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Abstract
Stepwise covariate modeling (SCM) is a widely used tool in pharmacometric analyses to identify covariates that explain

between-subject variability (BSV) in exposure and exposure–response relationships. However, this approach has several

potential weaknesses, including over-estimated covariate effect and incorrect selection of covariates due to collinearity. In

this work, we investigated the operating characteristics (i.e., accuracy, precision, and power) of SCM in a controlled setting

by simulating sixteen scenarios with up to four covariate relationships. The SCM analysis showed a decrease in the power

to detect the true covariates as model complexity increased. Furthermore, false highly correlated covariates were frequently

selected in place of or in addition to the true covariates. Relative root mean square errors (RMRSE) ranged from 1 to 51%

for the fixed effects parameters, increased with the number of covariates included in the model, and were slightly higher

than the RMRSE obtained with a simple re-estimation exercise with the true model (i.e., stochastic simulation and

estimation). RMRSE for BSV increased with the number of covariates included in the model, with a covariance parameter

RMRSE of almost 135% in the most complex scenario. Loose boundary conditions on the continuous covariate power

relation appeared to have an impact on the covariate model selection in SCM. A stricter boundary condition helped achieve

high power ([ 90%), even in the most complex scenario. Finally, reducing the sample size in terms of number of subjects

or number of samples proved to have an impact on the power to detect the correct model.
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Introduction

Covariate modeling during population analysis is important

in identifying patient characteristics that impact pharma-

cokinetic (PK) or pharmacokinetic/pharmacodynamic (PK/

PD) parameters and may subsequently help individualize

drug treatment for patient subpopulations. Various methods

for covariate selection have been reported in the literature;

e.g., stepwise generalized additive modeling procedure

(GAM) [1], stepwise covariate modeling (SCM) [2],

Wald’s Approximation Method (WAM) [3], the least

absolute shrinkage and selection operator (LASSO) [4],

full fixed effects model (FFEM) [5], full random effects

model (FREM) [6], covariate selection based on genetic

algorithm (GA) [7]. There are limited studies in the liter-

ature comparing popular selection methods [8, 9]. Wählby

et al. [8] compared stepwise GAM followed by backward

elimination and SCM together with different versions of

these procedures. No major differences in the resulting

covariate models were seen, and the predictive perfor-

mances overlapped.

In general, the SCM algorithm is one of the popular

algorithms used within the pharmacometrics community to

select potential covariates [10]. Using the likelihood-ratio

test (LRT) as selection criteria, the SCM procedure
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involves testing covariate relationships in a forward

inclusion method (e.g., a reduction in the delta objective

function value [DOFV] of 3.84150; P\ 0.05 for 1 degree

of freedom) and backward elimination procedure (e.g.,

DOFV of 6.63490; P\ 0.01 for 1 degree of freedom).

Details on the description of the SCM procedure can be

found in Jonsson et al. [2] and Lindbom et al. [11] papers.

Despite the robustness of the SCM algorithm, it is well

known that SCM has several weaknesses, including com-

petition between multiple covariates that increases selec-

tion bias (i.e., selecting the incorrect covariates), especially

when there is a moderate to high correlation between the

respective covariates [9, 12, 13]. These weaknesses may

result in an important loss of power to identify the true

covariates [12] and in selection of false covariates.

Few analyses exist in the pharmacometrics literature

investigating operating characteristics of SCM in a con-

trolled simulated setting. Ribbing et al. [12] investigated

the power, selection bias, and predictive performance of

population PK covariate model. A univariate covariate

selection technique was used to evaluate the operating

characteristics of covariate selection. The analysis found

that the power (probability of identifying true covariates)

increased with covariate effect size and sample size.

Reduction of power was reported with increasing correla-

tion among covariates, and selection bias was pronounced

with weak covariates. In this paper, we extended the

analysis performed by Ribbing et al. [12] by deriving the

operating characteristics of SCM in a controlled simulated

setting using a more complex structural model (two com-

partments model with linear absorption) and allowed the

model to have up to four different covariates relations

(categorical and continuous) simultaneously.

Given the popularity of SCM, findings from this analysis

will provide practical value to pharmacometricians who

use SCM to evaluate covariates in their routine population

analysis. Furthermore, the paper aims to report practical

findings when executing SCM within a Perl-speaks-NON-

MEM (PsN) platform.

Theoretical

Methods

Model

The workflow used to characterize the operating charac-

teristics is presented in Fig. 1. A two-compartment model

with first-order absorption was used to simulate the drug

concentrations with the following true PK-parameter fixed-

effects values: clearance (TVCL) = 0.6 L/h, intercom-

partmental clearance (Q) = 1.8 L/h, central volume

(TVVc) = 20 L, peripheral volume (TVVp) = 80 L,

absorption rate (Ka) = 0.7/h and dose = 100 mg. These

parameters were coupled with the permutations of four

covariates: body weight (BW) and creatinine clearance

(CrCL) on apparent clearance, and BW and SEX on vol-

ume of distribution using Eqs. 1–3 that created 16 different

scenarios (including the no-covariates case) as presented in

Table 1. All continuous covariates (e.g., BW) were mod-

eled using power model (see Eq. 1), whereas a linear

model was used to model categorical covariates (e.g., SEX)

(see Eq. 2).

CLi ¼ TVCL

� BW

Reference BW

� �h1

� CrCL

Reference CRCL

� �h2

�egCL;i

ð1Þ

Vci ¼ TVV � BW

ReferenceBW

� �h3

� 1 þ sex � h4ð Þ � egVc;i

ð2Þ

where

gCL;i
gVc;i

� �
�N 0;Xð ÞwithX ¼ x2

CL covðCL;VÞ
covðCL;VÞ x2

Vc

� �

ð3Þ

The true model included a correlation coefficient of 0.2

between the two random effects (CL and V) and variances

of between-subject variability of xCL = 0.1 and xVc = 0.1.

A proportional residual error was used to derive the

observed concentrations Cobs,ij from the true simulated

concentration Cij (see Eq. 4.)

Cobs;ij ¼ Cij � 1 þ eij
� �

ð4Þ

where eij is normally distributed with mean = 0, and vari-

ance r2 (= 0.01). For this simulation setting, reference BW

was assumed to be 70 kg and reference CRCL was

assumed to be 95 mL/min which represented median BW

and median CRCL respectively.

Simulations

In total, 250 datasets were simulated for each scenario with

a sample size of 300 subjects and 6 observations per sub-

ject corresponding to 0, 0.05, 0.1, 0.5, 1 and 3 typical half-

life (t1/2). This resulted in

16 9 250 9 300 9 (6) = 5,400,000 simulated drug con-

centration records that were used to derive the operating

characteristics of SCM. The National Health and Nutrition

Examination Survey (NHANES) [14] database was used to

sample all covariates. Correlation between covariates

observed in the original NHANES dataset was preserved

across the 250 bootstrapped datasets by only keeping

274 Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:273–285

123



bootrstapped datasets that had correlation values that range

from ± 0.05 of the original observed values. Five covari-

ates (BW, BMI, CrCL, SEX, RACE) for 250 9 300

adults[ 17 years of age were bootstrapped from the

NHANES database. Note that SEX was coded as 0 for

female and 1 for male and RACE was 0 for Asian and 1 for

white.

The model without any covariate relation was consid-

ered as a reference model during the analysis. Note that the

correlation coefficient between the random effects (xCL

and xVc) in the 250 simulated datasets was controlled to be

around 0.2 by selecting only those datasets with correlation

values of C 0.15 and B 0.25.

Analysis

To assess the robustness of the models and validate the

design of the simulated dataset, all simulated datasets were

first re-fitted with the original model applying a stochastic

simulation and estimation (SSE) approach [11, 15]. This

analysis allowed us to evaluate bias and precision in

parameter estimates, as measured by the relative mean root

squared error (RMRSE), and model stability. Model sta-

bility was assessed by tabulating the percent of runs with

successful minimization, the percent of runs with a suc-

cessful covariance step, and the mean and standard error of

the run condition numbers. The RMRSE was defined as:

Generate 

Covariate 

Dataset (virtual 

popula�on) 

Simulated PK- 

individual 

parameters

Re-Es�ma�on with final model

- Validate design dataset

- Check model robustness

Simulated 

dataset

Stepwise Covariate 

Model-building 

(SCM)  

Opera�ng 

Characteris�cs  

NHANES 

database

Fig. 1 Simulation workflow

Table 1 True covariate

coefficients of the 16 scenarios
Scenario h1: CL(WGT) h2: CL(CRCL) h3: V(WGT) h4: V(SEX)

1 0 0 0 0

2 0 0 0 0.5

3 0 0 1 0

4 0 0 1 0.5

5 0 0.5 0 0

6 0 0.5 0 0.5

7 0 0.5 1 0

8 0 0.5 1 0.5

9 0.75 0 0 0

10 0.75 0 0 0.5

11 0.75 0 1 0

12 0.75 0 1 0.5

13 0.75 0.5 0 0

14 0.75 0.5 0 0.5

15 0.75 0.5 1 0

16 0.75 0.5 1 0.5
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�RMRSEpark ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250

X250

i¼1

partruek � parestik

partruek

� �2

vuut

where park is the kth (k = 1,…,Npar) parameter, partrue
k

refers to the kth parameter true value (i.e., value used in the

simulation) and paresti

k refers to estimated kth parameter

based on the ith (i = 1–250) simulated dataset.

Once the robustness of the models and of the design was

assessed with the SSE approach, each scenario and its

corresponding 250 datasets was then analysed by a full

SCM procedure, as implemented in PsN [11, 15], where all

the covariates (SEX, RACE, BW, BMI and CrCL) in the

dataset were investigated in both CL and Vc parameters.

To enable a faster calculation, parallelization of the 250

SCM was performed, which enabled sending up to 20

different SCM processes simultaneously. Due to the high

volume of outputs from SCM, a Perl-script was developed

to post-process the results and derive the operating char-

acteristics. The script could parse the different final model

parameter relations and the relative estimate values from

the log file.

Once all the information was retrieved, the power for

each scenario to get the correct model was calculated. In

addition, the power conditioned on the models that had

condition number (CN)\ 1000 in the SSE (powerCN) and

the power conditioned on the models that had a mini-

mization successful in the SSE (PowerMinSuc) were also

calculated. Finally, the relative power to get at least one,

two, etc. … out of the number of true covariates (de-

pending on the scenario analysed) was also summarized.

Note that the UNCONDITIONAL option was used in the

covariance step, which allowed calculating the covariance

step in Nonlinear Mixed Effects Modeling (NONMEM),

even if the minimization was not successful. It should be

noted that the powerCN calculation was a more stringent

criterion than simply considering the successful conclusion

of the covariance step.

Since the categorical covariate was parametrized by

default in SCM according to the category that was the most

common in each dataset, the parametrization was made

explicit in the SCM configuration file to obtain consistent

parametrization of the categorical covariate in all

250 datasets. One of the available options to perform SCM

in PsN was to provide boundaries for all covariates esti-

mates. The default bounds were set so that the linear cat-

egorical covariate function could not reach negative values

(i.e., lower bound = - 1; upper bound = 5), whereas the

power continuous covariate had very broad default

boundary values (i.e., lower bound = - 1,000,000; upper

bound = 1,000,000). However, the user had the opportu-

nity to change the covariate boundaries using the SCM

configuration file.

To complete the operating characteristic analysis, the

RMRSE of all the population parameters, unconditional as

well as conditioned on correct final covariate selection

were calculated. The conditional CRMRSE was defined as:

�CRMRSEpark
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1P250

i¼1 di

X250

i¼1

di

partrue
k � paresti

k

partrue
k

� �2

vuut

di ¼
1 if he correct covariate are selected

0 otherwise

	

Note that the unconditional RMRSE relative to the

covariate effects parameters is calculated using all those

models that have the covariate selected, independently

from the fact that in the model there was the final correct

covariate selection. To assess the impact of sample size and

the number of samples/subject, the same analysis was

repeated in reduced sample size conditions. In particular,

the same simulated datasets and scenarios were used, but

fewer subjects were considered in each dataset (i.e., two

conditions were analysed with 25 and 50 subjects,

respectively) or fewer samples per subject (i.e., 300 sub-

jects with one random sample per individual). Note that

while reducing the number of subjects, the proportion of

the categorical covariate SEX was kept the same as in the

original dataset.

Software

The covariate search was performed within a nonlinear

mixed effect model framework as implemented in NON-

MEM 7.2 [16] and SCM as implemented in PsN 4.6.0

[11, 15]. The dataset simulations and the covariate dataset

generation were performed using R software [17].

Results

Figure 2 presents a Pearson correlation matrix from boot-

strapped covariates of 250 9 300 simulated subjects. The

size of the circles in the upper triangle are proportional to

the correlation coefficients. The numbers shown in the

lower triangle represent the corresponding values of the

correlation coefficients. Bodyweight and BMI exhibited the

strongest positive correlation of 89% followed by BMI and

RACE, with a correlation coefficient of 32%. Correlation

between RACE and SEX or BMI and SEX were negligible.

Of note, in practice, modellers are unlikely to consider both

BW and BMI as potential covariates. In our simulations,

we are considering both BW and BMI to represent highly

correlated covariates.
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Stability of simulations

Prior to deriving the operating characteristics of SCM, the

robustness of model and simulation settings was assessed.

Figure 3 shows the robustness in terms of RMRSE of

parameters obtained from an SSE approach. Results from 3

scenarios are shown (scenario 2, 9 and 14), similar trends

are observed in the rest of the scenarios. In each scenario,

the covariance of central volume with clearance has the

highest RMRSE (ranging from 35 to 38%), followed by the

variance of clearance and central volume (ranging from 20

to 22% for x2-CL, ranging from 15 to 16% for x1-Vc).

The trend in RMRSE across scenarios was similar:

RMRSEs ranged from 1 to 38% considering all scenarios,

suggesting that the models could be estimated and were

numerically stable. Figure 4 presents information on the

model stability in the different scenarios obtained from an

SSE approach. Across the various simulation scenarios, the

probability of successful minimization was higher (around

90%) than the probability of successful covariance step

(around 80%). Note that this result was expected, as the

covariance step is computationally more challenging than

the minimization step as it requires one more derivation

and a matrix inversion.

In all the scenarios, most of the runs had successful

minimization and covariance steps which implies that the

models can be considered numerically stable (Fig. 4). In

particular, it was expected that a certain percentage of

models would fail to satisfy the criteria selected (mini-

mization/covariance step successful) and the more strin-

gent the criteria, the higher the percentage of models not

satisfying the criteria. Nevertheless, in both scenarios, the

percentage was high enough to validate the assumption of

numerical stability (approximately 90% and 80%,

respectively).

Power to obtain the correct final model
after SCM procedure

Power based on all 250 datasets, power conditioned on the

condition number\ 1000 (PowerCN) and power condi-

tioned on the successful minimization (PowerMinSuc)

were calculated. For a stable simulation scenario, these

metrics should have been similar, because ideally, the

models included in each power calculation should have

been the same. Figure 5 presents the power to detect the

correct final model after the SCM procedure. The three-

metrics behaved similarly and the estimated power of SCM

decreased (up to 25% in scenario 16), as the complexity of

Fig. 2 Correlation between

covariates within simulated

master dataset
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the true model increased (i.e., the number of covariates

introduced). Table S1 presents the relative power of

obtaining at least 1,…, N out of the N true covariate

relations presented in each scenario. In case of 1 to 2

covariates in the true model, SCM could detect the correct

covariates at least 98% of the time (with the exception of

scenario 13, where the power was lower—74.4%). Note

that, together with the true covariates, SCM could detect

Fig. 3 RMRSE of model parameters

70%

75%

80%

85%

90%

95%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 S

uc
ce

ss
 

Simula�on Scenario 

Minimiza�on Successful Covariance Step SuccessfulFig. 4 Model stability

information: percentage of

models with successful

minimization and covariance

steps
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additional incorrect covariates, which is attributed to a

difference between the power (Fig. 5) and the relative

power values (Table S1). In the case of three true covari-

ates in the model, SCM could detect the correct covariates

65% to 93% of the time. Finally, in the most complex

scenario, there was a 50% chance that SCM could detect

the four true covariates in the final model.

Summary of false relations detected during SCM

The most frequent false relations and their relative fre-

quency for each of the 16 scenarios is reported in

(Table S2). The falsely selected covariates are shown in

bold. Often, the incorrect/additional covariate selected was

a correlated covariate (e.g., BMI instead of BW), which

suggested the that likelihood of selecting a false covariate

was high for strongly correlated covariates.

Table 2 and Fig. 6 present the unconditional RMRSE

for the fixed and random effects parameters, specifically

the covariate effect parameter(s). The RMRSEs that were

conditional on the models having correct covariate selec-

tion in SCM were very similar to the unconditional

RMRSEs, with the exception of scenario 16, which had the

biggest number of covariates and generally slightly higher

RMRSEs in the unconditional case. The RMRSEs ranged

from approximately 1% to approximately 62.3% for all

fixed effects parameters, increased with the number of

covariates included in the model, and were slightly higher

than the RMRSE obtained with a simple re-estimation

exercise with the true model (i.e., SSE). RMRSE on BSV

increased with the number of covariates included in the

model, with the correlation term reaching an RMRSE of

almost 135% in the most complex scenario. Results from

this study confirms the finding of Ribbing et al. [12]: the

higher the number of covariate relations in the model, the

higher the over-estimation of the covariate effects (Fig. 6).

Impact of default boundary condition provided
by SCM in power relations

If the default boundary condition option in SCM file input

was used, a control stream such as the one presented in

Fig. 7 was produced by SCM. Simulations performed in

the current analysis showed that a default boundary con-

dition in the continuous power covariate parametrization

provided by SCM led to a high initial gradient, which

appeared to reduce model stability, and eventually impac-

ted power. Modifying the boundary condition helped to

improve the power to detect true covariates. Figure 8

shows the resulting power with more conservative bound-

ary conditions on the continuous covariate (- 10 to 10),

which was a benefit in all scenarios.

To understand how much the boundary conditions pro-

duced by SCM impacted model stability, an SSE with

different boundary conditions was performed. The results

of these SSEs were compared to the corresponding outputs

from the first SSE analysis that had no boundary imple-

mented in the covariate coefficients. Based on results

shown in Table 3, reducing the interval of the boundary

condition (e.g., [- 10, 10] for continuous covariates)

improved the model stability. In particular, when using the

default boundary condition, the number of datasets with

successful minimization across the different scenarios was

very low compared to no boundary or a narrower boundary

proposed. On the contrary, the number of datasets with

rounding errors was extremely high when the default

boundaries were used. Note that scenario 2 was not influ-

enced by the boundary conditions, as it referred to simu-

lations with one categorical covariate. Moreover, it seemed

that in most of the scenarios, the use of a narrower

boundary was beneficial for model stability, with respect to

no boundary at all. In particular, given that the median CNs

in the different scenarios are quite similar between the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Po
w

er
 (%

) 

Simula�on Scenario 

power power CN power MinSucFig. 5 Power to detect the

correct final model using the

SCM procedure
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Table 2 RMRSE (unconditional) of the fixed and random effect parameters

Scenario n relations Vc (%) CL (%) Vp (%) Q (%) KA (%) Err (%) x1-Vc (%) cov (Vc,CL) (%) x2-CL (%)

1 0 2.5 4.1 3.3 0.9 3.2 2.2 12.6 21.9 15.8

2 1 2.9 4.8 4.0 0.9 2.9 2.1 12.9 22.0 16.2

3 1 2.5 4.3 3.3 0.9 2.9 2.2 12.7 22.6 15.9

4 2 3.0 4.7 3.8 1.0 2.7 2.2 13.0 23.1 16.3

5 1 2.4 3.8 4.4 1.1 3.1 2.2 12.4 29.9 26.8

6 2 10.0 4.8 6.4 1.1 4.3 2.1 25.6 38.0 24.6

7 2 4.2 4.2 5.5 1.1 3.5 2.2 23.6 40.6 22.5

8 3 12.0 5.0 7.3 1.1 4.3 2.3 33.9 52.3 25.9

9 1 2.5 4.3 3.1 0.9 3.2 2.1 12.6 22.0 14.9

10 2 3.1 4.9 3.8 0.9 2.8 2.1 12.7 22.2 14.2

11 2 2.6 5.1 3.4 0.9 2.9 2.2 11.8 21.8 12.3

12 3 3.1 5.5 3.8 0.9 2.6 2.2 12.1 23.9 13.2

13 2 2.5 6.8 5.1 1.1 3.1 2.1 12.5 33.0 36.1

14 3 10.7 6.6 7.3 1.1 4.6 2.1 23.8 55.3 42.6

15 3 5.0 5.8 5.3 1.1 3.3 2.2 21.6 119.3 48.8

16 4 18.5 15.4 16.2 14.2 14.8 14.3 32.6 133.6 51.3

Fig. 6 RMRSE (unconditional)

of the covariate parameters

Fig. 7 Example of output file

from SCM as produced by PsN
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narrower boundary and the no boundary condition, note

that the CN standard deviations for scenarios 2, 3, 5, 6, 8, 9

10, 13, 14 and 16 (i.e. the majority of the cases) obtained

with stringent boundaries were smaller than the ones

obtained with no boundaries.

Impact of sample size on power

One of the key challenges of designing trials is to establish

which sample size (e.g., number of subjects, number of

samples) is needed to assess covariate effects with a certain

power. To address this question, two subsets with a smaller

number of subjects (i.e., 25 and 50 subjects) were extracted

from the analysis datasets and the power of identifying true

covariates was quantified in the 16 different scenarios. A

similar reduction exercise on a smaller subset of scenarios

was performed with respect to the number of samples: in

four randomly selected scenarios, the datasets were

reduced to one random sample for each subject. Note that a

new narrower boundary condition (- 10 to 10) for the

continuous covariate was used in all of these analyses.

Figure 8 shows a clear reduction of power with respect to

sample size reduction (i.e. number of subjects): in all

scenarios the power obtained with less number of subjects

is smaller than the power obtained with more subjects.

Figure 9 shows more detail of the reduction of power with

respect to model complexity. The more complex the model

(i.e., the number of covariates included in the final model),

the less power there was to identify the correct final model.

Table 4 shows a clear reduction of power with reduced

sample size. In all the four scenarios, the power obtained in

the full dataset was higher than the one obtained with a

reduced dataset (one sample per subject). The power was

also influenced by model complexity (i.e., the number of

covariate relations). The more complex the model, the

greater the reduction in the power with reduction of num-

ber of samples.

Discussion

The SCM procedure has been criticized for selection bias

that could result in failure to identify important covariates,

while unimportant or incorrect covariate effects could

appear to be clinically relevant [3]. Despite these issues,

SCM remains one of the most used methods within the

pharmacometrics community to select covariates that can

potentially impact PK and PK/PD parameters [3, 10].

In this paper, we investigated the operating character-

istics (i.e., accuracy, precision, and power) of the SCM

procedure in a controlled simulated setting. All covariates

within the simulated dataset were sampled from NHANES

database, providing a natural way of preserving correlation

between covariates being used in the analysis. Sixteen

scenarios ranging from no covariates (the simplest case) to

a maximum of four covariates (the most complex case)

were explored. Note that SCM was run using an initial set

with some true and some false covariates, including a

highly correlated covariate (i.e., BMI).

As expected, our simulation demonstrated that the

power to detect true covariates decreased with model

complexity. The inclusion of highly correlated covariates

in the final model indicated that the data did not allow

discrimination between the competing covariates [4].

Screening highly correlated covariates is a classic chal-

lenge for most covariate modelling. LASSO for example,

would include more correlated covariates than SCM [4].

FFEM cautions not to include a covariate that has corre-

lation greater than 0.5. The inclusion of highly correlated

covariates destabilizes the inversion of gradient matrix,

causing instability in parameter estimation. The more

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Po

w
er

 (%
) 

Simula�on Scenario 

300 subj 50 subj 25 subjFig. 8 Power after reducing the

number of subjects in all the 16

scenarios with a new boundary

condition on the continuous

power covariate relation
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Table 3 Summaries of model stability information after an SSE analysis using three different boundary conditions on the continuous covariate

power parametrization

Scenario MinSuc EstBnd RndErr ZeroGrad CovStep MedCN StCN

No boundary conditions

2 217 0 33 0 199 30 7488

3 219 0 31 0 199 25 1619

4 232 0 18 0 199 36 4777

5 228 0 22 0 211 24 217208

6 221 0 29 0 195 45 3061

7 224 0 26 0 200 30 6518

8 222 0 28 0 186 36 17337

9 228 0 22 0 224 22 215991

10 215 0 35 0 200 36 1554616

11 227 0 23 0 203 23 1414

12 231 0 19 0 201 37 20425

13 229 0 21 0 213 23 502222

14 225 0 25 0 182 33 647395

15 225 0 25 0 206 26 5778

16 213 0 37 0 192 40 105145481

Default SCM boundary condition (- 105,…,105)

2 224 0 26 0 196 33 398

3 2 0 248 0 0 – –

4 14 0 236 0 0 – –

5 0 0 250 0 0 – –

6 0 0 250 0 0 – –

7 0 0 250 0 0 – –

8 0 0 250 0 0 – –

9 8 0 242 0 0 – –

10 0 0 250 0 0 – –

11 0 0 250 0 0 – –

12 0 0 250 0 0 – –

13 0 0 250 0 0 – –

14 0 0 250 0 0 – –

15 0 0 250 0 0 – –

16 0 0 250 0 0 – –

Narrow boundary condition (- 10,…,10)

2 224 0 26 0 196 33 398

3 227 0 23 0 198 26 963

4 225 0 25 0 191 41 32907

5 225 0 25 0 213 24 14651

6 225 0 25 0 192 43 2386

7 230 0 20 0 203 29 8305

8 229 0 21 0 192 38 9865

9 232 0 18 0 216 20 611

10 224 0 26 0 187 33 73510

11 232 0 18 0 208 26 8273

12 226 0 24 0 208 37 51595

13 231 0 19 0 216 23 5399

14 223 0 27 0 193 38 1765

15 231 0 19 0 199 30 62984
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complex the model containing highly correlated covariates,

the more pronounced the instability of parameter estima-

tion, leading to a decrease of power to detect the true

covariates. Our results are consistent with simulation

results reported by Bonate [13] showing the impact of

collinearity on PK parameter estimates. Bonate reported

that for correlation between two covariates greater than 0.5

the population parameters showed an increase in bias and

standard error, and that for correlation greater than 0.75,

the standard error of parameter estimates was too large to

declare statistical significance. As a result, when dealing

with correlated covariates, it is advisable to avoid having

them both in the search.

Simulations performed in the current analysis showed

that a default boundary condition in the continuous power

covariate parametrization provided by SCM led to higher

initial gradient, which appeared to reduce model stability

and eventually reduced power. A stricter boundary condi-

tion helped to improve the power to detect true covariates.

Note that the new boundary condition [- 10, 10] chosen

for the power term did not limit the estimation process, as

the relative parameter space was broad enough to cover all

plausible values for the parameter. When the maximum

likelihood function had a strictly convex shape, there was a

unique stationary point, which was the global minimum. In

this case, the amplitude of boundary condition did not have

Table 3 (continued)

Scenario MinSuc EstBnd RndErr ZeroGrad CovStep MedCN StCN

16 222 0 28 0 195 45 5777

MinSuc minimization successful, EstBnd estimation boundary, RndErr rounding errors, ZeroGrad zero gradient, CovStep covariance step

successful, MedCN median condition number, StdCN standard deviation condition number

Fig. 9 Impact of reduction of sample size on power lumped by model complexity (i.e. number of covariates) with a new boundary condition on

the continuous power covariate relation

Table 4 Impact of reducing the

number of samples per subject

on power with a new boundary

condition on the continuous

power covariate relation

Scenario n relations All samples for each subject One random sample for each subject

9 1 0.94 0.91

10 2 0.96 0.88

15 3 0.936 0.812

16 4 0.91 0.75
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much effect on the power to detect the correct covariates.

This convexity of the maximum likelihood function

seemed to degenerate with the model complexity, which

led to several local minima. In this case, the larger the

search space (i.e., boundary condition), the easier it is for

the algorithm to assign a local minimum as the global

maximum. A stricter boundary condition would have

reduced the number of local minima of the maximum

likelihood function, and hence increased the chance of

determining the global minimum. In practice, to evaluate

the potential impact of the boundaries in the SCM results,

the user should perform sensitivity analyses, where the

boundary conditions are varied and the final covariate

model results are compared.

Sample size combined with model complexity impacted

the power of finding the correct covariates, which increased

the selection bias in the estimated covariate coefficients.

These results were consistent with Ribbing et al. findings

[12].

SCM has been very useful for the pharmacometrician

community and is expected to continue to be used despite

its challenges. However, pharmacometricians should be

cautious when determining correlated covariates and model

complexity. In this case, large sample sizes and better-

defined boundary conditions were helpful. The results of

these simulations also highlighted the importance of having

a large enough sample size. However, future studies are

needed to be able to draw more general conclusions on the

power by investigating the impact of different and more

complex model structures.

Conclusions

• Model complexity and sample size had a notable impact

on the power to identify the true covariate model and

the accuracy of the parameter estimates.

• Highly correlated covariates had a high likelihood of

being incorrectly selected by SCM.

• The default boundary condition provided in PsN by

SCM for the continuous covariate power model

impacted the final SCM selection of covariates.
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