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Abstract
Accurate characterization of exposure–response relationship of clinical endpoints is important in drug development to

identify optimal dose regimens. Endpoints with C 10 ordered categories are typically analyzed as continuous. This

manuscript aims to show circumstances where it is advantageous to analyze such data as ordered categorical. The results of

continuous and categorical analyses are compared in a latent-variable based Indirect Response modeling framework for the

longitudinal modeling of Mayo scores, ranging from 0 to 12, which is commonly used as a composite endpoint to measure

the severity of ulcerative colitis (UC). Exposure response modeling of Mayo scores is complicated by the fact that studies

typically include induction and maintenance phases with re-randomizations and other response-driven dose adjustments.

The challenges are illustrated in this work by analyzing data collected from 3 phase II/III trials of golimumab in patients

with moderate-to-severe UC. Visual predictive check was used for model evaluations. The ordered categorical approach is

shown to be accurate and robust compared to the continuous approach. In addition, a disease progression model with an

empirical bi-phasic rate of onset was found to be superior to the commonly used placebo model with one onset rate. An

application of this modeling approach in guiding potential dose-adjustment was illustrated.

Keywords Population pharmacokinetic/pharmacodynamic modeling � Inflammatory bowel disease � Discrete data �
Bounded outcome scores � NONMEM � Golimumab

Introduction

Exposure–response (E–R) modeling of clinical endpoints is

important for the selection of optimal dose regimen [1].

Longitudinal E–R modeling is particularly important for

the understanding of time course of treatment effect. A

widely used class of longitudinal E–R models includes the

Types I-IV indirect response (IDR) models [2]. IDR

models have been used to characterize various types of

treatment effects with mechanistic delays, and have been

argued as appropriately parsimonious for clinical endpoints

[3]. In situations where clinical endpoints are not physio-

logical variables but instead composite measures of disease

severity with varying levels of possible response, IDR

models have been successfully applied to categorical

variables via the latent variable approach [3–8].

In exposure–response modeling of endpoints with small

(e.g., \ 6) possible response categories, the endpoint is

typically analyzed as ordered categorical variable. When

the number of response categories is C 10, the endpoint is

typically analyzed as continuous variable. Apart from the

fact that predictions from the ordered categorical approach

will always fall in legitimate categories while the contin-

uous approach may not, the two approaches differ in

residual variability modeling. The continuous approach

requires normality assumptions, perhaps with transforma-

tions. In contrast, the ordered categorical approach requires

as many intercept parameters as the number of categories

- 1. Recently, it has been suggested that the ordered cat-

egorical approach may have advantages because it is scale-
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independent and therefore robust, and has good perfor-

mance with adequate sample sizes [9].

Ulcerative colitis (UC) is an inflammatory bowel disease

(IBD) that affects the colon. The disease activity in UC is

most often evaluated with the Mayo score [10], which is

the sum of 4 subscores (i.e., stool frequency, rectal

bleeding, endoscopic findings, and a physician’s global

assessment). Each subscore ranges from 0 to 3, with higher

scores indicating more severe disease, and the total Mayo

score ranges from 0 to 12. Longitudinal E–R modeling of

IBD data is challenging for the following two main rea-

sons. IBD clinical trials often employ complex study

designs with the aim of evaluating treatment effectiveness

during induction and maintenance phases, and treatment

received in the maintenance phase typically depends on

earlier responses: responders may be re-randomized, and

non-responders may receive higher doses or be discontin-

ued. In UC trials, the long-term placebo effect is usually

not directly observed for ethical reasons, however its

accurate assessment is important for drug effect evaluation.

The lack of long-term placebo data also hampers the

accurate characterization of the drug effect in the longitu-

dinal modeling. Nevertheless, satisfactory model perfor-

mance in each of the respective treatment phases is still

needed to enable dose selection/optimization. To our

knowledge, no longitudinal E–R modeling of Mayo scores

in UC patients has yet been published.

Several tumor necrosis factor alpha (TNFa) antagonists,

such as infliximab, golimumab (Simponi; Janssen Biotech,

Inc., Horsham, PA) and adalimumab, have been used in the

treatment of patients with moderate-to-severe UC [11, 12].

Golimumab is a subcutaneously (SC) administered fully

human anti-TNFa antibody that is approved for the treat-

ment of rheumatoid arthritis, ankylosing spondylitis, pso-

riatic arthritis [13–17], and more recently UC [18]. This

manuscript reports the results of longitudinal E–R model-

ing of Mayo Scores, using data from 3 integrated phase II/

III clinical trials of golimumab in patients with UC through

a total length of 60 weeks [10, 19, 20]. The results of the

continuous and categorical analysis approaches are com-

pared and possible reasons for observed discrepancies are

also discussed.

Methods

Data and information used for E–R modeling

Model development and evaluation were performed using

data from 3 integrated phase II/III clinical trials: PUR-

SUIT-IV, PURSUIT-SC, and PURSUIT-M [10, 19, 20].

These were randomized, double-blind, placebo-controlled,

parallel, multicenter trials of golimumab in patients who

have moderate to severe UC, with baseline Mayo score

C 6, and endoscopic subscore C 2. PURSUIT-IV and

PURSUIT-SC were induction studies; after week 6, all

patients continued into the PURSUIT-M maintenance

study. In PURSUIT-IV, 291 patients were randomized in

an approximately 1:1:1:1 ratio to a single IV infusion of

placebo, 1-, 2- or 4-mg/kg golimumab. In PURSUIT-SC,

1,064 patients were randomized (1:1:1:1) to receive SC

injections of placebo or 1 of 3 golimumab induction regi-

mens at weeks 0 and 2; golimumab doses were 100/50 mg,

200/100 mg, or 400/200 mg, respectively. Clinical

response was defined as a decrease from the baseline value

in the Mayo score C 30% and C 3 points, with either a

decrease in the rectal bleeding subscore of 1 or more or a

rectal bleeding subscore of 0/1.

The PURSUIT-M maintenance study started at week 6

following the induction studies of PURSUIT-IV and

PURSUIT-SC. The event times from the start of the

induction treatment are given below. Patients who

responded to golimumab induction therapy (n = 464) were

randomized in a 1:1:1 ratio to receive SC placebo, goli-

mumab 50 mg, or golimumab 100 mg every 4 weeks

(q4w) through week 58. Placebo-induction responders

(n = 129) received SC placebo q4w through week 58.

Golimumab-induction (n = 405) or placebo-induction

(n = 230) non-responders received golimumab 100 mg

q4w from week 6 to week 18, and patients were discon-

tinued from the study if disease activity was not improved

based on investigator assessment at week 22. Induction-

therapy responders who subsequently lost clinical response

at any time during the study could have their treatment

modified as follows: placebo-treated patients received

golimumab 100 mg every 4 weeks, patients treated with

golimumab 50 mg initially were rerandomized to receive

golimumab 50 mg or 100 mg every 4 weeks, and patients

treated with golimumab 100 mg initially were re-random-

ized to receive golimumab 100 mg or 200 mg every

4 weeks. After a protocol amendment, dose adjustment to

200 mg every 4 weeks was discontinued; patients initially

randomized to 100 mg continued to receive 100 mg, and

patients who already had their dose increased to goli-

mumab 200 mg were decreased to golimumab 100 mg. A

brief schema of the PURSUIT-M study design is given in

Fig. 1.

In PURSUIT-IV, serum golimumab concentrations were

evaluated at weeks 0 (1 h post-infusion), 2, 4, 6. Mayo

score was collected at weeks 0 and 6. In PURSUIT-SC,

serum golimumab concentrations were evaluated at weeks

0 prior to study agent administration and weeks 2, 4, 6.

Mayo score was collected at week 0 and 6. In PURSUIT-

M, serum golimumab concentrations were evaluated at

weeks 10, 14, 18, 26, 34, 36, 42, 50 and 60 from the start of

the induction treatment. An additional random sample for
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the measurement of serum golimumab concentration was

scheduled between weeks 22 and 30 from the start of

induction treatment, and at least 24 h prior to or after a

study agent injection. Mayo score was collected at weeks

36 and 60 from the start of the induction treatment.

In terms of E–R modeling, it may be helpful to view the

three studies as one since there were no interruptions

between the two induction studies and the subsequent

maintenance study. It is noted that the maintenance

(PURSUIT-M) study structure is complex, which essen-

tially classified the patients into the following subgroups

based on induction treatment groups and responder/non-

responder status: induction placebo responders, induction

placebo non-responders, induction golimumab non-re-

sponders, and induction golimumab responders who sub-

sequently received placebo, golimumab 50 mg q4w, or

golimumab 100 mg q4w. Understanding the performance

of E–R modeling in these six subgroups, in addition to the

induction phase, is important for the interpretation of

clinical results.

Data available for E–R analysis were collected from a

total of 1349 subjects, with a total of 4669 Mayo score

evaluations across the three studies. Demographic charac-

teristics of the subjects who were used in the current

analysis can be found in previous work [21, 22].

Population PK modeling

Population PK modeling following SC administration of

golimumab using a one-compartment model with first-

order absorption and first-order elimination has previously

been published [23]. The availability of the data from IV

administration make a two-compartment population PK

model possible, with body weight as the main covariate for

both clearance and volume of distribution. The average

clearance and absolute bioavailability were estimated as

0.54 (L/day) and 52%, respectively. The complete results

will be reported elsewhere. Individual empirical Bayesian

PK parameter estimates based on the population PK model

were obtained and used for the subsequent E–R analysis.

Continuous E–R analysis model

In this approach, the Mayo score was modeled by adopting

a semi-mechanistic approach applied in earlier E–R anal-

yses [7] as

MayoðtÞ ¼ b� fp tð Þ � fd tð Þ þ e ð1Þ

where Mayo(t) is the observed Mayo score at time t, b

represents baseline Mayo score, fp(t) is placebo effect, and

fd(t) is drug effect, and e is residual error with a normal

distribution [N(0, r2)]. The placebo effect was modeled

empirically as

fp tð Þ ¼ b � Fp 1 � exp �rp � t
� �� �

ð2Þ

where 0 B Fp B 1 is the fraction of maximum placebo

effect and rp is the rate of onset. The drug effect was

modeled as

Dose
adjustment if

loss of
responseInduction

responders
to

golimumab

Golimumab
50 mg SC

q4w

Responder
remain on
Golimumab
100 mg SC

q4w

Non-
responder
discontinue

Induction
responders
to placebo
(Week 6)

placebo

Responder
Assessment
(Week 22)

Golimumab
100 mg SC

q4w

placebo

Induction
non-

responders

Golimumab
100 mg SC

q4w

Fig. 1 Study design schema for

PURSUIT-M

Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:803–816 805

123



fd tð Þ ¼ b 1 � Fp

� �
Emax 1 � RðtÞ½ � ð3Þ

where 0 B Emax B 1 represents maximum drug effect, with

R(t) governed by:

dR tð Þ
dt

¼ kin 1 � Cp

IC50 þ Cp

� �
� koutR tð Þ ð4Þ

where Cp is the model estimated individual drug concen-

tration at time t, and kin (disease formation rate), IC50 (half-

maximal inhibitory concentration), and kout (disease ame-

lioration rate) are parameters in a Type I IDR model. It was

further assumed that R = 1 at baseline, i.e., R(0) = 1,

yielding kin = kout.

The standard IDR model form has the Emax term in

Eq. (4) instead of in Eq. (3). In our experience, results are

indistinguishable but estimation is faster in the current

form. This IDR model representation corresponds to a

change-from-baseline parameterization, where R(t) repre-

sents a latent variable of the disease process and kout may

be interpreted as the rate of drug effect onset and offset.

Theoretical characteristics of general change-from-baseline

IDR models, which have 1 fewer parameter than their

corresponding IDR models, have been derived [5, 24]. For

more details on the theoretical characteristics of latent

variable IDR models, see Hu [3].

Between-subject variability (BSV) on Fp and Emax was

modeled assuming logit-normal distributions to restrict

their values between [0, 1]. BSV on other parameters were

modeled with lognormal distributions. Correlations

between BSV were modeled on the normal scale.

Categorical E–R analysis model

In this approach, the Mayo score was analyzed as an

ordered categorical variable, and the cumulative probabil-

ity prob(Mayo score B k), k = 0, 1,…,11, was modeled.

The previously established latent variable IDR modeling

framework was used, leading to a mixed-effect probit

regression model, as follows:

U�1 prob Y� kð Þ½ � ¼ ak þ fp tð Þ þ fd tð Þ þ g ð5Þ

where U is cumulative standard normal probability density

function, ak are intercepts, fp(t) is placebo effect, fd(t) is

drug effect, and g represents baseline BSV. The probit link

was chosen because of the ease of calculating mean pre-

dictions of Eq. (5) [25], as well as potential future joint

modeling with other endpoints [6, 26]. To stabilize

parameter estimation, ak are reparameterized as (d0,…,d5,

a6, d7,…, d11) with di[ 0 such that ai = ai?1 - di for

i = 5, 4, …, 0, and ai = ai-1 ? di for i = 7, 8,…,11.

The placebo effect was modeled empirically:

fp tð Þ ¼ Pmax 1 � exp �rp � t
� �� �

ð6Þ

where Pmax is the maximum placebo effect and rp is the

rate of onset.

The drug effect was modeled using a latent variable R(t),

governed by:

dR tð Þ
dt

¼ kin 1 � Cp

IC50 þ Cp

� �
� koutR tð Þ ð7Þ

where Cp is drug concentration, and kin, IC50, and kout are

parameters in a Type I IDR model. It was further assumed

that at baseline R(0) = 1, yielding kin = kout. The reduction

of R(t) was assumed to drive the drug effect through:

fd tð Þ ¼ DE 1 � R tð Þ½ � ð8Þ

where DE is a parameter to be estimated that determines

the magnitude of drug effect.

Theoretically, the representation of drug effect in

Eqs. (5)–(8) has been shown to be equivalent to a change-

from-baseline latent-variable IDR model [5], under which

kout may be interpreted as the rate of drug effect onset and

offset, and DE may be interpreted as the baseline of the

latent variable prior to normalization [3]. Change-from-

baseline latent IDR models are needed in the modeling of

categorical endpoints because the latent variable is deter-

mined only up to a constant and therefore needs to be

normalized [3, 4].

The categorical analysis model (Eqs. 5–8) has many

more parameters than the continuous analysis model

(Eqs. 1–4) due to the number of intercepts. While the

placebo and drug effect components in the two approaches

are similar, the parameters are not exactly comparable

because they operate on different scales.

A 2-phase placebo effect model

A more flexible placebo effect modification was considered

by allowing the rate of onset rp in Eqs. (2) and (6) to

change over time, in the following form

rp ¼ rp;i; if t[ Tp; rp ¼ rp;i � Pr; if t[ Tp ð9Þ

where Tp is time of placebo effect onset rate change, rp,i is

initial rate of onset when t\ Tp, and 0 B Pr B 1 repre-

sents a fractional reduction of rate of onset when t[ Tp,.

Substituting Eqs. (2) or (6) by (9) results in a placebo effect

model that increases in 2 phases, i.e., an initial rapid phase

and a slow late phase.

Model estimation

A sequential approach described by Zhang et al. [27] was

used for the E–R model estimation by first fixing individual

PK parameters to their respective empirical Bayesian

parameter estimates obtained from the population PK
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model. Parameter estimation for the E–R model was

implemented in NONMEM using the Importance Sampling

option with the aim to improve BSV estimation [28]. E–R

model selection was based on the NONMEM objective

function values (OFVs), which are approximately two

times log likelihood. A change in OFV of 10.83 corre-

sponding to a nominal p value of 0.001 was judged as

significant evidence for including an additional parameter.

Model evaluation

Visual predictive checks (VPCs) [29] were used to evaluate

model performance by simulating 500 replicates of the

dataset and comparing simulated and model-predicted

responses grouped by the planned observation times. For

evaluations at the maintenance phase, ideally the model

predictions should be conducted to match the appropriate

responder population in the respective treatment subgroups

[30]. A difficulty in VPC occurred because the rectal

bleeding subscore used in the responder classification was

not available for modeling. Therefore, only the Mayo score

criteria (a decrease from the baseline value in the Mayo

score C 30% and C 3) were used to classify subjects into

the respective maintenance phase treatment groups in the

VPCs. Another difficulty is that the induction non-re-

sponder study-discontinuation at week 16 due to lack of

improvement was based on investigator assessment, not

Mayo scores. To approximate this condition, the lack of

improvement in Mayo score from baseline was used in the

VPCs. The appropriateness of this approximation was

further verified by comparing the results with actual

responder/non-responder status.

To facilitate the comparisons between the continuous

and the categorical modeling approaches, VPC of the cat-

egorical model was not generated on the probabilities of

achieving the Mayo score levels as usually done with

ordered categorical data modeling. Suitable VPC scales

need to be chosen, because the continuous modeling

approach works on the Mayo score whereas the categorical

approach works on the probability of achieving Mayo

scores. Therefore, a priori, the Mayo score scale may be

expected to favor the continuous modeling approach and

the probability scale may be expected to favor the cate-

gorical approach. For the purpose of demonstrating the

benefit of the categorical approach, the continuous scale

was chosen for the main comparison. That is, the prediction

intervals (PIs) of the predicted Mayo scores were simulated

for the continuous and the categorical models.

The normal residual error distribution of the continuous

modeling approach allows the predicted Mayo score to be

negative. It might seem reasonable to set negative simu-

lated scores to 0. However, this would create a discrepancy

between the simulation model and the fitted model, which

would prevent accurate model evaluation using VPC, as

will be shown in Results.

E–R model simulations

The current approved golimumab induction dose regimen

is SC 200 mg at week 0 and SC 100 mg at week 2. The

current approved golimumab maintenance doses for

induction non-responders at week 6 however differs

between the US and the EU. In the US, the approved dose

regimen is 100 mg q4w SC. In the EU, the approved dose

regimen depends on baseline body weight, i.e. 50 mg q4w

SC for patients\ 80 kg and 100 mg q4w SC for

patients C 80 kg. To compare these two different mainte-

nance dose regimens, a population of 10,000 virtual

patients with body weight\ 80 kg and are non-responders

at week 6 to the approved induction dose regimen (SC

200 mg at week 0 and SC 100 mg at week 2) was first

simulated. The patients’ baseline body weight and PK

parameters were bootstrapped (resampled with replace-

ment) from data of 822 patients in the current study pop-

ulation. The simulated 10,000 patients were then divided

evenly into two groups receiving 50 mg q4w SC or 100 mg

q4w SC maintenance treatment starting from week 6. The

average Mayo score for these two different maintenance

dose regimens were compared at the study planned

observation and responder-assessment times, i.e., week 0,

6, 14, 36, and 58.

Results

Continuous analysis—initial model

The standard continuous modeling approach using

Eqs. (1)–(4), which was structurally similar to previous

applications [30], was first considered. Initial exploration

suggested that the baseline Mayo score distribution is

better described by a normal distribution than a lognormal.

Therefore, a normally distributed BSV on b was used.

Attempting BSV on rp or IC50 resulted in difficulties with

model convergence. Additional BSV effects were modeled

for Fp, kout, and Emax, along with a correlation between

b and Fp, in Eqs. (1)–(4). Parameter estimates are given in

Table 1. The relative standard errors (RSE) varied and was

largest for the placebo effect onset rate rp, as could be

expected. VPC results for the induction phase by treatment

groups were shown in Fig. 2, and the model reasonably

described the data.

VPCs results for the maintenance phase were shown in

Fig. 3, separated by treatment groups and the induction

responder/non-responder status. The accuracy of predicting

the responder/non-responder status using only Mayo scores
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Table 1 Continuous exposure–response analysis model parameter estimates

Parameter Unit Description Initial model (%

RSE)

Flexible placebo

effect model (% RSE)

b Baseline 8.44 (0.764) 8.31 (1.59)

Fp Fraction of maximum placebo effect 0.0888 (135) 0.0849 (38.2)

rp,i 1/day (initial) placebo effect onset rate 0.0278 (32) 0.0202 (1.02)

Tp day Placebo rate change time point 47 (1.76)

Pr Proportion of placebo rate change after change time point 0.169 (75.9)

kout 1/day Rate of drug effect onset 0.0138 (253) 0.00762 (90.8)

IC50 lg/mL Potency 1200 (5.93) 2480 (0.493)

Emax Fraction of maximum drug effect 0.745 (48.2) 0.998 (1.86)

Var(gb) Variance of between-subject variability, baseline 0.407 (46.7) 0.16 (40.4)

Var(gFp) Variance of between-subject variability, fraction of maximum

placebo effect, on logit scale

8.00 (141) 18.8 (39.4)

cor(gb,g Fp) Correlation of between-subject variability, baseline and fraction

of maximum placebo effect

- 0.946 (79.8) - 1.6 (59.2)

Var(gkout) Variance of between-subject variability, rate of drug effect onset 5.77 (47.3) 10.2 (29.2)

Var(Emax) Variance of between-subject variability, fraction of maximum

drug effect, on logit scale

2.35 (223) 7.54 (159)

r2 Variance of residual error 3.5 (4.9) 3.6 (3.57)

RSE relative standard error

Time (weeks)

M
AY

O
 S

co
re

0

2

4

6

8

10

12

0 1 2 3 4 5 6

IV PBO IV 1 mg/kg

0 1 2 3 4 5 6

IV 2 mg/kg IV 4 mg/kg

SC PBO

0 1 2 3 4 5 6

SC 100 mg SC 200 mg

0 1 2 3 4 5 6

0

2

4

6

8

10

12

SC 400 mg

90% PI, median
90% PI, 5%
90% PI, 95%

Observed median
Observed 5%
Observed 95%

Predicted median
Predicted 5%
Predicted 95%

Fig. 2 Visual predictive check

of Mayo score in the induction

phase for the initial continuous

analysis model. The 5th, 50th

and 95th percentiles of observed

Mayo scores are overlaid with

the 90% prediction intervals

(PI) of their model predictions

at planned observation times by

treatment. The observed Mayo

scores were included in the

background in grey color. PBO

placebo, SC subcutaneous, IV

intravenous
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for the six treatment groups were 97.7%, 99.1%, 98.1%,

95.3%, 96.8%, and 98.7% respectively. Therefore, ignoring

the rectal bleeding subscore criterion should not affect the

quality of the VPC results. Some 5% PIs fell below 0, as

the normal residual error distribution allowed. At first, this

problem might seem removable by setting all negative

simulated scores to 0. However this would misrepresent the

characteristics of the model. For example, the 5% CIs

would collapse to 0, which would not provide accurate

understandings of model predicted variability at low Mayo

scores. The under- and over-prediction of 5% and 95%

percentiles, respectively, suggest that the model overpre-

dicted data variability. For all subgroups, the model over-

predicted observed Mayo scores in varying degrees, most

notably for the induction placebo non-responders who

received the 100 mg golimumab SC treatment. The phe-

nomenon of the model adequately predicting the induction

data but over-predicting the maintenance data was also

observed previously with modeling data in Crohn’s disease

[30], under similar type of complex study designs.

Continuous analysis—flexible-placebo-effect
model

To improve model performance in the maintenance phase,

the placebo effect onset rate was allowed to change in time

in the initial continuous model by adding Eqs. (9) to (1)–

(4) to fit with the data. This resulted in an OFV decrease of

over 100 for the inclusion of two additional parameters,

indicating significant improvement in the fit. Parameter

estimates are given in Table 1. The onset rate was esti-

mated to decrease substantially (1–0.169, or * 87%) after

Day 47, which is right after the end of induction phase

(week 6). The estimation of Tp was highly precise, with a

low RSE of * 1.8%. Estimates of the fraction of maxi-

mum placebo effect and the initial effect placebo onset rate

were similar compared with the initial model, but the RSE

Time (weeks)

M
AY

O
 S

co
re

0

5

10

PBO−>PBO

35 40 45 50 55 60

PBO−>100 ACT−>PBO

35 40 45 50 55 60

NonResp−>100 SC 50 mg

35 40 45 50 55 60

0

5

10

SC 100 mg

90% PI, median
90% PI, 5%
90% PI, 95%

Observed median
Observed 5%
Observed 95%

Predicted median
Predicted 5%
Predicted 95%

Fig. 3 Visual predictive check of Mayo score in the maintenance

phase for the initial continuous analysis model. The 5th, 50th and 95th

percentiles of observed Mayo scores are overlaid with the 90%

prediction intervals (PI) of their model predictions at planned

observation times by treatment. The observed Mayo scores were

included in the background in grey color. PBO placebo, ACT active

(golimumab) treatment, PBO?PBO induction PBO responders

receiving placebo in maintenance, PBO?100 induction PBO

responders receiving 100 mg golimumab in maintenance,

ACT?PBO induction active treatment responders receiving placebo

in maintenance, NonResp?100 induction non-responders receiving

100 mg golimumab in maintenance, SC 50 mg, Induction active

treatment responders receiving 50 mg golimumab in maintenance; SC

100 mg, Induction active treatment responders receiving 100 mg

golimumab in maintenance
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were notably reduced. RSEs for the remaining parameters

also reduced substantially, further indicating model

improvement.

VPC results for the induction phase were similar to

Fig. 2 and therefore not shown. VPCs results for the

maintenance phase were shown in Fig. 4. While the model

still over-predicted the observed Mayo scores for all

treatment groups, the magnitudes were much reduced for

the two induction placebo treatment groups. It is noted that

the distributions of the observed Mayo scores appeared to

be skewed toward 0, more notably at week 60 (from

induction). This may explain part of the difficulties of

improving the model.

Categorical analysis model

The ordered categorical modeling approach used similar

structures of the fixed and random effects as in the con-

tinuous model with flexible placebo effect. That is,

Eqs. (5)–(9) was fitted to the Mayo score data, with BSV

effects on baseline, Pmax (maximum placebo effect), kout,

and DE, along with a correlation between baseline (g) and

Pmax. The parameter estimates are given in Table 2. It is

difficult to exactly compare parameter estimations between

the continuous and the categorical model due to the scale

difference between the two approaches. On the other hand,

RSE in the categorical model appeared to be much smaller,

suggesting improved estimation stability. VPC results for

the induction phase by treatment groups were shown in

Fig. 5 At a first look, the model predictions may seem

unusual as some PIs have 0 length. This is due to the fact

that quantiles of categorical values, in this case integers

between 0 and 12, usually may only be integers. With this

in mind, the model appeared to reasonably describe the

data.

VPCs results for the maintenance phase are shown in

Fig. 6. Compared with those results from the continuous

analysis model with flexible placebo effect (Fig. 5), the
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Fig. 4 Visual predictive check of Mayo score in the maintenance

phase for the continuous analysis model with flexible placebo effect

model. The 5th, 50th and 95th percentiles of observed Mayo scores

are overlaid with the 90% prediction intervals (PI) of their model

predictions at planned observation times by treatment. The observed

Mayo scores were included in the background in grey color. PBO

placebo, ACT active (golimumab) treatment, PBO?PBO induction

PBO responders receiving placebo in maintenance, PBO?100

Induction PBO responders receiving 100 mg golimumab in mainte-

nance, ACT?PBO Induction active treatment responders receiving

placebo in maintenance; NonResp?100 Induction non-responders

receiving 100 mg golimumab in maintenance, SC 50 mg, Induction

active treatment responders receiving 50 mg golimumab in mainte-

nance; SC 100 mg, Induction active treatment responders receiving

100 mg golimumab in maintenance
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model predictions were in much closer agreement with

observed data. In Fig. 6, medians of observed data are

generally covered by their corresponding PIs. In addition,

the 5% PIs are all at or above 0, because the categorical

model simulated Mayo scores are always in the legitimate

range of 0 to 12.

Application simulation

Figure 7 shows the categorical model predicted average

Mayo scores for the simulated patient population with body

weight\ 80 kg who receive the approved golimumab

induction (SC 200 mg at week 0 and SC 100 mg at week 2)

and are non-responders at week 6. Patients receiving 100

q4w SC as approved in the US posology were predicted to

have lower Mayo scores than those receiving 50 q4w SC as

approved in the EU posology. The model predicted clinical

response rates for patients receiving 50 q4w SC at week 14,

week 36, and week 58 were 38.5%, 54.1% and 57.0%,

respectively. The corresponding predicted clinical response

rates for patients receiving 100 q4w SC were higher, and

were 42.7%, 62.2%, and 62.8%, respectively.

Discussion

Clinical trial endpoints are often composite scores with

varying possible number of categories that measure disease

severity. Endpoints with C 10 possible response categories

are customarily analyzed as continuous data. Analyzing

such data as categorical is attractive in that the model

predictions are never outside the natural range of possible

values. The categorical analysis approach does require

many more parameters to model the intercepts, therefore

may potentially lose analysis efficiency when the residual

error distribution does not substantially deviate from nor-

mal. However, with sufficient number of observations

([ 1000 at each time point) available, the loss of efficiency

is limited. On the other hand, when skewness is present in

the residual error distribution, the categorical analysis

approach remains accurate but the continuous analysis

approach is not. In this sense, the categorical analysis

approach is robust [9].

From a related perspective, endpoints such as the Mayo

scores have been classified as bounded outcome scores

Table 2 Categorical analysis model parameter estimates

Parameter Unit Description Estimate (% RSE)

a6 Intercept - 1.05 (3.26)

d5 Intercept 0.373 (4.95)

d4 Intercept 0.268 (6.14)

d3 Intercept 0.344 (5.56)

d2 Intercept 0.54 (4.73)

d1 Intercept 0.556 (5.31)

d0 Intercept 0.946 (5.33)

d7 Intercept 0.492 (3.97)

d8 Intercept 0.532 (3.8)

d9 Intercept 0.601 (3.95)

d10 Intercept 0.571 (5.13)

d11 Intercept 0.733 (7.01)

Pmax Maximum placebo effect 2.29 (9.02)

rp 1/day Initial rate of placebo effect onset 0.00692 (13.4)

Tp day Placebo rate change time point 48 (0.313)

Pr Proportion of placebo rate change after change time point 0.295 (11.4)

kout 1/day Rate of drug effect onset 0.306 (52.9)

IC50 lg/mL Potency 18300 (0.598)

DE Drug effect 3.32 (14.4)

Var(gb) Variance of between-subject variability, baseline 0.141 (18.1)

Var(gFp) Variance of between-subject variability, maximum placebo effect 0.278 (12.8)

cor(gb,g Fp) Between-subject variability correlation, baseline and maximum placebo effect 0.163 (13)

Var(gkout) Variance of between-subject variability, rate of drug effect onset 6.5 (55.8)

Var(gDE) Variance of between-subject variability, drug effect 0.403 (27.9)

RSE relative standard error
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(BOS) which, by definition, report a discrete set of values

on a finite range. Such endpoints often demonstrate non-

normal distributions near the boundary, and analysis

approaches involving various kind of transformations have

been used. A direct application of beta-regression using a

seemingly innocuous small correction factor to transform

the endpoint to the open interval (0,1) may be intuitively

appealing but ill-behaved [8]. Hutmacher et al. proposed a

censoring approach that is essentially continuous but treats

observations at the boundary as censored [31]. The coars-

ened grid approach [32] may be viewed as a categorical

approach with default intercepts. A later extension [33]

used parametric transformations to model the intercepts

parsimoniously. Despite the conceptual difference, in our

experience the censoring and the coarsened grid approach

may perform similarly [8]. Ursino and Gasparini [34]

applied beta-distribution on the latent variable scale. Most

recently, a ‘‘bounded integer model’’ has been proposed

[35], which motivates default intercepts differently than the

coarsened grid approach and allows a broader class of

models than used in [33]. The beta-distribution, the

coarsened grid, and the bounded integer model approaches

can be put under a general discrete data analysis framework

[36]. Under this framework, the traditional categorical

analysis, by estimating all intercepts, may be viewed as a

‘‘saturated’’ model in statistical terms, and models formally

may be compared by using e.g., AIC or BIC. When sample

sizes are large such as in phase 3 clinical trials, all intercept

parameters may be estimated with reasonable accuracy, as

Table 2 indicates. This may therefore lessen the need of

searching for models with fewer parameters, e.g., through

approximating the intercepts. This is consistent with our

recent experience in psoriasis using PASI scores as a

measure of disease severity, where a categorical model of

PASI-score based criteria performed better than modeling

the PASI scores, either as continuous data or some of the

discrete data analysis approaches using fewer parameters

[8]. When sample sizes are smaller, exploring more par-

simonious approaches [36] should be beneficial.

The use of Mayo score scale for VPC requires some

further discussion. It may seem that the continuous model

predictions could be easily discretized to also allow a

comparison of model performance on the probability scale,

however the discretization may not be without controversy.

For example, letting Y be the model predicted Mayo

scores, the most intuitive method may be to first round off

Y to the nearest integer [Y], and then calculate the pro-

portion of ([Y] B k). On the other hand, the rounding
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introduces noise, and to avoid this, the proportion ([Y]

B k) could be directly calculated without rounding. This

illustrates in a way a fundamental difference in nature

between continuous and categorical data, and therefore the

lack of conceptually common scales for VPCs. On the

other hand, a practically important modeling objective is to

predict the responder/non-responder status. Additional

VPCs on this scale were conducted for the final continuous

model and the categorical model. The categorical model

performed better than the continuous model in both

Induction and Maintenance phases, and the results were

included in Supplementary Material (Figs. S1–S4). The

difficulty of accurately predicting derived criteria (e.g.,

responder/non-responder status) using models based on

original clinical endpoints (e.g., Mayo score) has previ-

ously been noted [8].

VPC is practically effective but informal. One may

therefore wonder whether any formal evaluations, e.g., AIC

or BIC, can be used to compare the continuous and cate-

gorical approaches. Unfortunately this is not possible,

because formal statistical comparisons require that the data

stay the same. It is noted that although data values (or more

accurately, notations) remained the same under the con-

tinuous and categorical approaches, the continuous

approach presumes a much larger possible data space than

the actual data values. It is noted that this restriction does

not apply to the comparisons among the categorical type of

models, e.g., the saturated and the parsimonious models

[36], where the data space remain the same.

Although more complex placebo effect models have

been used [37], the onset rate to maximum effect is typi-

cally modeled with one exponential term. The fact that data

may not usually allow the identification of more complex

models might discourage even the consideration of the

more complex models. To our knowledge, more flexible

models to describe placebo effect onset rate (such as Eq. 9)
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has not been used before. While the data were collected

over a relatively long period (a total of 60 Weeks), but with

only four scheduled Mayo score observation timepoints,

one might normally expect Tp to be estimated anywhere

between the two middle timepoints, and with low preci-

sion. The fact that Tp was estimated as shortly (\ 6 days)

after the induction period with high precision may there-

fore suggest a change in population characteristics after the

induction period. Potential factors contributing to such

change may include that induction non-responders may be

less likely to continue onto the maintenance phase,

patients’ perceptions may change after entering the main-

tenance phase, study conduct may change (as the name of

the study changed), or any other confounding factors

related to time. The existence or nonexistence of such

factors cannot be directly observed by comparing the

observed placebo outcomes between the induction and

maintenance periods, because patients receiving placebo in

maintenance must be placebo responders in induction and

therefore a biased subgroup for assessing the overall

maintenance placebo effect. Placebo effect plays an

important role in longitudinal modeling of clinical trial

data as it interacts with drug effect modeling. For example,

in the continuous analysis model, IC50 estimation preci-

sions were high in both the standard and the more flexible

placebo model, but the magnitudes differed by 2-fold. This

illustrates that high estimation precision of a parameter

(e.g., IC50) may not guarantee that of a structural property

(e.g., potency). Better structural models, including placebo

effect models, allow more accurate practical interpretations

and usages of the model structural parameters.

Longitudinal E–R modeling can provide unique insight

at various stages to aid drug development and approval

decisions [38]. Its conduct in IBD is however particularly

challenging, in part due to the common use of complex

study designs such as response-based rerandomizations

[30]. Such complex designs create statistically dependent

treatment subgroups with different sensitivities to placebo

and drug treatments, which complicates data visualization

and analysis interpretations. For example, the over-pre-

diction of all maintenance treatment effect subgroups of the

initial model in Fig. 2 might appear to suggest that placebo

effect onset rate should be allowed to increase in the

maintenance phase. To the contrary, Eq. (9), the more

flexible placebo effect model, has the placebo effect

decreased in the maintenance phase but better described the

data. This illustrates the complexity of attempting model

improvement under such complex study designs.

To our knowledge, this is a first attempt of longitudinal

E–R modeling of Mayo scores in UC that involves com-

plex clinical trial designs. Data in the induction phase were

reasonably predicted. Certain degree of under-prediction of

treatment effect appears to remain for the induction

responder subgroups in maintenance. The reason for this is

unclear, and could include (1) dosing adjustment of

induction responders who subsequently lost response could

occur any time during the study and thus difficult to be

accounted for in VPC, (2) after the induction treatment,

patients sensitivity to treatment might have changed, even

with the use of the flexible bi-phasic onset-rate placebo

effect model, or (3) informative dropout [39], e.g., patients

with worse outcomes may be more inclined to leave the

study. Further improving longitudinal modeling in the IBD

area is the subject of future research.
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