaluation of simulation-based study designs
using an NPDE-based approach

Simulated neonatal plasma concentration–time profiles for

the two theoretical compounds used to facilitate model

evaluations for the positive and negative-control simulation

studies are depicted in Fig. 2. Median plasma concentra-

tions corresponding to the unmodified theoretical com-

pound (fup = 0.10; Table 1) were greater than

concentrations for the modified compound (fup = 0.13).

This finding was unsurprising considering anticipated

increases in systemic clearance and volume of distribution

associated with increases in fup for a low extraction ratio

compound.

For the positive-control study, where both observed and

simulated datasets were based on the theoretical compound

described in Table 1 (fup = 0.10), assessments of the mean

of NPDE values were associated with type-I-error rates

ranging from 0.026 to 0.06 among the examined study

designs (Table 3). These values approximate the expected

type-I-error rate of 0.05. In contrast, use of a NPC based on

the proportion of data exceeding the model’s 90% PI was

associated with higher type-I-error rates, ranging between

0.61 to 1 (Table 3). Under this approach, type-I-error rates

increased with increasing subject numbers and samples per
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subject. The influence of misspecification of the magnitude

of residual error is depicted in Supplementary Table S3.

For workflows where no residual error was added onto

model simulations, evaluations of the mean of NPDE

values were associated with suppressed type-I-error rates

(* 0). Conversely, for workflows where excessive residual

error was added onto model simulations to provide NPDE

distributions with SD of 0.75 and 0.5, inflated type-I-error

rates ranging between 0.056 to 0.222 and 0.1 to 0.678,

respectively, were observed.

NPDE-based model evaluation measures computed for a

single iteration of the positive-control study (10 subjects; 6

samples per subject) depicted a similarity between model

simulations and observed data. The mean of NPDE values

was - 0.01, a value that was not statistically different than

0 (p value = 0.952). Goodness-of-fit plots generated for the

proposed model evaluation approach were devoid of sys-

tematic trends (Fig. 3). An exponential residual error of

0.181 was estimated using the NPDE-based methodology,

a value that is in close agreement to the theoretical value of

0.20. The visual impact of adding varying magnitudes of

residual error onto model simulations for the positive-

control study is depicted in Supplementary Figure S1.

Normal quantile–quantile plots demonstrate that increasing

the magnitude of residual error redistributes the NPDE

density away from the tails. When the magnitude of

residual error is approximately estimated (e.g., 0.15 to

0.25; Supplementary Fig. S1D-F), visual agreement

between distributions for NPDE values and a standard

normal random variable were observed.

Conventional model evaluation metrics provided con-

trasting depictions of model performance for the positive-

control study. AFE (bias) was 1.08, indicating agreement

between observations and model simulations, albeit with a

minute positive bias (over-prediction). AAFE (precision)

was 1.34 (Table 4). Conventional residual plots were free

of systematic trends (Supplementary Fig. S2). However, a

NPC based on the model’s 90% PI indicated a discrepancy

between observed and simulated datasets. The proportion

of observed data exceeding the model’s 90% PI was 0.27—

a value that was statistically greater than the nominal rate

of 0.10 (Table 4).

For the negative-control study, observed datasets were

generated using a Pop-PBPK model for the modified the-

oretical compound (fup = 0.13); whereas, simulated data-

sets were generated using a Pop-PBPK model for the

unmodified theoretical compound (fup = 0.10; Table 1).

The power of statistical tests for the mean of NPDE

increased with increasing subject numbers. For 5, 10, 20,

and 30 subjects, power ranged between 0.43 to 0.511, 0.79

to 0.869, 0.98 to 0.996, and 1, respectively (Table 5).

Power estimates for study designs with the same amount of

subjects but varying number of samples per subject were

relatively similar. For a NPC based on the Pop-PBPK

model’s 90% PI, power ranged between 0.735 to 1

(Table 5). NPC-based power estimates increased with

increasing subject numbers and samples per subject. Sup-

plementary Table S4 depicts the influence of misspecifi-

cation of the magnitude of residual error on the power of

the proposed NPDE-based model evaluation approach.

Low power estimates (0–0.07) were associated with

workflows where no residual error was added onto model

simulations. In general, the addition of excessive residual

Fig. 2 Simulated plasma concentration–time profiles (linear, a; semi-

logarithmic, b) for two theoretical hepatic isozyme CYP3A4

substrates with different fractions unbound in plasma [0.10 (blue)

and 0.13 (red)]. Shaded regions depict 90% PI for Pop-PBPK model

simulations following administration of 1.5 mg/kg IV doses of each

theoretical compound to a population of 100 virtual neonates. Solid

lines depict median concentration–time values. IV intravenous, PI

prediction interval, Pop-PBPK population physiologically-based

pharmacokinetic
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error onto model simulations had a minimal impact on the

power of the proposed model evaluation approach.

For single representative iteration of the negative-con-

trol study (10 subjects; 6 samples per subject), the NPDE-

based model evaluation approach depicted a divergence

between model simulations and observed data. The mean

of NPDE was - 0.29, a value that was statistically dif-

ferent than 0 (p value = 0.0308). Goodness-of-fit plots

generated for the proposed model evaluation approach

were indicative of a discrepancy between observed and

simulated datasets (Fig. 4). npd based plots (versus time

and predicted concentrations) indicated a tendency of

model simulations to over-predict observed values (Fig. 4a,

b). pc-vpc and normal quantile–quantile plots also depicted

a tendency towards model over-prediction (Fig. 4c,d).

Using the NPDE-based methodology, an exponential

residual error of 0.184 was estimated. Supplementary

Fig. S3 depicts the impact of adding varying magnitudes of

residual error onto model simulations for the negative-

control study. For all magnitudes of residual error depicted

(0 to 0.30; Supplementary Fig. S3A-G), distributional dif-

ferences between NPDE values and a standard normal

random variable were observed.

The majority of conventional PBPK model evaluation

metrics for the negative-control study depicted the pres-

ence of a mismatch between observed data and model

simulations. The AFE (bias) was 1.26, indicating the

presence of an over-prediction bias associated with model

simulations. However, AAFE (precision) was only 1.39—a

value that was similar to that computed for the positive-

control study (Table 4). Conventional residual-based

goodness-of-fit plots exhibited trends indicative of model

over-prediction (Supplementary Fig. S4). Application of a

NPC to the negative control study indicated that the pro-

portion of observed data exceeding the model’s 90% PI

was 0.32—a value that was statistically greater than the

nominal value of 0.10 (Table 4).

Evaluation of a previously developed
pediatric PBPK model for clindamycin using
the proposed NPDE-based approach

Demographics of the 29 children who participated in the

prospective clindamycin PK study are displayed in Table 6.

Subjects ranged in postnatal age from 3 months to

16 years. Gestational age (GA) was reported for 7 infants

less than 1 year postnatal age, four of whom were prema-

ture at birth (GA\ 37 weeks). However, specific model-

ing considerations for prematurity were not considered

since the postnatal age of all premature subjects was

greater than 7 months. A total of 157 PK samples were

available for analysis; the median (range) number of

samples per subject was 6 (2–7). Samples were collected

on one occasion (i.e., dose) in 8 subjects. The remaining 21

subjects provided samples over two occasions. PK samples

Table 3 Type-I-error for the NPDE-based model evaluation approach (positive-control simulation study)

Number of subjects Samples per subject Total samples Iterationsa Type-I-error (lNPDE)b Type-I-error (NPC)c

5 3 15 467 0.028 0.61

10 3 30 491 0.047 0.894

20 3 60 498 0.042 1

30 3 90 500 0.06 1

5 6 30 493 0.053 0.85

10 6 60 496 0.026 0.974

20 6 120 498 0.038 0.998

30 6 180 497 0.038 1

5 9 45 492 0.03 0.868

10 9 90 497 0.054 0.988

20 9 180 499 0.036 1

30 9 270 499 0.056 1

lNPDE mean of normalized prediction distribution errors, NPC numerical predictive check
aIterations (out of 500) where the standard deviation of NPDE were not optimized to within ± 0.01 of the target value (i.e., 1) by the developed

fitting algorithm were excluded from the analysis
bType-I-error for the NPDE-based model evaluation approach. Computed as the proportion of iterations where the lNPDE was statistically

different than 0 (p value\ 0.05; two-sided Student’s t-test)
cType-I-error for the conventional evaluation approach. Computed as the proportion of iterations where the proportion of observed data

exceeding the model’s 90% prediction interval was statistically[ 0.10 (p value\ 0.05; exact binomial test)
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corresponding to the first occasion were collected after a

median (range) of 5 (1–7) doses. For the cohort of subjects

who contributed samples over two occasions, samples

corresponding to the second occasion were collected after a

median (range) of 8 (4–13) doses. The median (range)

administered clindamycin dosage was 12.6 mg/kg

(9.1–16.4). Notably, two subjects received single oral doses

of clindamycin over the course of their sampling interval.

However, PK samples were not collected over the interval

immediately following oral dose administration. Consid-

ering the high oral bioavailability of clindamycin (* 90%)

[29], these doses were modeled by administration of the

complete dose via an IV intermittent infusion over 30 min.

Application of the presented NPDE-based model eval-

uation approach (Fig. 1) towards the entire clindamycin PK

dataset (i.e., 29 children; 157 samples) indicated that model

Fig. 3 Goodness-of-fit plots generated from the NPDE-based model

evaluation workflow corresponding to the positive-control study.

Model simulations incorporated a residual error (exponential) of

0.181. Plots include npd vs. time (a); npd vs. PRED (b); a prediction-

corrected visual predictive check (c); and a normal quantile–quantile

plot of NPDE values (d). In a and b, red lines represent moving

(local) averages. In c, the light blue shaded regions represent 90%

prediction bands associated with the 5th and 95th percentiles of PBPK

model simulations. The dark blue region represents the 90%

prediction band associated with the 50th percentile of PBPK model

simulations. Dashed lines represent the 5th and 95th percentiles of

observed data; whereas, the solid line represents the 50th percentile of

observed data. In d, the light blue shaded region represents the 95%

prediction interval for a standard normal random variable (based on

1000 iterations). The solid line represents the 50th percentile of the

standard normal random variable. npd normalized prediction distri-

bution errors, NPDE normalized prediction distribution errors, PRED

median simulated concentration
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simulations adequately reproduced observed data. A mean

NPDE value of 0 (p value = 0.99) was computed. The

estimated magnitude of residual error (exponential) to

provide NPDE values with a SD of 1 was 0.42 (Table 7).

Figure 5 displays goodness-of-fit plots generated for the

proposed model evaluation approach. npd and pc-vpc plots

displayed a adequate fit between model simulations and

observed data, though minor trends towards model over-

prediction at higher concentrations (collected post-drug

infusion) and under-prediction at sampling times 2–4 h

post-drug infusion were observed. Trough concentrations

were well predicted (Fig. 5a, b, c). In addition, the

distribution of NPDE values were similar to that of a

standard normal random variable (Fig. 5d). The AFE was

computed to be 1, indicating a lack of bias associated with

model predictions. Precision (AAFE) was computed to be

1.95, indicating that on-average observed data fell within

1.95-fold of simulated values (Table 8).

Conversely, age-segmented evaluations of PBPK mod-

els performance displayed dissimilar results between age-

groups. For infants (1 month–2 years; 10 subjects; 48 PK

samples), the proposed NPDE-based model evaluation

approach indicated the presence of a discrepancy between

model simulations and observed data. Computed NPDE

Table 4 Conventional model

evaluation metrics for the

positive and negative-control

simulation studies

Variable Positive-control study Negative-control study

Number of subjects 10 10

Samples per subject 6 6

Total samples 60 60

ME (mg/L) 0.025 - 0.207

RMSE (mg/L) 0.445 0.472

AFE 1.08 1.26

AAFE 1.34 1.39

Number of samples outside the model’s 90 PI (N [%]) 16 (26.67%)* 19 (31.67%)*

ME mean error, RMSE root mean squared error, AFE average fold-error, AAFE absolute average fold-error,

PI prediction interval, PK pharmacokinetic

*Proportion of observed data exceeding model’s 90% PI is statistically greater than 0.10 (p value\ 0.05,

exact binomial test)

Table 5 Power of the NPDE-based model evaluation approach (negative-control simulation study)

Number of subjects Samples per subject Total samples Iterationsa Power (lNPDE)b Power (NPC)c

5 3 15 446 0.43 0.735

10 3 30 485 0.79 0.973

20 3 60 492 0.98 1

30 3 90 495 1 1

5 6 30 487 0.511 0.891

10 6 60 498 0.869 0.998

20 6 120 500 0.996 1

30 6 180 499 1 1

5 9 45 497 0.503 0.942

10 9 90 499 0.866 0.998

20 9 180 499 0.984 1

30 9 270 499 1 1

lNPDE mean of normalized prediction distribution errors, NPC numerical predictive check
aIterations (out of 500) where the standard deviation of NPDE were not optimized to within ± 0.01 of the target value (i.e., 1) by the developed

fitting algorithm were excluded from the analysis
bPower of the NPDE-based model evaluation approach. Computed as the proportion of iterations where the lNPDE was statistically different than

0 (p value\ 0.05; two-sided Student’s t-test)
cPower of the conventional evaluation approach. Computed as the proportion of iterations where the proportion of observed data exceeding the

model’s 90% prediction interval was statistically[ 0.10 (p value\ 0.05; exact binomial test)
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values exhibited a mean of - 0.36 (p value = 0.015;

Table 7), indicating a trend towards model over-prediction.

Goodness-of-fit plots also supported the presence of an

over-prediction bias associated with model predictions

(Supplementary Fig. S5). Conventionally computed bias

(AFE) and precision (AAFE) measures were 1.31 (i.e.,

over-prediction bias) and 1.84, respectively. However, a

NPC for the proportion of data exceeding the model’s 90%

PI (0.0625) did not exceed the nominal value of 0.10

(Table 8).

In young children (2–6 years; 6 subjects; 37 PK sam-

ples), evaluation measures from the NPDE-based approach

provided conflicting findings. NPDE values exhibited a

mean of 0.21—a value that was not significantly different

than 0 (p value = 0.211; Table 7). However, goodness-of-

fit plots indicated a trend towards model under-prediction

Fig. 4 Goodness-of-fit plots generated from the NPDE-based model

evaluation workflow corresponding to the negative-control study.

Model simulations incorporated a residual error (exponential) of

0.184. Plots include npd vs. time (a); npd vs. PRED (b); a prediction-

corrected visual predictive check (c); and a normal quantile–quantile

plot of NPDE values (d). In a and b, red lines represent moving

(local) averages. In c, the light blue shaded regions represent 90%

prediction bands associated with the 5th and 95th percentiles of PBPK

model simulations. The dark blue region represents the 90%

prediction band associated with the 50th percentile of PBPK model

simulations. Dashed lines represent the 5th and 95th percentiles of

observed data; whereas, the solid line represents the 50th percentile of

observed data. In d, the light blue shaded region represents the 95%

prediction interval for a standard normal random variable (based on

1000 iterations). The solid line represents the 50th percentile of the

standard normal random variable. npd normalized prediction distri-

bution errors, NPDE normalized prediction distribution errors, PRED

median simulated concentration
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for samples collected between 2 and 4 h (Supplementary

Fig. S6). The computed AFE (0.73) indicated a bias

towards model under-prediction. However, precision

(AAFE) associated with model predictions was less than

twofold (1.76; Table 8). Furthermore, the proportion

observed data exceeding the model’s 90% PI (0.1622) was

not statistically greater than the nominal value of 0.10

(Table 8).

For children between 6–18 years (13 subjects; 72 PK

samples), the proposed model evaluation workflow depic-

ted an adequate fit between model simulations and

observed data. NPDE values exhibited a mean value of

0.08 (p value = 0.522; Table 7). Goodness-of-fit plots

indicated that model simulations adequately recapitulated

the observed data. Although, for concentrations post-drug

infusion (i.e., high concentrations), a minor over-prediction

bias was observed (Supplementary Fig. S7). The estimated

residual variability (exponential) associated with model

predictions was 0.50 (Table 7). AFE was 0.98, indicating a

lack of bias associated with model predictions. However,

AAFE (precision) was greater than twofold (2.14). In

addition, a statistically greater proportion of observed data

fell outside the model’s 90% PI (0.375) compared to the

nominal value of 0.10 (Table 8).

Discussion

The current study introduces a new approach for evaluating

Pop-PBPK model predictions against time-based observa-

tions (i.e., continuous data) that are commonly collected

during clinical investigations. Though the examples pre-

sented here were specifically tailored towards PK data, the

depicted methodology could equally be applied to other

continuous data types, such as pharmacodynamic mea-

sures. The proposed approach focuses on deriving Pop-

PBPK specific NPDE. Rather than providing an indication

of the absolute difference between model simulations and

observed data, NPDE provide a normalized approximation

of the percentile that decorrelated observations fall in terms

of model simulations. For example, a NPDE value of 0

would indicate that the decorrelated observation falls on

Table 6 Demographic

characteristics of children who

contributed clindamycin PK

data for the analysis

Variable Median (range) or N (%)

1 month–2 years 2–6 years 6–18 years

Number of subjects 10 6 13

Gestational age (weeks) 37 (33–40)a – –

Postmenstrual age (weeks) 67 (51–78)b – –

Postnatal age (years) 0.64 (0.27–1.45) 4 (3.56–5.93) 9.18 (6.06–15.98)

Body weight (kg) 8.45 (5.5–11.7) 16.3 (14.7–21.1) 41.2 (16.9–72.7)

Female 4 (40) 2 (33) 7 (54)

Race

White 5 (50) 5 (83) 11 (84)

Black or African American 2 (20) 1 (17) 1 (8)

Asian 2 (20) 0 0

More than one race 1 (10) 0 0

Other or not reported 0 0 1 (8)

PK pharmacokinetic
aGestational age reported for subjects with postnatal age\ 1 year (N = 7 subjects)
bPostmenstrual age computed for subjects with postnatal age\ 1 year as the sum of gestational and

postnatal age (N = 7 subjects)

Table 7 NPDE-based model

evaluation metrics for the

previously developed pediatric

clindamycin PBPK model [9]

Variable 1 month–2 years 2–6 years 6–18 years All

Number of subjects 10 6 13 29

Number of PK samples 48 37 72 157

Residual (exponential) variability 0.26 0.43 0.5 0.42

Mean of NPDE - 0.36a 0.21 0.08 0

NPDE normalized prediction distribution errors, PBPK physiologically-based pharmacokinetic, PK

pharmacokinetic
aMean of NPDE is statistically different than 0 (p value\ 0.05, two-sided Student’s t-test)
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the 50th (i.e., median) percentile of decorrelated model

simulations. Furthermore, statistical analysis of the first

two moments (i.e., mean and variance) for derived NPDE

distributions provide an understanding of the model’s

ability to recapitulate observed datasets in terms of bias and

variability. Though commonly employed for population

PK model validation [30, 31], to our knowledge, this

presents the first instance where NPDE have been appro-

priated for Pop-PBPK model evaluation.

Due to their varied scope of utilization, as well as lack of

clear guidance from regulatory authorities [2, 3], PBPK

models are commonly evaluated using a diverse set of

quantitative metrics. For continuous data, such as concen-

tration–time measurements, evaluations traditionally

Fig. 5 Goodness-of-fit plots generated from the NPDE-based model

evaluation workflow corresponding to all subjects (N = 29) from

whom clindamycin concentrations were collected. Model simulations

incorporated a residual error (exponential) of 0.422. Plots include npd

vs. time (a); npd vs. PRED (b); a prediction-corrected visual

predictive check (c); and a normal quantile–quantile plot of NPDE

values (d). In a and b, red lines represent moving (local) averages. In

c, the light blue shaded regions represent 90% prediction bands

associated with the 5th and 95th percentiles of PBPK model

simulations. The dark blue region represents the 90% prediction

band associated with the 50th percentile of PBPK model simulations.

Dashed lines represent the 5th and 95th percentiles of observed data;

whereas, the solid line represents the 50th percentile of observed data.

In d, the light blue shaded region represents the 95% prediction

interval for a standard normal random variable (based on 1000

iterations). The solid line represents the 50th percentile of the

standard normal random variable. npd normalized prediction distri-

bution errors, NPDE normalized prediction distribution errors, PRED

median simulated concentration
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include summative metrics of bias (e.g., AFE, mean per-

centage error) and precision (e.g., AAFE, root-mean

squared error, mean absolute percentage error) [32, 33], as

well as NPC (e.g., proportion of observed data falling

outside the model’s 90% PI) [9, 13]. Of note, such metrics

fail to account for within-subject correlations (i.e., multiple

observations per subject) and the presence of residual error.

As a result, derived conclusions may be biased [12]. For

example, the NPC based on the 90% PI from the presented

positive-control study indicated that the proportion of data

exceeding the model’s PI (0.27) was statistically greater

than the nominal value of 0.10 (Table 4). This is a

notable finding, considering that observations and simula-

tions were generated under the same PBPK model, albeit

with a 0.20 exponential error added to observed

concentrations.

The proposed NPDE-based model evaluation approach

offers several distinct advantages compared to conven-

tionally employed metrics. First, the approach allows for

the development of goodness-of-fit plots that aid in the

identification of model misspecifications similar to those

used for population PK analyses [34]. Generated plots

allows for data from individuals administered a drug at

dissimilar dosages or frequencies to be combined and

displayed using a discrete set of graphs. Such visual

depictions are particularly advantageous for opportunisti-

cally collected PK datasets, where dosing schemes and

timing of samples can vary considerably between subjects.

Additionally, through creation of individual predictive

distributions for each observed value, the proposed work-

flow permits for Pop-PBPK model specific pc-vpc plots to

be generated. These plots offer an enhanced ability to

detect model misspecifications by normalizing data to

account for differences in dosages or influential covariates

between subjects [24]. Second, unlike summative metrics

(e.g., AFE), which are derived based on model predictions

for a typical subject (i.e., without consideration of inter-

subject variability), NPDE are computed based on simu-

lations that encapsulate the range of expected variability

(e.g., inter-individual variability and residual error) asso-

ciated with each prediction [14]. As such, NPDE-based

analyses provide an important conceptual shift from con-

ventional summative metrics. Rather than focusing on how

far observations lie with respect to a single simulated

(typical) individual, the proposed approach focuses on

where observations fall within the range of variability

proposed by the model, which permits NPDE-based anal-

yses to provide simultaneous assessments of the adequacy

of model predictions in terms of bias and variability.

Lastly, the proposed evaluation approach incorporates

residual variability into its qualification process. To our

knowledge, this is one of the first instances where con-

sideration of residual error has been incorporated into the

PBPK model evaluation process. As pediatric PK studies

are frequently conducted during the course of clinical care,

obtained PK datasets are inferred to embody higher degrees

of residual error in comparison to prototypical phase-I PK

studies performed in adults. Therefore, to facilitate appro-

priate model evaluations against such observed datasets,

evaluation techniques capable of accounting for residual

error are required.

Pre-established thresholds for assessing the quality of

PBPK model predictions are not well-defined within the

literature. For example, a systematic review of published

PBPK models indicated that for 56% of modeling exer-

cises, a priori criteria for qualifying models as successful

was not listed [35]. This finding is likely a reflection of the

difficulty associated with establishing thresholds that are of

clinical relevance. As opposed to evaluating models based

on pre-specified clinically relevant thresholds, which vary

between compounds and study populations, the proposed

model evaluation workflow permits for a statistical

Table 8 Conventional model evaluation metrics for the previously developed pediatric clindamycin PBPK model [9]

Variable 1 month–2 years 2–6 years 6–18 years All

Number of subjects 10 6 13 29

Number of PK samples 48 37 72 157

ME (mcg/mL) - 0.82 1.7 0.06 0.18

RMSE (mcg/mL) 4.2 5.68 6.45 5.66

AFE 1.31 0.73 0.98 1.00

AAFE 1.84 1.76 2.14 1.95

Number of samples outside the model’s 90 PI (N [%]) 3 (6.25%) 6 (16.22%) 27 (37.5%)* 36 (22.93%)a,*

ME mean error, RMSE root mean squared error, AFE average fold-error, AAFE average absolute fold-error, PBPK physiologically-based

pharmacokinetic, PI prediction interval

*Proportion of observed data exceeding model’s 90% PI is statistically greater than 0.10 (p value\ 0.05, exact binomial test)
aSummary of age-segmented analyses
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assessment of similarity between observations and model

simulations. For example, statistical evaluations of the

mean of NPDE values provides an explicit quantitative

assessment of model bias. However, it can be conceded

that specific thresholds for acceptable goodness-of-fit plots

and magnitudes of residual error are less well-defined. For

the magnitude of residual error, estimates should be within

a reasonable range with respect to the compound’s effi-

cacy/safety profile and source of data. Though the safety of

clindamycin in children has yet to widely investigated, a

previously published safety analysis of 21 preterm and

term infants receiving clindamycin for treatment of a sus-

pected systemic infection or as part of standard of care

found that 9 (43%) experienced adverse events, none of

which were inferred to be related to clindamycin [36].

Additionally, a previously conducted population PK anal-

ysis of opportunistically collected clindamycin plasma PK

data from 125 children, characterized a proportional

residual error of 0.40 [37]. Of note, for smaller magnitudes

of variance, proportional and exponential error functions

introduce similar degrees of variability. Consequently,

exponential residual error estimates from the developed

pediatric clindamycin Pop-PBPK model were deemed

acceptable as they approximated or were less than the

population PK model defined value (Table 7) [9, 37].

Evaluations of PBPK models should be conducted in a

manner that demonstrates the model’s applicability

towards study populations of interest [3]. The importance

of this concept was highlighted through our evaluation of a

previously developed pediatric Pop-PBPK model for clin-

damycin [9]. When model simulations were evaluated

against observed data from all subjects, spanning from

infants to adolescents, a suitable fit between model simu-

lations and observed data was depicted (Table 7; Fig. 5).

However, when analyses were segregated between differ-

ent age-specific cohorts, differences in model performance

were observed. In young children (2–6 years), evaluation

measures offered contrasting findings. Goodness-of-fit

plots indicated the presence of model under-prediction, yet

the mean of NPDE values was not statistically significant

(Table 7; Supplementary Figure S6). This discrepancy may

be a result of the low number of subjects within this cohort

(i.e., 6), reducing the power for tests associated with the

mean of NPDE values. Furthermore, in infants (1 month–

2 years), model simulations were found to over-predict

observed concentrations (Table 7; Supplementary Fig-

ure S5). These results support the use of segmented anal-

yses of Pop-PBPK model performance within specific

study populations of interest. Subject segregation should be

conducted with careful consideration as the creation of too

heterogeneous groups may mask the ability to detect model

misspecifications within specific sub-groups. Regulatory

guidance and pre-existing knowledge of patient

populations where PK differences are anticipated (e.g.,

neonates vs infants; males vs females) could be used to

formulate groups for such analyses.

The proposed NPDE-based evaluation approach is not

without limitations. Computation of NPDE uses a process

whereby observations are decorrelated based on model

simulations [16]. However, this process does not neces-

sarily render NPDE as completely independent [38]. As a

consequence, statistical tests based on NPDE can be

associated with slightly higher type I error rates (i.e.,

erroneously asserting that model predictions and data are

divergent). Therefore, it is recommended that goodness-of-

fit plots also be considered as part of the model evaluation

process [15]. Although the negative-control study was

designed to assess the power of the proposed NPDE-based

model evaluation approach to detect differences between

two theoretical compounds whose PK profiles were slightly

different, it should be noted that these computations were

specific to the presented example. With use of Pop-PBPK

models for an alternative set of compounds, different

results would have been obtained. Despite their complex-

ity, PBPK models are still simplified representations of

complex biological systems. Consequently, the residual

error computed using the defined workflow should be

viewed as a composite of several sources including inap-

propriate model structure, misspecification of drug and

system-specific parameters as well as study execution and

drug measurement errors. Although we assessed the influ-

ence of misspecifications of the magnitude of residual

(exponential) error on type-I-error and power (Tables 3 and

5), this work does not provide an understanding of the

impacts of misspecification of the error model type (e.g.,

additive vs. proportional vs. auto-correlated, etc.). The

most notable limitation of the proposed evaluation

approach is its need for patient-specific PK and demo-

graphic data; this represents a departure from currently

employed metrics such as NPC that can be employed based

on tertiary demographic information (e.g., age and weight

range of observed subjects) [39]. Nonetheless, considering

the advantages associated with use of the proposed model

evaluation approach in comparison to conventionally uti-

lized evaluation metrics, further development of NPDE-

based methods for Pop-PBPK model evaluation is

warranted.

Conclusions

The presented work introduces a new paradigm for quali-

fying Pop-PBPK model predictions of continuous out-

comes (e.g., concentration–time values) that accounts for

within-subject correlations (i.e., multiple observations per

subject) and the presence of residual error. The novel
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approach focuses on deriving Pop-PBPK model specific

NPDE, a metric that is commonly utilized for population

PK model validation. Using simulation-based study

designs, the performance of the proposed NPDE-based

model evaluation approach was demonstrated through

statistical assessments of power and type-I-error. When

employed to evaluate a previously developed clindamycin

PBPK model against prospectively collected plasma con-

centration values from 29 children, the NPDE-based

approach asserted that, on average, the model predictions

were unbiased; however, when pediatric subpopulations

were evaluated, the approach revealed potential biases that

should be explored.
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