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Abstract
The aim of the present study was to evaluate model identifiability when minimal physiologically-based pharmacokinetic

(mPBPK) models are integrated with target mediated drug disposition (TMDD) models in the tissue compartment. Three

quasi-steady-state (QSS) approximations of TMDD dynamics were explored: on (a) antibody-target complex, (b) free

target, and (c) free antibody concentrations in tissue. The effects of the QSS approximations were assessed via simulations,

taking as reference the mPBPK-TMDD model with no simplifications. Approximation (a) did not affect model-derived

concentrations, while with the inclusion of approximation (b) or (c), target concentration profiles alone, or both drug and

target concentration profiles respectively deviated from the reference model profiles. A local sensitivity analysis was

performed, highlighting the potential importance of sampling in the terminal pharmacokinetic phase and of collecting

target concentration data. The a priori and a posteriori identifiability of the mPBPK-TMDD models were investigated under

different experimental scenarios and designs. The reference model and QSS approximation (a) on antibody-target complex

were both found to be a priori identifiable in all scenarios, while under the further inclusion of QSS approximation

(b) target concentration data were needed for a priori identifiability to be preserved. The property could not be assessed for

the model including all three QSS approximations. A posteriori identifiability issues were detected for all models, although

improvement was observed when appropriate sampling and dose range were selected. In conclusion, this work provides a

theoretical framework for the assessment of key properties of mathematical models before their experimental application.

Attention should be paid when applying integrated mPBPK-TMDD models, as identifiability issues do exist, especially

when rich study designs are not feasible.

Keywords Monoclonal antibodies � Minimal physiologically-based pharmacokinetics � Target mediated drug disposition �
Identifiability � Study design

Introduction

Physiologically-based pharmacokinetic (PBPK) models are

compartmental models which aim to describe in detail the

pharmacokinetic of a compound by including
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compartments for all tissues and organs that are considered

biologically relevant.

PBPK models were initially developed for describing

small molecule pharmacokinetics and were subsequently

extended to monoclonal antibodies (mAbs) from the mid

80s [1, 2]. Due to the specific PK/PD characteristics of

large molecules, in the following generation of whole body

PBPK models the lymphatic flow has been included and

each tissue compartment presents the interstitial space, the

endosomal space, where the FcRn recycling occurs [3], and

could present cellular subcompartments [4–6]. Shah and

Betts built a PBPK platform for mAbs, based on extensive

literature data, able to predict the PK concentration in

plasma and tissues in different species utilizing a limited

number of parameters of the compound to be studied [6]. In

general the validation of a whole body PBPK model, e.g.

for compounds with novel mechanisms, may require a

substantial amount of information. In the presence of

limited data, but also for reducing model complexity,

techniques that lump tissues with similar kinetic charac-

teristics were proposed both for small [7–10] and large

molecules [11–13]. In particular, Cao et al reduced the

mAb PBPK model [3, 6] into what they defined a minimal

PBPK model (mPBPK) [11], which divides tissue spaces

according to their vascular endothelial structure (i.e. leaky

and tight), maintaining parameters with a physiological

meaning. Target mediated drug disposition (TMDD) [14],

either in plasma or in tissue, was subsequently incorporated

in the model [15], giving rise to mPBPK-TMDD models.

TMDD is the phenomenon in which a drug is bound with

high affinity to its pharmacologic target to an extent able to

influence its disposition kinetics [16]. The mathematical

description of TMDD was introduced by Mager and Jusko

[17], but given the difficulty in estimating the model

parameters from generally available data, simplifications of

the full TMDD model were subsequently proposed

[18–20]. Practical identifiability of the full TMDD model

and the quasi equilibrium (QE), quasi-steady-state (QSS),

and Michaelis-Menten (MM) approximations has been

investigated by Gibiansky et al. [19], who proposed an

identifiability analysis algorithm for avoiding use of

incorrect parameter estimates of TMDD models. Addi-

tionally, identification of TMDD parameters has been

studied by Peletier and Gabrielsson, who mathematically

demonstrated the parameter influence over the different

portions of the TMDD signature profile and evaluated the

MM approximation adequacy [16]. An analysis conducted

by Eudy and colleagues has nevertheless concluded that

full TMDD, QE/rapid binding (RB), QSS, and MM models

were a priori fully identifiable and that the difficulties in

achieving model convergence a posteriori originate from

inadequate experimental design [21].

The present work investigates mPBPK-TMDD models

for mAbs, under the assumption that target sites are located

in tissue, with particular attention to the case when limited

data are available.

In the following, four mPBPK-TMDD models are

introduced: the full one (see [15] and related Supplemen-

tary Material), and three different approximated models

including quasi-steady-state (QSS) conditions on TMDD

dynamics. The impact of such approximations is compar-

atively assessed through simulations of plasma and tissue

concentration profiles with reference to the full mPBPK-

TMDD model. A sensitivity test is also performed on

meaningful parameters. Furthermore, identifiability of the

full and approximated models is investigated, with respect

to both data richness and sampling design optimization;

both a priori and a posteriori identifiability issues are

explored. Definitions and specific implementation issues

related to a priori and a posteriori identifiability, and

optimal sampling are detailed in Supplementary Materials

(S1–S3).

The full mPBPK-TMDD model

The full mPBPK-TMDD model is built incorporating the

so-called full TMDD model [17, 19, 20] into the mPBPK

model for mAbs (see Supplementary Material of [15]),

supposing that the binding occurs in the leaky tissue.

Similar methodology can be applied with binding occur-

ring in the tight tissue, or in both tight and leaky tissues.

The ordinary differential equations (ODEs) of such model

(see Fig. 1), reported in Appendix (Eq. 4), describe the

dynamics of drug concentrations in plasma, lymph and

tissues, and of target and drug-target complex concentra-

tions in the binding tissue. In particular, InðtÞ is the input

function in the ODEs, Cp and Clymph represent free antibody

concentrations in plasma volume (Vp) and lymph volume

(Vlymph) respectively, while Ctight and Cleakyfree are antibody

free concentrations in system interstitial fluid (ISF) volume

of tissues with continuous endothelium (Vtight) and in ISF

volume of tissues with fenestrated or discontinuous

endothelium (Vleaky), respectively. Cao and colleagues [11]

have assigned the muscle, skin, adipose and brain to Vtight,

and all other tissues to Vleaky (liver, kidney, heart, etc.).

Free target concentration is expressed as Rleakyfree , while

antibody-target concentration is CRleaky. The total lymph

flow L equals the sum of the flows for leaky tissue, L1, and

tight tissue, L2. Vascular reflection coefficients for tight

and leaky tissue are r1 and r2 (constrained to be \1),

while rL is the lymphatic capillary reflection coefficient.

Rate constants are ksyn for target biosynthesis, kdeg for

target degradation, kint for antibody-target complex
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internalization, kon for antibody-receptor association and

koff for antibody-receptor dissociation. Finally, CLp is

clearance from plasma. All initial conditions of the ODEs

are set to zero, except for Rleakyfreeð0Þ ¼ ksyn=kdeg.

Other mPBPK-TMDD models: quasi-steady-
state approximations

Considering that the molecular (microscopic) processes are

usually much more rapid than the pharmacokinetic

(macroscopic) processes, the mechanistic description of

TMDD can be approximated exploiting a series of quasi-

steady-state conditions formulated at microscopic level.

Gibiansky and colleagues proposed the quasi-steady-state

approximation of the drug-target complexes in the central

compartment [19]. Grimm evaluated a second scenario

where the approximation of the target was also added in the

central compartment, assuming that there is an equilibrium

between target synthesis and degradation which is shifted

by the formation and dissociation of antibody-target com-

plexes [22]. Furthermore, Grimm proposed a third scenario

where complex, target and drug were all at steady state at

the target site: this approximation may be applied when the

target site is not in rapid exchange with plasma, and

therefore the antibodies binding to the target are assumed

to be balanced by the antibodies entering the target site

[22].

Here, the three scenarios proposed in [19] and [22] will

be all evaluated in the leaky tissue included in the mPBPK

model, instead of the central compartment. In particular,

we considered the quasi-steady-state approximations on:

– antibody-target complex concentration in binding tis-

sue, assuming that the right-hand side of the differential

equation for the complex (CRleaky, see Eq. 4 in

Appendix) equals zero:

kintCRleaky ¼ konCleakyfreeRleakyfree � koff CRleaky ð1Þ

– free target concentration in binding tissue, assuming

that target zero-order synthesis (ksyn) is balanced by

first-order elimination (kdeg), and antibody-target com-

plex association (kon) and dissociation (koff ):

ksyn � kdegRleakyfree ¼ konCleakyfreeRleakyfree � koff CRleaky

ð2Þ

– free antibody concentration in binding tissue, assuming

that the net amount of antibody binding to the target

must be balanced by the amount entering the target site

(here, the leaky tissue):

CpL2ð1� r2Þ � CleakyfreeL2ð1� rLÞ
¼ ðkonCleakyfreeRleakyfree � koff CRleakyÞVleaky

ð3Þ

All the three approximations on the mechanism of target

mediated drug disposition can be considered for inclusion

in the full mPBPK-TMDD model (Fig. 2). Note that, by

virtue of the adoption of such an approximation, the dif-

ferential equation for the variable at quasi-steady-state is

replaced by an algebraic one.

A mPBPK model with a TMDD component including

the approximation on antibody-target complex concentra-

tion (Eq. 1) and expressed in terms of total drug concen-

tration in the leaky tissue (Cleakytotal ¼ Cleakyfree þ CRleaky)

and total target concentration in the leaky tissue

(Rleakytotal ¼ Rleakyfree þ CRleaky) was already considered in

[15]. In the present work, such mPBPK-TMDD model will

be called Model A; model equations are reported in

Appendix (Eqs. 5 and 6). Adding this QSS simplification,

the model is reduced by one parameter: instead of the

association and dissociation constants (kon and koff ), the

quasi-steady-state constant kss ¼ ðkint þ koff Þ=kon is intro-

duced. If also the approximation on target concentration in

leaky tissue (Eq. 2) is added, Model B is obtained:

Fig. 1 Representation of the full

mPBPK-TMDD model with

binding in the leaky tissue. A

and T represent, respectively,

antibody and target

Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:787–802 789

123



equations are again reported in Appendix (Eqs. 7 and 8).

The number of model parameters is not reduced with

respect to Model A. Finally, equations for Model C (see

Appendix, Eqs. 9 and 10) are computed by adding also the

approximation on free antibody concentration in leaky

tissue (Eq. 3); again, the number of model parameters do

not decrease. In the next sections, a detailed analysis of the

four mPBPK-TMDD models (Full, A, B, C) is illustrated.

A simulated study: comparison of the four
models and sensitivity test

A simulated study of the models presented above was

carried out with the software for statistical computing and

graphics R (version 3.1.2), using the deSolve package for

solving the ODEs systems.

First of all, taking as a reference the Full Model (as it

does not make simplifying assumptions), the four models

were simulated and compared. The aim was to see what

changes are entailed by the addition of the quasi-steady-

state approximations, both in terms of antibody and target

concentrations.

Simulation of the four models was performed using

mPBPK and TMDD model parameters estimated in [15]

for the case study of romosozumab [24] assuming a rep-

resentative value of the dissociation constant kD of about 1

nM for the Full Model (kD ¼ koff =kon, see Supplementary

Material of [25]), and a body weight of 70 kg in order to

derive CLp in L/h (see Table 1). The remaining required

values, L1, L2, Vtight, and Vleaky, are derived with the fol-

lowing assumptions:

L1 ¼ 0:33 L

L2 ¼ 0:67 L

Vtight ¼ 0:65 ISF Kp

Vleaky ¼ 0:35 ISF Kp

where ISF ¼ 15:6 L is the total interstitial fluid volume for

a 70 kg body weight person, 0.33 and 0.67 are the relative

fractions to L of L1 and L2 respectively, 0.65 and 0.35 are

the relative fractions to available total ISF of Vtight and

Vleaky respectively [3, 6], and Kp ¼ 0:8 is the available

fraction of ISF for antibody distribution [15].

Simulations were performed at the same dose levels of

the case study reported in [24], which were administered

intravenously: one low, 1 mg/kg, and one high, 5 mg/kg. At

low doses the mechanism of target mediated drug dispo-

sition significantly contributes to the overall clearance,

while at higher doses, when the target is saturated, the

overall clearance is mainly governed by the typical cata-

bolism process for mAbs (i.e. CLp).

In the simulations, one virtual 70 kg body weight subject

was considered per each dose level, with samples simulated

every 5 h up to 84 days. The input dose per subject was

expressed in nM assuming a molecular weight of the

monoclonal antibody equal to 150 kDa.

It was found that Model A generates the closest profiles

to the full mPBPK-TMDD model in plasma and target site

for both compound and receptor variables, free and total.

Model B deviates from the Full Model in free and total

target concentration profiles, while Model C systematically

Fig. 2 Structure of Models A (left panel), B (central panel) and C

(right panel) obtained adding progressively the quasi-steady-state

approximations on antibody-target complex, free target and free

antibody in leaky tissue as described respectively by Eqs. 1, 2 and 3.

The red dashed circles indicate the variable at quasi-steady-state [23]
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deviates from the Full one for both drug and target con-

centrations (see Fig. 3).

For all the four models, also a univariate sensitivity test

was performed on r1, r2, kint, CLp, ksyn, and kdeg. For the

approximated models only, the test was carried out also on

kss, while for the Full Model kon and koff were tested. The

aim was to study parameters’ influence on the antibody and

target concentration profiles. In particular, the sensitivity of

Cp, Cleakytotal and Rleakytotal profiles with respect to the con-

sidered parameters is here of interest. Usually, the plasma

concentrations of the drug (and target, when it resides in

plasma) are indeed available; less frequently, measure-

ments in tissue (e.g. total drug and target concentrations)

are also collected.

Table 1 Parameters for

mPBPK-TMDD simulations
Description Parameter Value Unit

Plasma volume Vp 2.6 L

Lymph volume Vlymph 5.2 L

Total lymph flow L 2.9/24 L/h

Lymphatic reflection coefficient rL 0.2 -

Tight tissue reflection coefficient r1 0.99 -

Leaky tissue reflection coefficient r2 0.712 -

Clearance from plasma CLp 0.896 10�2 L/h

Quasi-steady-state constant kss 1.31 nM

Target biosynthesis rate constant ksyn 0.172 nM/h

Target degradation rate constant kdeg 1.21 10�2/h

Complex internalization rate constant kint 0.624 10�2/h

Dissociation constant kD 0.963 nM

Association rate constant kon * 0.018 1/nM/h

Dissociation rate constant koff * 0.017 1/h

*Parameters derived from kss, kint, kD

Drug in plasma Drug in leaky tissue (total)

Target in leaky tissue (free) Target in leaky tissue (total)
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Fig. 3 Simulations of the two

IV doses, with binding in the

leaky tissue with Full Model

(Indian red) and approximations

of the binding process (olive),

binding process and target

turnover (sea green), binding

process, receptor turnover and

drug concentration at the target

site (orchid). Upper left panel:

free drug concentration in

plasma. Upper right panel: total

drug concentration in leaky

tissue. Lower left panel: free

receptor concentration in leaky

tissue. Lower right panel: total

receptor concentration in leaky

tissue
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More in detail, a minimum and a maximum value were

defined for the tested parameters as the nominal value in

Table 1 divided and multiplied by 10, respectively. This

rule was not applied on r1 and r2, to respect the constraints
0\r1; r2\1, and r1 [ r2 (Table 2).

The four models were simulated varying one parameter

at a time, in order to compare the results obtained with the

minimum value to the ones obtained with the maximum

value.

All tested parameters have a detectable impact at both

doses on all the concentration profiles considered (see

Figs. 1–3 in Supplementary Material S4), with similar

magnitude in the four mPBPK-TMDD models. The influ-

ence of r1 and r2 is less evident in respect to the other

parameters because the variability ranges chosen for per-

meability coefficients are smaller (see Table 2). Of note is

the fact that, with this choice of parameter ranges, drug and

target concentration profiles corresponding to the minimum

kon are very similar to those obtained with the maximum

koff , and viceversa (see Fig. 4). The same ‘‘mirroring’’

behavior does not hold when assuming 100 fold lower

nominal value of koff (data not shown), this result high-

lighting the importance of simulation as a tool to show the

presence of local collinearities. Furthermore, it can be

observed that the variation of certain parameters has an

impact only in the terminal phase of the drug concentration

Table 2 Parameter ranges for

the sensitivity test (units as

reported in Table 1)

Min Max

r1 0.715 0.99

r2 0.25 0.75

kint 0.06/100 6/100

CLp 0.07 7

ksyn 0.0172 1.72

kdeg 0.121 12.1

kss 0.131 20

kon 0.0018 0.18

koff 0.0017 0.17

Cp

1 mg/kg

Cp

5 mg/kg

Cleakytotal

1 mg/kg

Cleakytotal

5 mg/kg

Rleakytotal

1 mg/kg

Rleakytotal

5 mg/kg
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C
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ce
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tio
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 [n

M
] Parameter

kon

koff

min

max

Sensitivity with respect to kon and koffFig. 4 Plasma drug

concentration, drug

concentration in binding tissue

and target concentration in

binding tissue obtained with the

Full Model varying: (i) kon (red

lines), from its minimum, i.e.

0.0018 (solid line), to its

maximum, i.e. 0.18 (dashed

line), (ii) koff (blue lines), from

its minimum, i.e. 0.0017 (solid

line), to its maximum, i.e. 0.17

(dashed line). Left panels:

simulations at 1 mg/kg; right

panels: simulations at 5 mg/kg
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curves (Cp and Cleakytotal ), but its influence is evident

throughout all the simulation time interval of the target

concentration curve, Rleakytotal (see Supplementary Material

S4). This may indicate that target concentration data,

irrespective of the sampling time selection, could help in

discriminating between parameter values. In particular, it

can be noticed that kss and kdeg show similar Cp and

Cleakytotal profiles while they differ in Rleakytotal concentration,

suggesting that target concentration in the binding tissue

might be needed for discriminating between the two

parameters (Fig. 5).

Identifiability issues

While a univariate sensitivity analysis can help detecting

major model issues, like the presence of not influential

model parameters, it cannot give precise information on

parameter collinearities, model over-parametrization, and

parameter identifiability. For this reason, we studied the

identifiability of the four models, both structural (a priori)

and practical (a posteriori).

Identification scenarios

The measurements of total mAb and target concentrations

in the binding tissue (Cleakytotal and Rleakytotal , respectively)

are in general quite invasive, hence only few samples may

be generally available. Considering this constraint, the

identifiability (both a priori and a posteriori) of the four

models was studied in three realistic scenarios, in which:

i. Only Cp is measured

ii. Cp and Cleakytotal are measured

iii. Cp and Rleakytotal are measured

A priori identifiability

A priori identifiability is a theoretical property of the model

structure; it ensures that model parameters can be uniquely

(globally or locally) determined from knowledge of the

input-output behaviour assuming perfect experimental data

(see Supplementary Material S1). Hence, the fulfillment of

this property is independent of experimental design con-

ditions. A priori identifiability is a prerequisite for

parameter estimation in practice. Its study is therefore
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Fig. 5 Left: plasma drug concentration, drug concentration in binding

tissue and target concentration in binding tissue obtained with the

three approximated models (A, B, and C) at both doses (1 and 5 mg/

kg) varying kss, from its minimum (solid line) to its maximum (dashed

line). Right: Plasma drug concentration, drug concentration in binding

tissue and target concentration in binding tissue obtained with all four

models (Full, A, B, and C) at both doses (1 and 5 mg/kg) varying kdeg,

from its minimum (solid line) to its maximum (dashed line)
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important to establish whether parameter estimation diffi-

culties are due either to the particular experimental design

or the mathematical structure of the model.

This property was studied via the IdentifiabilityAnalysis

package of Mathematica, exploiting the algorithm detailed

in [26], in scenarios i., ii. and iii. for the first three models.

The a priori identifiability of Model C could not be

assessed due to a limitation of the algorithm exploited.

Full Model and Model A were found to be a priori iden-

tifiable in every scenario. Model B turned out to be a priori

identifiable only with the output choice iii. (see Table 3); in

cases i. and ii. kdeg and kss are the non-identifiable parameters.

For more details on theory and implementation, see

Supplementary Material S1.

A posteriori identifiability

A posteriori identifiability refers to the ability of practically

estimating an unknown parameter vector; it is inherently

related to the type and amount of experimental data

available (see Supplementary Material S2). Since a priori

identifiability is a necessary, yet not sufficient condition for

a posteriori identifiability, the latter property was analyzed

only for the cases where a priori identifiability is met. The

Fisher Information Matrix (FIM) [27] can provide insight

into the amount of information available in the data (i.e.

their quality), and a Monte Carlo (MC) procedure can be

exploited for the exploration of fitting results, as far as it

regards both the parameter estimates and the adherence of

estimated concentration profiles on the data.

The condition number of the FIM for all a priori identi-

fiable mPBPK-TMDD models and scenarios was computed

(see Table 4). When the condition number is large, the matrix

is close to singular or, more precisely, ill-conditioned; this

entails a large uncertainty along some directions in the

parameter space. The condition numbers result to be partic-

ularly elevated for all models, in all scenarios explored. The

MC procedure comprises the following steps (see Fig. 6):

Table 3 Local a priori identifiability results for all models in all

scenarios: ‘‘yes/no’’ indicates that there is/there is not a priori iden-

tifiability, while the ‘‘–’’ indicates that it’s not possible to assess the

theoretical property using available software

i. ii. iii.

Full Yes Yes Yes

A Yes Yes Yes

B No No Yes

C – – –

Table 4 Condition number of the Fisher Information Matrix

Scenario Full model Model A Model B

i: Cp 2:9� 106 97:3� 106 -

ii: Cp and Cleakytotal 1:0� 106 108:0� 106 -

iii: Cp and Rleakytotal 1:8� 106 45:8� 106 98:8� 106

Fig. 6 Diagram of the MC a

posteriori identifiability

analysis. Datasets were

simulated with the Full Model

and used to identify the

mPBPK-TMDD models.

NONMEM output tables were

obtained and analysed
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– Simulation from the Full Model of 100 datasets per

each output choice (i., ii. and iii.), using a sampling

schedule mimicking the clinical practice and a propor-

tional residual error model with coefficient of variation

equal to 0.2 for Cp (CVCp
) and Cleakytotal (CVCtot

), and 0.3

for Rleakytotal (CVRtot
).

– Fitting of the mPBPK-TMDD models on each simu-

lated dataset, with initial parameter values equal to the

true ones with a perturbation of �15%.

– Examination of the distribution of parameter estimates

via boxplots, and computation of outliers, sample

variance, confidence intervals, bias, percent coefficient

of variation (CV%) and Root Mean Square Error

(RMSE). Furthermore, the parameters were ranked on

the basis of an index, d, equal to the percent RMSE

with respect to the true value of the parameter.

– Exploration of fitting quality by plotting: ODEs states

vs. time, Conditional Weighted Residuals (CWRES) vs.

Time, CWRES vs. the dependent variable (DV) [28],

and Goodness Of Fit (GOF) plots. Furthermore,

Predictive Plots (PP) are used to compare the noise-

free simulated data with the percentiles of the predicted

noise-free curves, computed from the 100 estimates

obtained.

In particular, in the simulation step, the following sam-

pling scheme was considered: for plasma concentration,

sampling time t 2 T p ¼ f0; 1; 2; 3; 4; 8; 16; 24; 48; 72; 96;
120; 168; 336; 504; 672; 840; 1008; 1176; 1344; 2016g (i.e.

rich sampling schedule on the first day, then gradually more

sparse), and for total antibody and target concentration in

binding leaky tissue, t 2 T leaky ¼ 72; 336;f 672; 2016g (i.e.

day 3, 14, 28, 84).

R version 3.1.2 (https://www.r-project.org/) was used

for FIM condition number computation and for imple-

menting the MC procedure described above. Estimation

on all simulated datasets was performed via NONMEM

7.3 (http://www.iconplc.com/innovation/nonmem/) with

FOCE method. For more details about theory, implemen-

tation and the software tools exploited, see Supplementary

Material S2.

From the results of the a posteriori identifiability anal-

ysis, it can be observed that the parameters with the

maximum CV% and d are the ones linked to the processes

of binding, degradation and internalization of the complex.

In Fig. 7 the distributions of the parameter estimates are

reported, for the scenario with the Full Model and plasma

drug concentration as output measure (scenario i.).

The ranking of the parameters based on d allowed the

quantification of the sensitivity of parameter estimates to

noise in the data: it is worth noticing that, regardless of the

scenario considered, the ‘‘worst’’ parameters are, for the

Full Model, kon, koff and kdeg (with d often exceeding

120%), and, for Models A and B, kdeg and kss (with rank

greater than 700%). In Table 5, an example of parameter

ranking, for Model A estimated on Cp and Cleakytotal data, is

reported (scenario ii.). The maximum CV% obtained for

the estimates for the different scenarios are also proposed

in Table 6. Unlike d, maximum CV% can be computed also

from fitting on real data, with unknown true parameter

values. For all scenarios maximum CV% is above 60%,

this percentage is below 90% only in the scenario where

both plasma drug concentration and tissue target concen-

tration are measured, and either Model A or B are used.

As for CWRES and GOF plots, they did not show sig-

nificant trends in any scenario (see e.g. Fig. 8). Indeed, the

distribution of the residuals always appears compatible

with a Gaussian with null mean and unitary variance; while

the GOF plots, representing the simulated data (DV)

compared to the population prediction (PRED), show a

behavior in accordance with the residual error model.

Despite the great variability in parameter estimates, in

every scenario the PPs show that the corresponding pre-

dicted curves agree well with the noise-free measurable

outputs considered. These plots were produced by over-

lapping the noise-free simulated data to the percentiles of

the noise-free predicted curves obtained in each ‘‘100 runs

set’’. An example is reported in Fig. 9, for the scenario

which presented the highest parameter CV% (see Table 6),

i.e. Model A and plasma drug concentration as output

measure.

Since the results obtained for a posteriori identifiability

depend on data richness, alternative and possibly more

informative sampling designs were considered.

Alternative designs

The two other sampling schedules considered were:

– an optimal one, in order to minimize the variance of

parameter Maximum-Likelihood (ML) estimators;

– a more frequent one, in order to increase the amount of

information.

More in detail, the more frequent sampling schedule was

obtained assuming that each output variable (i., ii., iii.) can

be measured every 5 h up to day 84. The aim is to see if by

collecting more data it is possible to improve the a poste-

riori identifiability. The optimal sampling schedule instead

was obtained via PFIM (version 4.0), a software tool which

evaluates and/or optimizes population designs based on the

expression of the FIM in nonlinear mixed effects models

[29]. Each possible output (i.e. Cp, Cleakytotal , and Rleakytotal )

was considered separately in the optimization process

using the Fedorov–Wynn algorithm [30], due to a limita-

tion of the tool. The schedules obtained via optimal sam-

pling still contain a feasible number of sample times; the

Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:787–802 795

123

https://www.r-project.org/
http://www.iconplc.com/innovation/nonmem/


0.00

0.25

0.50

0.75

1.00

1 outlier(s)

1

0.00

0.25

0.50

0.75

3 outlier(s)

2

0.00

0.25

0.50

0.75

1.00

7 outlier(s)

CLp [10^(−2) L/hr]

0.00

0.02

0.04

0.06

16 outlier(s)

kon [1/nM/hr]

0.00

0.02

0.04

0.06

0.08

14 outlier(s)

koff [1/hr]

0.00

0.15

0.30

0.45

10 outlier(s)

ksyn [nM/hr]

0.00

2.00

4.00

6.00

8.00

20 outlier(s)

kdeg [10^(−2)/hr]

0.00

0.75

1.50

13 outlier(s)

kint [10^(−2)/hr]

0.00

0.05

0.10

0.15

0.20

0 outlier(s)

CVCp

Fig. 7 Boxplots of the estimates obtained by fitting the Full Model on

the 100 datasets with only Cp measurements (scenario i.). The bottom

and top of the box represent the first and third quartiles, while the

band inside the box is the median; whiskers extend till �1:5 IQR

(Inter Quartile Range). The horizontal red line indicates the true value

of the parameter

Table 5 Parameter ranking

based on d obtained after fitting

Model A on drug plasma

concentration and total drug

concentration in binding tissue

(scenario ii.)

Parameter d%

1. r1 0.5

2. r2 4.8

3. kint 6.0

4. CVCp
13.5

5. CLp 13.7

6. ksyn 26.0

7. CVCtot
37.3

8. kss 84.5

9. kdeg 729.9

Table 6 Maximum CV% for each identification scenario; the third

column indicates the parameter that leads to the maximum CV%

Scenario Max CV% Parameter

Full model, i. 107.3 kdeg

Full model, ii. 97.1 kon

Full model, iii. 93.4 koff

Model A, i. 184.3 kdeg

Model A, ii. 160.5 kdeg

Model A, iii. 65.7 kss

Model B, iii. 71.4 kss
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results of all optimizations are represented in Fig. 10. More

details about the settings implemented in PFIM are repor-

ted in Supplementary Material S3.

The a posteriori identifiability analysis procedure

(Fig. 6) was repeated using datasets generated with the

more frequent sampling and with the optimal sampling.

As an illustrative example, in Table 7 a comparison of

CV% for Model A estimates identified on plasma data is

reported. It can be observed that the use of an optimal

sampling schedule does not improve significantly the

estimates precision with respect to the original realistic

sampling schedule used for the analysis. The more frequent

sampling seems to provide a better identification of the

model parameters, maintaing the CV% of all parameter

estimates below 45%. This does not hold for all models in

all scenarios: for the Full Model, the dispersion in kon and

koff estimates remains high even with the more frequent

sampling (CV%[ 55% in scenario ii. and iii., greater than

85% in scenario i.).

In summary, the identifiability issues cannot be con-

sidered resolved by the realistic optimal design, while the

unrealistic frequent sampling provides an appreciable

improvement in parameter estimates dispersion, especially

for simplified models; these observations would point to an

overall over-parametrization issue.

Target saturating dose

The previous sections have shown that the addition of

tissue data improves the identification of some critical

parameters and that more frequent sampling improves

precision on estimates, but not the optimal design. Here, a

third dose of 20 mg/kg has been considered to assess

potential improvements in practical identifiability. Data for
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Fig. 8 An example of CWRES vs time (left panel) and GOF plot

(right panel) obtained for the Full Model estimated on plasma data

(scenario i.). On the left, the residuals for all 100 NONMEM runs are

grouped together: they are often comprised between �2 and 2 as it

should be for their supposed distribution and do not show particular

trends. On the right, the data (DV) are compared to the predictions

(PRED) for both doses and all runs (units: mg/L). This scatterplot is

concentrated around the identity line and, since the residual error

model is proportional, the dispersion appears to be greater for higher

concentrations
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0.1

1.0

10.0

0.1

1.0

10.0

100.0

0 28 56 84 0 28 56 84

Time [days]

C
p 

[m
g/

L]

50th

5th−95th

Data

Fig. 9 Predictive plot (PP) with

the profiles of plasma

concentration obtained with all

the combinations of parameters

estimated for Model A on

plasma data. 5th, 50th and 95th

percentiles of estimated profiles

(area and line) are reported,

together with noise-free

simulated data (points)

Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:787–802 797

123



the three scenarios i., ii. and iii. were again simulated with

the Full Model, at doses: 1, 5 and 20 mg/kg. Full Model

and Model A were tested for a posteriori identifiability on

all the three scenarios, while Model B only on scenario iii.

CV% and d were computed for comparison with the two

doses conditions.

When considering only plasma concentrations (scenario

i.), both for Full Model and Model A, the CV% generally

decrease (with the exception of kss for Model A), but they

do not go below 60% (see Table 8).

By adding tissue concentrations (scenario ii. and iii.),

CV% reduction becomes more significant. In particular, for

Model A in scenario iii., d on average is equal to 15% and

it is always below 40% (see Table 8), which is reasonable,

since in data simulation a 20% and a 30% proportional

residual errors were included, respectively, for drug in

plasma or tissue, and target tissue concentration. For the

Full Model instead, d upper limit is around 80% for both

scenarios, while for Model B (scenario iii.) the maximum d
is approximately 50%.

Conclusions

In this paper the integration of mPBPK and TMDD models

has been studied in depth for mAbs binding to their phar-

macological target in tissues with leaky vasculature. First, a

full mPBPK-TMDD model was considered. Secondly,

since the molecular processes are usually more rapid than

pharmacokinetic processes, different approximations of

TMDD dynamics based on quasi-steady-state (QSS) con-

ditions were investigated. Three additional mPBPK-TMDD

models (Model A, B and C) were hence derived adding

sequentially QSS approximations, respectively on: (a) an-

tibody-target complex concentration, (b) target concentra-

tion, and (c) free antibody concentration.

The four mPBPK-TMDD models have been simulated

and compared to assess the effects of quasi-steady-state

assumptions on both drug and target concentration-time

profiles. The simulations have shown that Model A gen-

erates the closest profiles to the Full Model, while Model B

differs mainly in the target concentration profiles, and

Model C systematically deviates from the Full one for both

drug and target concentrations at the site of action.

5 
m

g/
kg

1 
m

g/
kg

Time [days]

Plasma

0 28 56 84 0 28 56 84

Time [days]

Leaky tissue

Measure

Drug

Target

Schedule

B

A

Full

Start

Fig. 10 Optimal sampling

schedules obtained with PFIM,

for high (upper panels) and low

(lower panels) dose level. The

21 optimal drug samples in

plasma (left) and 4?4 optimal

drug and target samples in leaky

tissue (right) for each a priori

identifiable model, compared

with the initial schedule (Start),

are represented

Table 7 CV% of Model A parameter estimates obtained from plasma

data (scenario i.) with the three sampling schedules

Parameter CV% for different sampling schedules

Original Optimal Frequent

r1 0.6 0.6 0.2

r2 7.4 6.2 2.3

CLp 24.0 12.5 2.3

kss 110.1 102.6 20.6

ksyn 44.3 29.5 8.5

kdeg 184.3 165.2 42.9

kint 37.3 32.3 10.2

CVCp
11.8 12.5 2.4
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A sensitivity test focused on plasma drug concentration,

and drug and target concentration in binding tissue, high-

lighted the potential value of adding target binding data to

help parameter estimation when drug data in plasma or

tissue compartments are insufficient for their differentia-

tion. Furthermore, such differentiation was demonstrated to

be more evident in the terminal PK phase, thus suggesting

the importance of data collection in this phase. It is how-

ever important to be aware that the results of such an

analysis are dependent on the ranges considered for dosing

amounts and model parameters. Therefore, it would be

advisable to perform a sensitivity test after mPBPK-TMDD

models identification to understand the possible impact of

variations in the estimated values on the prediction of both

observed and not measured variables.

A priori and a posteriori identifiability of the four

mPBPK-TMDD models were explored in three experi-

mental scenarios: (i) when measurements of drug in plasma

are available, and with possible addition of (ii) total drug in

tissue or (iii) total target in tissue data.

A priori identifiability is always met for the Full Model

and for Model A, while such property is valid in Model B

only when both total target concentration in binding tissue

and drug plasma concentration can be assessed. A priori

identifiability cannot be assessed for Model C using

available software.

The study of the a posteriori identifiability by an MC

method highlighted practical identifiability issues, especially

when only measurements relative to the drug, either in tissue

or in plasma, are available. To overcome identifiability issues,

three possible solutions have been attempted, by enriching the

experimental design: (i) the use of optimal design methods,

performed on the sampling scheme, (ii) the resort to a non-

realistic high number of sampling instants, equally spaced,

(iii) the addition of an informative dose. While the use of an

optimal or more frequent sampling schedule could not

improve significantly the practical identifiability of all

parameters, the addition of data at a dose which leads to full

target saturation, especially when target in tissue data were

considered available, was able to bear noticeable improve-

ments in terms of CV%. Appropriate dose range selection

based on target expression, target turnover, drug distribution

in the target tissues, and affinity is recommended when

designing experiments for characterizing mAbs PK.

As reported in [15], mPBPK-TMDD models can handle

TMDD at the target-expressing tissues, thus extending the

usual TMDD modeling framework, where target-binding is

considered only in vascular space. Nevertheless, in contrast

with what was suggested in the same work [15], mPBPK-

TMDD models with binding occurring in the ISF (specifi-

cally, in our case, in leaky tissues), do present parameter

identifiability issues, especially when only plasma data,

collected with a realistic sampling, are available. Notice-

ably, in this respect, the Full Model and Model A can be

deemed equivalent, as the inclusion of the QSS approxi-

mation appears to be not enough to provide reliable PK

parameter estimates and both models are over-parametrized.

Table 8 CV% and d of Model A

parameter estimates obtained

from scenarios i. and iii., using

either the two doses (1 and 5

mg/kg) or three doses (1, 5, and

20 mg/kg) datasets

Scenario Parameter CV% d

Two doses Three doses Two doses Three doses

Scenario i. r1 0.6 0.6 0.6 0.6

r2 7.4 4.6 7.4 4.6

CLp 24.0 5.8 23.3 5.8

kss 110.1 115.2 80.0 83.2

ksyn 44.3 19.0 47.3 19.5

kdeg 184.3 160.1 1139.4 1051.5

kint 37.3 31.8 39.7 37.9

CVCp
11.8 8.6 15.0 10.4

Scenario iii. r1 0.5 0.5 0.6 0.6

r2 4.7 3.0 4.7 3.1

CLp 14.7 4.8 14.5 4.8

kss 65.7 42.0 58.8 40.0

ksyn 27.8 16.1 27.5 15.9

kdeg 40.3 22.2 50.0 22.9

kint 33.4 20.6 35.7 21.0

CVCp
11.8 8.3 13.6 9.5

CVRtot
34.1 22.3 32.6 22.1
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Besides providing explicitly the equations of four

mPBPK-TMDD models, pointing out their behaviour in

terms of drug and target concentration profiles, this work

addressed the potential identifiability issues of these mod-

els, indicating possible solutions (via informative study

designs). In particular, the a priori identifiability of Full

Model and Model A in three scenarios, and of Model B in

the presence of target concentration in binding tissue

measurements was analytically demonstrated. For all the

four models, practical identifiability issues were high-

lighted in all scenarios and two possible solutions were

proposed. In fact, the inclusion of target data in tissue and

the addition of a saturating dose can reduce identifiability

uncertainty, especially if both remedies are applied.

However, these solutions may not be always viable.

Target concentration in tissue is not easily measurable,

hence it may not be always assessed. Furthermore, the

evaluation of sufficiently high doses may not be possible: a

dose providing enough target saturation to improve param-

eter identification could also lead to toxicity episodes.

Further development of the present work may consist in a

thorough investigation of possible alternative scenarioswhich

may provide additional solutions for practical identifiability

issues. Here, it was assumed that no prior information on

model parameterswas available; however, informationone.g.

target baseline, binding affinity, or internalization rate might

be retrieved from previous studies or literature. Some

parameter may therefore be fixed, thus facilitating model

identification. Alternative approaches including use of priors

(in a Bayesian framework), or additional assumptions (e.g.,

constant total target amount) could also be explored.

In conclusion, mPBPK-TMDDmodels provide a powerful

tool to integrate the molecular processes associated to mon-

oclonal antibodies pharmacology. Their use may be key in

mAbs discovery and development as they allow the inclusion

in a mechanistic framework of PK and PK/PD information as

it becomes available.However, attention should be paid to the

existence of practical identifiability issues, especially when

the use of rich experimental designs is not feasible.
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Appendix

Model equations for the four mPBPK-TMDD models (Full,

A, B, and C) are here provided. Parameter and variables

notations are as introduced in the sections The full mPBPK-

TMDD model and Other mPBPK-TMDD models: quasi-

steady-state approximations.

Full Model

Cp ¼Ap=Vp

dAp

dt
¼ InðtÞ þ ClymphL� CpL1ð1� r1Þ � CpL2ð1� r2Þ � CpCLp

dCtight

dt
¼ 1

Vtight

L1ð1� r1ÞCp � L1ð1� rLÞCtight

� �

dCleakyfree

dt
¼ 1

Vleaky

L2ð1� r2ÞCp � L2ð1� rLÞCleakyfree

� �

� konCleakyfreeRleakyfree þ koff CRleaky

dRleakyfree

dt
¼ ksyn � kdegRleakyfree � konCleakyfreeRleakyfree þ koff CRleaky

dCRleaky

dt
¼ konCleakyfreeRleakyfree � koff CRleaky � kintCRleaky

dClymph

dt
¼ 1

Vlymph

½L1ð1� rLÞCtight þ L2ð1� rLÞCleakyfree � ClymphL�

ð4Þ

Model A

Cp ¼Ap=Vp

dAp

dt
¼ InðtÞ þ ClymphL� CpL1ð1� r1Þ � CpL2ð1� r2Þ � CpCLp

dCtight

dt
¼ 1

Vtight

L1ð1� r1ÞCp � L1ð1� rLÞCtight

� �

dCleakytotal

dt
¼ 1

Vleaky

L2ð1� r2ÞCp � L2ð1� rLÞCleakyfree

� �
� kintCRleaky

dRleakytotal

dt
¼ ksyn � kdegRleakyfree � kintCRleaky

dClymph

dt
¼ 1

Vlymph

L1ð1� rLÞCtight þ L2ð1� rLÞCleakyfree � ClymphL
� �

ð5Þ

where Cleakyfree and CRleaky are computed as:

Cleakyfree ¼
1

2
ðCleakytotal � Rleakytotal � kss

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCleakytotal � Rleakytotal � kssÞ2 þ 4kssCleakytotal

q
Þ

CRleaky ¼
RleakytotalCleakyfree

kss þ Cleakyfree

ð6Þ
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Model B

Cp ¼Ap=Vp

dAp

dt
¼ InðtÞ þ ClymphL� CpL1ð1� r1Þ

� CpL2ð1� r2Þ � CpCLp

dCtight

dt
¼ 1

Vtight

L1ð1� r1ÞCp � L1ð1� rLÞCtight

� �

dCleakytotal

dt
¼ 1

Vleaky

L2ð1� r2ÞCp � L2ð1� rLÞCleakyfree

� �

� kintCRleaky

dClymph

dt
¼ 1

Vlymph

L1ð1� rLÞCtight þ L2ð1� rLÞCleakyfree

�

�ClymphL�
ð7Þ

where:

a ¼ kint

b ¼ ksskdeg � kintCleakytotal þ ksyn

c ¼ �ksskdegCleakytotal

Cleakyfree ¼
1

2a
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

q� �

Rleakyfree ¼
ksynkss

ðksskdeg þ kintCleakyfreeÞ

CRleaky ¼
RleakyfreeCleakyfree

kss

ð8Þ

Model C

Cp ¼Ap=Vp

dAp

dt
¼ InðtÞ þ ClymphL� CpL1ð1� r1Þ � CpL2ð1� r2Þ

� CpCLp

dCtight

dt
¼ 1

Vtight

CpL1ð1� r1Þ � L1ð1� rLÞCtight

� �

dClymph

dt
¼ 1

Vlymph

L1ð1� rLÞCtight þ L2ð1� rLÞCleakyfree

�

�ClymphL�
ð9Þ

where Cleakyfree , Rleakyfree and CRleaky are obtained as:

a ¼ �kintL2ð1� rLÞ
b ¼ kintCpL2ð1� r2Þ � ksskdegL2ð1� rLÞ

� kintVleakyksyn

c ¼ ksskdegCpL2ð1� r2Þ

Cleakyfree ¼
1

2a
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

q� �

Rleakyfree ¼
ksynkss

ðksskdeg þ kintCleakyfreeÞ

CRleaky ¼
RleakyfreeCleakyfree

kss

ð10Þ
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