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Abstract
Physiologically based pharmacokinetic (PBPK) models are an important type of systems model used commonly in drug

development before commencement of first-in-human studies. Due to structural complexity, these models are not easily

utilised for future data-driven population pharmacokinetic (PK) analyses that require simpler models. In the current study

we aimed to explore and automate methods of simplifying PBPK models using a proper lumping technique. A linear

17-state PBPK model for fentanyl was identified from the literature. Four methods were developed to search the optimal

lumped model, including full enumeration (the reference method), non-adaptive random search (NARS), scree plot plus

NARS, and simulated annealing (SA). For exploratory purposes, it was required that the total area under the fentanyl

arterial concentration–time curve (AUC) between the lumped and original models differ by 0.002% at maximum. In full

enumeration, a 4-state lumped model satisfying the exploratory criterion was found. In NARS, a lumped model with the

same number of lumped states was found, requiring a large number of random samples. The scree plot provided a starting

lumped model to NARS and the search completed within a short time. In SA, a 4-state lumped model was consistently

delivered. In simplify an existing linear fentanyl PBPK model, SA was found to be robust and the most efficient and may

be suitable for general application to other larger-scale linear systems. Ultimately, simplified PBPK systems with fun-

damental mechanisms may be readily used for data-driven PK analyses.

Keywords Model simplification � Proper lumping � Autolumping � Physiologically based pharmacokinetic models �
Systems models

Introduction

The human body is complex by nature with hierarchical

levels in structural organisation, ranging from atom to

molecule, cell, tissue, organ, system, and up to the highest

whole body level (refer to [1] for more details). Under-

standing the human body structures, more specifically

biological, physiological, pathophysiological and pharma-

cological structures, enables the development and emer-

gence of systems models. Two separate types of systems

models, physiologically-based pharmacokinetic (PBPK)

models and systems pharmacology models, may be used to

quantify the interactions of drugs within the human body.

These models are highly complicated, often nonlinear and

evolve consistently with growing knowledge of the human

systems. Contributions of these models have been recog-

nised, for example to drug development from the early

drug discovery stage to the later clinical trial stage [2, 3].

Physiologically-based pharmacokinetic (PBPK) models

describe the drug pharmacokinetics (PK) in physiological

systems, using a large number of compartments repre-

senting tissues and organs that are realistic to physiological

systems [4]. PBPK models have been widely used in pre-

clinical settings in order to predict the PK behaviour of an

investigational drug in humans before commencement of

first-in-human studies. The use of PBPK models for
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extrapolation to special populations, e.g. paediatrics and

the obese, is also commonly seen [5].

Due to high dimensionality and structural complexity,

systems models are not readily utilised for data-driven

population PK or PKPD studies that are routinely based on

empirical estimation-based approaches. With model order

reduction methods, however, these models can be reduced

into fewer states and simpler structures while maintaining

fundamental mechanisms and important input–output

relationships [6]. The simpler structures are easier to

manipulate and are amenable to data-driven estimation-

based techniques.

Different model order reduction techniques, including

time-scale analysis, sensitivity analysis and lumping, have

been proposed and applied in the literature [6]. The first

two techniques may alter the kinetics of an original system,

via ad hoc analysis for manual separation of time scales or

elimination of states. Lumping is a potentially more flexi-

ble technique for linear or linearised models where the

merging of states is determined in relation to the perfor-

mance characteristics of the model. Lumping was used to

simplify a PBPK model for barbiturates in rats where tis-

sues with identical structural specification (i.e. in serial or

parallel connection) and similar kinetics were merged [7].

Similarly, mathematical transformation was also adopted

by Pilari and Huisinga [8] to manually simplify perfusion

and permeability rate limited PBPK models, and the

descriptive performance of simplified models using the

lumping approach were further evaluated with 25 diverse

small molecules.

Proper lumping is a special case of lumping that merges

some original states into only one pseudo-state in a reduced

system. The reduced states, after proper lumping, maintain

their physical meaning as in the original system, as do the

associated parameters. Recently, a proper lumping tech-

nique has been used for the simplification of a large-scale

systems pharmacological model for a coagulation network

and [9, 10].

Simplification of systems models using proper lumping

technique may be automated, but represent a large-scale

combinatorial search problem. An intuitive and straight-

forward approach is to conduct an exhaustive search over

the entire solution space. While, in theory guaranteed to

locate the best solution, an exhaustive search is generally

not practical due to computational limitations [11], and

efficient search algorithms that are scalable to large com-

binatorial problems are therefore desirable. Monte Carlo

sampling method requires random samples repeatedly

drawn to find the best solution and a greater number of

random samples is expected to provide a greater proba-

bility of success [12]. Simulated annealing is a probabilistic

algorithm that converges asymptotically to the optimal

solution and is robust for both continuous and discrete

search problems [13], and continuous search methods using

SA, for example, have been used for optimising sampling

times in PKPD experiments [14].

The current study aimed to explore automated proper

lumping methods for the simplification of large systems

models, by applying to an existing linear PBPK model for

fentanyl. Here fentanyl is being used as an example and

this work is not intended to form the basis of further

analyses of fentanyl pharmacokinetics.

Materials and methods

Fentanyl PBPK model

A PBPK model for fentanyl was identified from the liter-

ature [15] and used as the application example. The

structure of the PBPK model for fentanyl is shown in

Fig. 1. This model predicted the concentrations of fentanyl

in arterial blood and other tissues over time in humans after

an intravenous infusion of fentanyl of 750 lg over 5 min.

In the current study, the fentanyl concentrations in arterial

blood were considered of importance and the concentra-

tions in other tissues were not required.

In total there were 17 states with the liver as the site of

metabolism. In addition to the usual tissues and organs that

are seen in a typical PBPK model, the liver is represented

by two compartments as is the spleen and the gut is rep-

resented as three compartments. These further refinements

were required in the original study to improve the goodness

of fit between model predictions and observed data [15].

The PBPK model contained time-invariant constants for all

parameters and the model structure was linear in the

parameters.

Simulation of fentanyl PBPK model

The fentanyl PBPK model was coded as ordinary differ-

ential equations (ODEs) in MATLAB� (version R2013b)

based on the published model structure. Parameter values

were available in the original publication [15]. The ODEs

were solved using matrix exponentials to provide a closed-

form for simulation.

The arterial concentration–time profile of fentanyl was

simulated with an intravenous bolus of 750 lg fentanyl.

Note in the original paper fentanyl was given as an arterial

infusion of 750 lg over 5 min. For the simplicity of

computer simulation, an arterial bolus was used. This does

not affect the generality of the methods.
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Proper lumping

The proper lumping technique has previously been

described by Dokoumetzidis and Aarons [16]. Briefly, a

general form of the original model for a vector of model

predictions (y) over time (t) is given in Eq. (1) as ODE.

dy

dt
¼ K � y ð1Þ

Here K is the micro-rate constant matrix in the original

model of size n 9 n where n is the number of states in the

original system. Parameters in the original PBPK system,

recorded as blood flow, tissue volume and partitioning

coefficient, were transformed to create the matrix of micro

rate constants (see Sections 1A and 1B in the supplemen-

tary material 1).

In this technique the lumped micro-rate constant matrix

(K̂) can be directly obtained by the relationship of K, the

lumping matrix (M) and the Moore–Penrose pseudo-in-

verse of lumping matrix (M?) as shown in Eq. (2).

K̂ ¼ M � K �Mþ ð2Þ

The resulting lumped micro-rate constant matrix, with

lumped tissues of lumped micro-rate constants that essen-

tially average over the values from the original tissues and

have the properties of the lumped perfusion, tissue volume

and partitioning coefficient (see Sections 2 and 3 in the

supplementary material 1), is then used to simulate the

concentration–time profile in the reduced order system.

The vector of ODEs for the lumped system (ŷ) are shown in

Eq. (3).

dŷ

dt
¼ K̂ � ŷ ð3Þ

The lumping matrix (M) transforms the states between

the original and lumped systems and is a user defined

m 9 n matrix composed of 0 s and 1 s, where m is the

Fig. 1 Fentanyl PBPK model

structure adopted from

Björkman et al. [15] (PBPK:

physiologically based

pharmacokinetic, L_cpt_1: an

extra compartment in liver,

S_cpt_1: an extra compartment

in spleen, G_cpt_1: the first

extra compartment in gut,

G_cpt_2: the second extra

compartment in gut)
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number of lumped states and n is the number of original

states. All merged states are shown as 1 s in the same row.

Here in Eq. (4) anM matrix for a simple example is written

where the first two states of an original 3-state model are

merged resulting in a 2-state lumped model.

M ¼ 1 1 0

0 0 1

� �
ð4Þ

Note the M matrix for the setting where the lumped

model equations are the same as the original model is the

identity, In, of dimensions n 9 n (i.e. m = n).

A legal M matrix is specified where the sum of each

column is 1 and the sum of each row B n. In the absence of

an a priori M matrix, an automatic search of possible M

matrices needs to be performed to find an M matrix that

yields a lumped model that reaches a pre-defined criterion.

The optimal M matrix is defined as having the minimum

number of states (min mð Þ; m 2 1; 2; . . .; nf g) that satisfies
an acceptance criterion.

Search algorithms for lumping matrix

Acceptance criterion

An acceptable lumped model was defined such that the

total area under the fentanyl arterial concentration–time

curve (AUC) between the lumped and original models was

set to differ by 0.002% at maximum (termed ARD% for

absolute value of the relative difference expressed as a

percent). Note this criterion is arbitrary and any criteria can

be used without loss of generality.

General features

Methods of searching optimal M matrices considered in

this study include: (1) full enumeration, (2) non-adaptive

random search (NARS), (3) scree plot plus NARS, and (4)

simulated annealing (SA). All search algorithms were

implemented in MATLAB� (version R2013b).

In all methods arterial blood was the output state and

constrained to be unlumped during the search process, as it

was also the observation state, in order to illustrate a case

of constrained automatic lumping. Although this choice,

here, is arbitrary it is important to ensure that in future

applications of automated lumping the user can control or

constrain the process. All searches started from the fully

lumped matrix, i.e. where states other than the output state

were lumped as a single state (i.e. m = 2 and therefore

M was of dimension 2 9 17). If the fully lumped state did

not satisfy the acceptance criterion then the number of rows

was incremented and the search algorithm was re-applied

to generate new lumping matrices. Generations of new

lumping matrices continued until the criterion was accep-

ted. A flow chart is illustrated in Fig. 2.

The individual search algorithm for the best M matrix of

size m 9 n was constructed by one of four techniques

described below. MATLAB code (.m files) for all methods

have been provided as supplementary materials.

Full enumeration

In full enumeration all legal lumping matrices were sear-

ched exhaustively.

Minimum ARDs% for lumped models with m = 3, 4,

and 5 were searched respectively in full enumeration,

where the total number of combinations of lumping

matrices were 316, 416, and 516 respectively (note one state

(arterial blood) of the final lumped model remains

unlumped).

Non-adaptive random search (NARS)

In NARS legal lumping matrices were constructed ran-

domly, where random combinations of lumped states were

searched.

Different numbers of random samples per row incre-

ment in m were evaluated, including 10, 100, 1000 or

10,000 or 100,000 or 1,000,000 samples.

Scree plot plus NARS

A scree plot is commonly used as a visual aid in principal

component analysis to determine a number of principal

components. In this visualisation the eigenvalues of the

matrix of interest are plotted against the number of com-

ponents of the system. This will be a monotonic curve with

a downward trajectory that resembles a mountainous scree

slope.

In this study a scree plot was used to visualise the

influence of compartmental structures. It is constructed by

plotting the rank order of the logarithm of absolute values

of the eigenvalues (log eigj jð Þ) against each the relevant

compartment of the K matrix of the original model. Either a

cut-off point of log eigj jð Þ of 0 or a change in the slope of

the scree plot was used to indicate an initial estimate of the

number of states in the reduced model. The resulting

number of states was used for initialising NARS.

Simulated annealing (SA)

SA, originating from annealing metallurgy, is an optimi-

sation method where temperature regulates the probability

of acceptance of a solution (i.e. legal lumping matrices in

this study). Here temperature is an artificially introduced

parameter which controls the probability of moving away
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from the minima. More introduction to SA can be found in

Goffe et al. [17].

In this study SA was used to minimise ARD% during

the search of lumping matrices. Test runs were conducted

to assess the conditions of the SA algorithm and to deter-

mine whether stable solutions can be found.

Results

Four methods were considered for the search algorithm

step to find the best M matrix for the current value of m. In

this work full enumeration was considered the reference

method as all possible solutions were considered.

Full enumeration

A 4-state lumped model was found after 40 min where

ARD% was 0.0001% satisfying the exploratory criterion

(i.e. ARD% B 0.002%).

The minimum ARD% for lumped models with m = 3

was 0.04% and the search finished within 10 min. For

m = 4 the search of minimum ARD% (i.e. 8e-6%) took

approximately 2 days. The same minimum ARD% was

found for m = 5 while the search was completed after

approximately 2 months.

Non-adaptive random search (NARS)

The results for different numbers of random samples are

summarised in Table 1. With 10 and 100 samples the

random search did not find a lumped model that satisfied

the criterion (i.e. the full model was the only accept-

able model). With an increment of samples per iteration

from 1000 to 1,000,000, the number of states in the final

model that satisfied the criterion reduced. Accordingly a

longer time was required for the search of larger-scale final

lumped models.

Fig. 2 Flow chart illustrating the general features of search algorithms for a lumping matrix

Table 1 Number of random samples in NARS with resulting number

of lumped states and time cost

Number of samples Number of lumped states Time cost (min)

10 – –

100 – –

1000 14 0.25

10,000 6 1

100,000 5 5

1,000,000 4 30

NARS non-adaptive random search
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Scree plot plus NARS

The scree plot of the original fentanyl PBPK model is

shown in Fig. 3. The values of log eigj jð Þ for the first four

ranked states were above 0 and therefore may provide the

basis of states that are more informative and could be left

unlumped as the first iteration. The slope in the scree plot

appeared to level off up to the fourth state and also indi-

cated four or five states in the lumped model. ARD% for

both lumped models were greater than 38%. The lumped

states were gradually unlumped and a lumped model within

the ARD% criterion was not found.

In NARS the search then started with four states (i.e.

m = 4) with 10,000 samples, and a 7-state lumped model

within the ARD% criterion was found after 40 s.

Simulated annealing (SA)

Variables of the SA algorithm in this study were set as: (1)

initial temperature = 104, which regulates the probability

of accepting a new energy state in the search process, (2)

rate of temperature decline = 0.999 per cycle, meaning that

temperature drops from 104 to 104 9 0.999 after the first

cycle and the linear cooling scheme continues for each

cycle, (3) maximum number of iterations = 2 9 104 - the

number of random Metropolis samples over each temper-

ature. The stopping criteria was the same as the other

methods used.

Five individual runs were all completed with a 4-state

lumped model after approximately three minutes per run.

The lumped models were not identical in structure, all with

arterial blood, venous blood, and two other states resulting

from different combinations of original states. Two

examples of simplified fentanyl PBPK models are shown in

Fig. 4. This may indicate that SA in this example was

stable in returning the same number of lumped states but

the form of the model varied. It should be noted that dif-

ferent lumped models can provide the same criterion value

and hence it is possible that there is more than one lumped

solution to this problem. Two additional runs with varying

initial temperatures (i.e. 103 and 105 respectively) both

gave the same outcome in terms of number of lumped

states.

Plots in Fig. 5 show the trend of temperature change

(left panel) and also the convergence to the optimal ARD%

solution over iterations (right panel). With an exponential

decline of temperature (i.e. annealing), a convoluted sur-

face of ARD% over successive iterations was formed as

uphill jumps were made by SA. The uphill jumps decreased

as the temperature decreased and then ultimately led the

search to converge to the optimal solution.

Plots in Fig. 6 show the simulated arterial concentra-

tion–time profiles of the two lumped models from the SA

runs, in comparison to the simulated profile of the full

PBPK model. Here the ARD% was set to a maximum of

0.002%. The difference in the concentration–time profile

became more obvious when concentrations were lower and

other criteria, e.g. sums of squares could also be consid-

ered. In Fig. 7, concentration–time profiles of individual

tissues in the full PBPK model and the resulting lumped

tissue were overlaid for interest. Note the lumping process

was aimed to optimise for the output compartment of

interest (i.e. the arterial circulation) and hence these plots

represent the average lumped behaviour that was not part

of the optimisation process.

Discussion

In this study automatic proper lumping methods were

explored. Various algorithms to automate the proper

lumping were evaluated due to the enormous number of

combinations of possible lumping matrices in the fentanyl

system (i.e. in total 1616 = 1.8e?19), under the assumption

and restriction that the output state (the state that the

observations were made) was not lumped. It is possible that

the output state is also lumped, in theory collapsing to a

one-compartment pharmacokinetic model.

To avoid an explosion of enumeration and to improve

efficiency, the search in all methods was initiated from the

simplest structure (i.e. fully lumped model) and built up to

more complex structures at each iteration. This search

implicitly assumes that a lumped solution for the accep-

tance criterion of interest is readily available. However, a

search starting from the full model may be more parsi-

monious if lumping is likely to yield an irreconcilable loss

of information, i.e. most states in the finally lumped system

are the same as in the original system.

Fig. 3 Scree plot of the original fentanyl PBPK model where

logarithm of absolute values of the eigenvalues are plotted against

ranked state number (horizontal line: logarithm of absolute value of

eigenvalue equal to 0)
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Four search methods were compared, an exhaustive

search, a naı̈ve start non-adaptive random search (NARS),

an informative start random search and simulated anneal-

ing (SA). The full enumeration method was set up to sys-

tematically search all combinations of lumping matrices

and in effect provides a reference method. Computational

time increased dramatically over the size of the problem,

indicating that this method would not scale to larger

problems (e.g. as m increased from 3 to 5 the search times

increased from 10 min to 2 months). In this study, as the

search started from the smallest problem and the final

lumped model was of small dimension (m = 4), the full

enumeration method was suitable. Obviously this should

not be generalised to other problems. In NARS it was

Fig. 4 Two examples of simplified fentanyl PBPK models (PBPK: physiologically based pharmacokinetic, L_cpt_1: an extra compartment in

liver, S_cpt_1: an extra compartment in spleen, G_cpt_1: the first extra compartment in gut, G_cpt_2: the second extra compartment in gut)

Fig. 5 Diagnostic plots in

simulated annealing algorithm

(left panel: temperature change

(log scale) versus iterations,

right panel: ARD% (log scale)

versus iterations showing

convergence to optimal ARD%,

ARD: absolute relative

difference)
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found that larger numbers of random samples, up to one

million per iteration, converged to the optimal solution for

this particular problem. However the method performed

poorly with fewer samples. When NARS was paired with a

scree plot to yield an informative starting point it was seen

that the search completed within a short time but with a

less than optimal solution. The scree plot method did not

seem to confer any particular advantages in this case. In

this study SA was applied to a combinatorial search across

lumping matrices which represented a large-scale discrete

search problem and here SA provided a stable solution, that

agreed with full enumeration, within a short time.

When comparing these methods by two measures, i.e.

time cost and the quality of the solution, it was found that

both full enumeration and SA consistently delivered the

same solution with the latter being much faster (2 months

vs. 3 min). It needs to be noted that as full enumeration is a

deterministic search the same lumped model was produced,

while in SA different lumped models with the same num-

ber of lumped states (m = 4) were produced (all within the

ARD% criterion but with different ARD% values). In the

future, the lumped models from SA may be estimated and

evaluated with respect to observed data to determine the

best choice of lumped models.

Previous work has described a Bayesian method for

automating a proper lumping technique with an application

to a PBPK model for barbiturates [18] and a NF-jB sig-

nalling pathway model [16]. The linear PBPK model for

barbiturates originally contained 19 states with most tissues

assumed to be well-perfused and was initially reduced to

10 states and further down to 7 final states. The resulting

lumped 7-state model, including the blood compartment for

absorption and the liver compartment for elimination and

the distribution into both adipose and muscle compart-

ments, has recently been applied to describe the time

course of mavoglurant plasma concentrations in a Phase-I

clinical study [19]. It was evaluated in the original study

that the whole PBPK model was unstable due to numerical

identifiability issues when directly used to describe sparse

or dense clinical data, and that fixing parameters in the

whole PBPK model may produce biased estimates and

underestimated uncertainty. In contrast, the lumped 7-state

model retaining the physiological interpretation was found

to be stable in analysing the clinical data and also in further

extrapolation from adults to children.

A potential limitation to the method described in the

current study is the use of ARD% which, by comparing

AUCs, depends on a critical value in order that two dif-

ferent profiles do not generate the same AUC with dif-

ferent profiles. Also, and importantly, the automated

search here could be used with any criterion for assessing

deviation of the lumped from full model without loss of

generality. We note in this work that the input is not

varied (i.e. remains a single bolus dose into the arterial

blood compartment) and hence ARD% for AUC while not

without issues remains an effective technique for com-

parative purposes. One of the final lumped models

(Fig. 4b) gives a reasonable arterial concentration–time

profile and the lumped tissue profile has a similar profile

to that of the individual tissues in the original PBPK

system, although the resulting search has lost the resolu-

tion of the physiological meaning (i.e. venous blood

lumped with tissues). The other lumped model (Fig. 4a)

Fig. 6 Simulated arterial concentration–time profiles for the original

and lumped models (left panel: original model vs. lumped model a,

right panel: original model vs. lumped model b, insert plot:

concentration–time over a 60-min time scale)

Fig. 7 Simulated concentration–time profiles for individual tissues in

the original and lumped models (left panel: original tissues vs.

lumped tissue (L3) in model a, right panel: original tissues vs. lumped

tissue (L3) in model b)
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has a consistent structure with that of minimal PBPK

models where venous and arterial blood compartments are

separated and tissues are lumped separately [20] and the

lumped tissue profile appears to capture some of the

profiles of the individual tissues in the original PBPK

system, the arterial concentration–time profile however

displays a discrepancy at low concentrations. This is

consistent with the choice of a criterion that averages over

the concentration–time profile (e.g. AUC) and other cri-

terion may be considered. The choice of a selection cri-

terion, however, should be ultimately judged based on the

intended use of the final lumped model. Since this work

was not intended to provide insight into further devel-

opment of fentanyl then any criterion can be used. For

specific applications a criterion, e.g. sum of squares,

should be considered that will support model inference

and judgement. It is important, however, that the trade-off

between model complexity and tolerance of the criterion

be considered in the light of the use of the model. In

addition, a comparison of automated proper lumping

against other approaches, such as global sensitivity anal-

ysis for reducing PBPK models [5], may be considered in

the future.

Nevertheless, using the model simplification techniques

as in this study, large-scale linear PBPK systems may be

automatically reduced to simpler structures. Since the

simpler structures retain mechanistic realism they can

potentially be applied to population PK studies to better

predict and extrapolate the responses between species in

comparison with traditional empirical approaches [2].

Additionally, simpler model structures may be used to

optimise the design of PK experiments while the original

PBPK models may be limited by their structural com-

plexity requiring intensive sampling designs for estimating

all parameters [21, 22].

Conclusion

In this study automated proper lumping methods were used

to simplify an existing linear fentanyl PBPK model, and

simulated annealing was found to a robust and efficient of

the algorithm. This approach could be considered for the

simplificaiton of other types of PBPK models.
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