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Abstract
Guselkumab, a human IgG1 monoclonal antibody that blocks interleukin-23, has been evaluated in one Phase 2 and two

Phase 3 trials in patients with moderate-to-severe psoriasis, in which disease severity was assessed using Psoriasis Area and

Severity Index (PASI) and Investigator’s Global Assessment (IGA) scores. Through the application of landmark and

longitudinal exposure–response (E–R) modeling analyses, we sought to predict the guselkumab dose–response (D–R)

relationship using data from 1459 patients who participated in these trials. A recently developed novel latent-variable Type

I Indirect Response joint model was applied to PASI75/90/100 and IGA response thresholds, with placebo effect

empirically modeled. An effect of body weight on E–R, independent of pharmacokinetics, was identified. Thorough

landmark analyses also were implemented using the same dataset. The E–R models were combined with a population

pharmacokinetic model to generate D–R predictions. The relative merits of longitudinal and landmark analysis also are

discussed. The results provide a comprehensive and robust evaluation of the D–R relationship.

Keywords Exposure–response modeling � NONMEM � Ordered categorical endpoints � Joint modeling � Latent variable

IDR modeling � Clinical drug development

Introduction

During the clinical testing phase of drug development,

several dose levels are evaluated to understand the dose–

response (D–R) relationship of the agent in the target

patient population over a range of treatment durations. This

may be facilitated by exposure–response (E–R) modeling,

for which drug exposure [including dose and various

pharmacokinetic (PK) metrics] is linked to clinical

response (including efficacy endpoints and biomarkers).

Landmark and longitudinal analyses are commonly used

approaches in E–R analyses.

The landmark analysis approach links selected PK

parameters [trough drug concentration (Cmin), maximum

drug concentration (Cmax), or area under the drug con-

centration–time curve (AUC)] to the clinical endpoint

response at certain time points, typically that employed for

the primary analysis or when the clinical response stabi-

lizes. This approach requires the availability of data for

both the PK parameter and the clinical endpoint at the

selected time points, with the implicit assumption that the

PK parameter serves as the ‘‘true driver’’ of response.

However, while the landmark analysis has been widely

applied and recommended for E–R analysis, in part due to

the ease of analysis and interpretation [1], concerns have

been raised recently regarding its uncertainty and lack of

consistency in such analyses owing to PK parameter and

time point selection [2].

A widely used class of longitudinal E–R models

includes indirect response (IDR) modeling [3]. These
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models are most often used to describe pharmacodynamic

endpoints with delayed onset. Applications of IDR models

to categorical clinical endpoints have emerged in the last

decade via the latent-variable approach [4].

In psoriasis, two commonly used efficacy measurements

are the Psoriasis Area and Severity Index (PASI), with total

scores ranging from 0 to 72 in 0.1-point increments, and

the Investigator’s Global Assessment (IGA), a 5-point

scale measuring disease severity (0 = cleared, 1 = mini-

mal, 2 = mild, 3 = moderate, 4 = marked or severe) [5, 6].

Clinical trial efficacy is also often measured by the pro-

portions of patients achieving various response thresholds;

in the case of psoriasis, patients typically are evaluated for

achievement of C 75, 90, or 100% improvement from

baseline in the PASI score (i.e., PASI75, PASI90, and

PASI100 responses, respectively) and for achievement of

an IGA score of 0 or B 1.

In such assessments, mean absolute PASI scores do not

accurately predict proportions of patients who achieve

given PASI response thresholds (Prt). We recently argued

that the main reason for this issue is lack of accuracy in

characterizing PASI score distribution [7]. Consequently,

the proportions of patients achieving specific Prt, i.e.,

PASI75, PASI90, and PASI100 responses, may be more

effectively analyzed as an ordered categorical endpoint Prt

with four possible outcomes: Prt = 0, if achieving

PASI100; Prt = 1, if achieving PASI90 but not PASI100;

Prt = 2, if achieving PASI75 but not PASI90; and Prt = 3,

if not achieving PASI75. IGA scores are most effectively

analyzed as an ordered clinical endpoint [8]. Conceivably,

because Prt and IGA both assess disease activity, their E–R

relationships should share similar characteristics. As such,

jointly modeling Prt and IGA allows better integration of

information. In previous work [9], we showed that joint

modeling of endpoints could be more parsimonious, and

yet better describe the individual endpoints, compared with

separately modeling the endpoints.

Psoriasis is a chronic immune-mediated skin disorder

[10–12]. Interleukin (IL)-23 has been implicated as playing

a predominant role in the pathogenesis of psoriasis

[13–15], and agents that block IL-23 have demonstrated

efficacy in the treatment of moderate-to-severe plaque

psoriasis [14]. Guselkumab is a monoclonal antibody that

specifically blocks IL-23. Based on results from a Phase

2b, dose-ranging, clinical trial of guselkumab in psoriasis

[16], one dose regimen [guselkumab 100 mg every

8 weeks (q8w) via subcutaneous (SC) administration] was

selected and studied in two Phase 3 clinical trials [5, 6].

Prior to regulatory submission, a thorough E–R analysis

was conducted to better understand the D–R relationship

across different doses of guselkumab, including untested

doses. Since the dose-exposure (D–E) relationship, i.e., the

PK profile, is typically well characterized, an E–R analysis

can help establish the D–R relationship through the dose–

exposure–response (D–E–R) relationship. Therefore, these

evaluations included the previously established joint E–R

model [9], as well as a comprehensive landmark analysis

using AUC and trough concentration at Week 16 (primary

endpoint time point) and Week 28 (time point at which

steady-state PK and clinical responses were expected to be

achieved). Predicted D–R relationships and the associated

uncertainties under all models were compared, and the

potential influence of covariates explored. This manuscript

describes the results of these analyses aiming to confirm

the optimum dose regimen of guselkumab in treating

psoriasis, and provides insights into the utility of landmark

and longitudinal analyses.

Methods

Study designs

One Phase 2 dose-ranging study [16] and two pivotal Phase

3 studies [5, 6] of guselkumab conducted in patients with

moderate-to-severe plaque psoriasis were included in the

current modeling analyses. All studies were randomized,

double-blinded, multicenter, placebo- and active-controlled

trials. In the Phase 2 dose-ranging study, approximately

240 patients were treated with SC injections of guselkumab

5, 50, or 200 mg at Week 0, Week 4, and then every

12 weeks (q12w); guselkumab 15 or 100 mg q8w; or pla-

cebo. Patients randomized to the placebo group crossed

over to receive guselkumab 100 mg q8w at Week 16. The

last SC injection of guselkumab was administered at Week

40. The last PK sample and efficacy data were collected at

Week 52. Further details of the trial design and participants

[16], as well as its population PK and E–R modeling results

[7], have been reported.

In one pivotal Phase 3 trial, approximately 450 patients,

in a 2:1 ratio, were treated with guselkumab SC 100 mg at

Weeks 0, 4, 12, and q8w through Week 44; or placebo at

Weeks 0, 4, and 12 followed by guselkumab 100 mg at

Weeks 16 and 20, and q8w through Week 44. The second

pivotal Phase 3 trial was similarly designed, enrolled

approximately 750 patients to receive guselkumab or pla-

cebo (2:1 randomization), and included randomized with-

drawal beginning at Week 28. In both Phase 3 studies,

guselkumab concentrations and clinical efficacy were

evaluated through Week 48. Further details of the trials’

designs and participants have been reported [5, 6].

PK, PASI, and IGA assessments

In each study, approximately 10 trough serum samples

were collected from each patient. An additional random
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guselkumab PK sample was collected from each of the 450

patients treated with guselkumab in the first Phase 3 trial.

The PASI and IGA evaluations were performed every

4 weeks (q4w) from Weeks 0–40 across trials and were

conducted at Week 2 in the Phase 3 trials [5, 6, 16]. The

final dataset contained 1459 patients with 13,031 PK

measurements, 17,580 Prt observations, and 18,986 IGA

scores. The numbers of patients and observations in the

longitudinal E–R modeling dataset by treatment group are

provided in Table 1.

Population PK model

A confirmatory population PK analysis based on the pre-

viously developed model [17, 18] was implemented to

describe guselkumab PK in patients with psoriasis. The

model is one-compartment with first-order absorption and

elimination [apparent clearance (CL/F), apparent volume

of distribution (V/F), and absorption rate constant (ka)].

Between-subject random effects on CL/F, V/F, and ka were

included using log-normal distributions. Correlation

between the between-subject variability (BSV) on CL/F

and V/F also were included, as were baseline body weight

(BWT) effects on CL/F and V/F using a power model

standardized to the median BWT of 87.1 kg. Diabetes and

race (Caucasian vs. Non-Caucasian) both demonstrated a

marginal effect on CL/F and were included in the final

PopPK model. Details of the population PK modeling

results have been reported [19].

Longitudinal E–R model

The E–R model is given by the Prt and IGA response

components. Based on previously established latent-vari-

able modeling [4], Prt was modeled by the following

mixed-effect probit regression:

U�1½probðPrt� kÞ� ¼ ak;Prt þ LPrtðtÞ þ g ð1Þ

where U is the cumulative normal distribution, prob() is the

probability of Prt reaching categories k = 0,1,2; ak,Prt are

intercepts; LPrt(t) = fp(t) ? fd(t) represents placebo and

drug effect over time; and g is BSV modeled with normal

distribution g *N(0, x2).

To stabilize parameter estimation, ak,Prt, k = 0,1,2, are

re-parameterized, namely as (a1,Prt,d0,Prt, d2,Prt) with d0, Prt,

d2,Prt[ 0 such that a0,Prt= a1,Prt - d0,Prt, and

a2,Prt = a1,Prt ? d2,Prt.

The placebo effect was modeled empirically as:

fpðtÞ ¼ Fp½1 � expð�rtÞ� ð2Þ

where Fp is the maximum placebo effect and r is the rate of

onset. The drug effect was modeled with:

fdðtÞ ¼ DE½1 � RðtÞ� ð3Þ

where DE represents the maximal drug effect and, fol-

lowing a previous approach [8, 20], the drug effect was

assumed to be driven by a latent variable R(t) governed by

the Type I IDR model below:

dRðtÞ
dt

¼ kin 1 � Cp

IC50 þ Cp

� �
� koutRðtÞ ð4Þ

where Cp is the PK model predicted drug concentration at

time t, and kin (disease formation rate), IC50 (half-maximal

Table 1 Number of patients and observations by treatment in longitudinal analyses

Study/treatment Number of patients PK observations PASI 75/90/100 observations IGA observations

Phase 2

Placebo 38 222 413 413

5 mg q12w 39 291 374 374

15 mg q8w 40 372 416 416

50 mg q12w 41 383 426 426

100 mg q8w 40 375 419 419

200 mg q12w 40 371 409 408

Phase 3 study #1

100 mg q8w 165 3042 4418 4412

Placebo 329 920 2290 2287

Phase 3 study #2

100 mg q8w 233 5385 6639 6636

Placebo 494 1670 3197 3195

Total 1459 13,031 17,580 18,986
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inhibitory concentration), and kout (disease amelioration

rate) are model parameters. It was further assumed that

R = 1 at baseline, i.e., R(0) = 1, yielding kin= kout.

Theoretically, the representation of drug effect in

Eqs. 1–4 has been shown to be equivalent to a change-

from-baseline latent-variable IDR model [21], under which

kout can be interpreted as the rate of drug effect onset and

offset, and DE can be interpreted as the baseline of the

latent variable prior to normalization [4].

While IDR models have been widely used, directly

applying them to model-ordered categorical variables

would cause over-parametrization, because the latent

variable is determined only up to a constant and therefore

needs to be normalized [4, 22]. For this reason, change-

from-baseline IDR models [21, 23] are especially suit-

able for the modeling of categorical endpoints. Further

details on the theoretical characteristics of latent-variable

IDR models have been reported [4].

For the IGA score component, as previously imple-

mented [7], IGA scores[ 3 were merged with IGA

score = 3, i.e., only the levels 0 to C3 were modeled. The

probability of achieving IGA scores of k B 0, 1, 2, or 3 was

modeled in a manner similar to Prt with:

U�1½probðIGA� kÞ� ¼ ak;IGA þ LIGAðtÞ þ g ð5Þ

where ak, IGA are intercepts, re-parameterized as (a1, IGA,

d0, IGA, d2, IGA, d3, IGA) with d0, IGA, d2, IGA and d3, IGA[ 0

such that a0, IGA = a1, IGA - d0, IGA, a2, IGA= a1, IGA?-

d2, IGA, and a3, IGA= a2, IGA? d3, IGA. LIGA(t) represents

placebo and drug effect and was modeled similarly as in

Eqs. 2–4 above in a separate modeling approach.

Joint E–R modeling of Prt and IGA scores

Equations 1–5 were first fitted to Prt and IGA data sepa-

rately to serve as a starting point, and then simultaneously.

As noted previously [7], maximum sharing can occur if the

underlying latent variables for the two endpoints differ by

only a scale factor, in which case only one parameter, Sc,

could be used to jointly model Prt and IGA, by using

LIGA(t) = SC LPrt(t) in Eq. 5. This implies that the placebo

and drug effects are the same for Prt and IGA. This max-

imum sharing was previously shown to be parsimonious by

testing intermediary models with less sharing [7]. This led

to the following joint model specification:

U�1½probðPrt� kÞ� ¼ ak;Prt þ fpðtÞ þ fdðtÞ þ g ð6Þ

U�1½probðIGA� kÞ� ¼ ak;IGA þ Sc½fpðtÞ þ fdðtÞ þ g� ð7Þ

with fp(t) and fd(t) given by Eqs. 2–4. As noted previously

[5], fitting Eqs. 6 and 7 simultaneously to the Prt and IGA

data reduces the total number of fixed and random effect

parameters by four and one, respectively, compared with

separately modeling the endpoints.

Landmark analyses at Week 16 and Week 28

Landmark analyses were performed for Prt and IGA

measures separately at Week 16, which is the primary

analysis time point, and Week 28, when PK, Prt, and IGA

measures were expected to have reached steady state. The

exposure measure used for Week 16 was the individual

cumulative AUC from time 0 to Week 16 (AUC0-W16)

predicted using the population PK model. The observed

concentration at Week 16 was not considered appropriate

for this analysis, because Week 16 was not a pre-dose visit

for patients from the two Phase 3 studies. The exposure

measures used for Week-28 analyses were the predicted

individual average weekly steady-state AUC (AUCss) and

the steady-state trough concentrations (Css). This led to a

total of six landmark analyses, including those for Prt and

IGA scores.

The landmark analyses required the availability of Prt/

IGA measurements at the selected timepoints. For Week

16, 1423 and 1424 patients, respectively, including patients

who received placebo treatment, were included in the

analysis of Prt and IGA responses. For analyses at Week

28, patients randomized to receive placebo were excluded

from the analyses due to crossover to guselkumab at Week

16. Thus, 912 and 913 patients, respectively, were included

in the analysis of Prt and IGA using AUCss, and 933 and

934 patients, respectively, were included in the analysis of

Prt and IGA using Css. Mixed-effect logistic regression

with maximum drug effect in logit scale (Emax) models

were used for all landmark analyses, as follows:

logit½probðY� kÞ� ¼ bk þ EmaxEM=ðEM þ EC50Þ ð8Þ

where logit(x) = log[x/(1-x)]; Y is either Prt or IGA; bk,
k = 0,1, 2 for Prt analysis and k = 0,1 for IGA analysis are

intercepts; EM is the exposure metric; and Emax and

guselkumab exposure metrics to reach 50% maximum drug

effect (EC50) are model parameters.

Covariate modeling

To avoid spurious covariate findings [17, 18], baseline

covariates investigated in the E–R analyses were prespec-

ified based on previous experience and physiological/

pharmacological relevance. The covariates included

BWT and the following disease characteristics: C-reactive

protein, baseline PASI score, disease duration, baseline

IGA score, and presence or absence of psoriatic arthritis.

For categorical covariates, i.e., psoriatic arthritis status and

baseline IGA score, those categories appearing in fewer

than 20 patients, representing just 5% of patients evaluated,
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were either dropped from consideration or combined with

other categories. Correlations between covariates were

examined to ensure that no highly correlated covariates

remained simultaneously in the analysis.

In longitudinal E–R modeling, exploratory covariate

modeling was conducted by an initial screening of plotting

the random effect g against the covariates, and subse-

quently testing the effects on structural model parameters

deemed appropriate.

In the landmark analysis, the covariates were searched

for all structural parameters, i.e., the intercept, Emax, and

EC50. An additive model was assumed for covariate effects

on intercept, and a power model was applied for covariate

effects on Emax and EC50. A stepwise forward-addition-

backward-deletion procedure was used with the criteria of

nonlinear mixed effects modeling (NONMEM) objective

function changes of 6.63 and 10.83 in the forward-addition

and backward-deletion steps, respectively, when the degree

of freedom is 1.

Model estimation and evaluation

In longitudinal E–R modeling, the ‘‘PPP&D’’ (Population

PK Parameters and Data) approach described by Zhang and

colleagues [24] was used for estimation by fixing the

population PK model parameter estimates and retaining the

individual concentrations in the dataset to allow individual

PK profiles to be determined. As in previous implementa-

tions [7], the Importance Sampling estimation option in the

software NONMEM (v. 7.3, http://www.iconplc.com/inno

vation/nonmem/) was used [25]. The first-order conditional

estimation method with interaction was used for PopPK

analysis. In landmark analyses, the estimation option does

not affect the analysis results. The empirical Bayesian

estimates of the PK parameters based on the population PK

model were used to predict PK exposure (AUC and Css) at

Weeks 16 and 28.

A decrease in the NONMEM minimum objective

function value (OFV) of 10.83, corresponding to a nominal

p value of 0.001, was considered the threshold criterion for

determining whether including an additional model

parameter improved the model fit. Visual predictive check

(VPC) was used for model evaluation by simulating 200

replicates in longitudinal E–R modeling and in landmark

analyses [26].

Simulations

The longitudinal and landmark E–R modeling results were

each combined with the population PK model to generate

the predicted D–R relationships at Week 16 and Week 28

for the treatment regimen as administered in the Phase 3

trials, accounting for parameter estimation uncertainties. In

the longitudinal model predictions, 10,000 patients were

simulated in each replicate to approximate the true

responses for the treatment regimens, and 400 replicates

from the parameter estimation uncertainty distribution

were simulated to generate 90% confidence intervals (CIs)

of the predictions. The landmark analysis model predic-

tions employed 200 replicates, and each replicate contained

all patients ([ 1300) in the original datasets. The numbers

of replicates were sufficient due to the relatively large

number of patients in the Phase 3 studies, which was

confirmed by initial assessments using larger numbers of

replicates.

Results

Demographics characteristics

BWT, the only influential PK covariate, ranged from 45 to

198 kg (mean ± SD: 89 ± 21 kg). Details of baseline

patient characteristics and covariates have been reported

[5, 6, 16] and are summarized in abbreviated form in the

Supplementary Materials (Tables S1 and S2).

Longitudinal modeling

Compared with separately estimating the placebo and drug

effect parameters using the same IDR model structure, joint

modeling of Prt and IGA achieved an improvement in

NONMEM objective function by approximately 1500

despite having fewer parameters, indicating significant

improvement in the fit. As shown previously [7], this

improvement is due to the sharing of BSV and the

improvement of its estimation.

Subsequent exploratory analyses suggested a BWT in-

fluence on kout and IC50, in that patients with higher

BWT would have slower onset of effect and be less sen-

sitive to guselkumab. These effects were modeled as:

kout;i ¼ ðBWTi=90ÞWkout � kout; ð9Þ

IC50;i ¼ ðBWTi=90ÞWIC50 � IC50; ð10Þ

where subscript i indicates the parameter value for the ith

patient, and BWT is baseline body weight in kg. Including

these two parameters resulted in an improvement in

NONMEM objective function of 67, indicating improve-

ment of the fit. This was considered as the final model, and

the parameter estimates are shown in Table 2. Estimation

was considered precise, with associated relative standard

errors (RSEs) within 7% for structural model parameters.

ETA-shrinkage of the BSV was low (2.8%). The magni-

tude of BSV was in line with our previous experiences with

latent variable IDR models [7–9, 21, 27, 28], after
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adjusting by a factor of p2/3 when logistic regression was

used instead of probit regression [9].

Figures 1 and 2 show the VPC results of the joint model

for the Prt and IGA responses for all treatment groups. In

general, the model adequately described the data. Some

discrepancies occurred, most notably for the low-dose

regimens of 5 and 15 mg, potentially due to the relatively

small sample sizes of the Phase 2 trial’s treatment groups,

which had relatively wide prediction intervals (PIs). The

VPC results of the joint model for Prt and IGA responses

for all treatment groups in the Phase 3 trials, stratified by

BWT categories of\ 90 and C 90 kg, are shown in

Figs. S1 and S2 in Supplementary Materials. Treatment

groups from the Phase 2 trial were not included due to their

small sample sizes. Because Eqs. 8 and 9 are nonlinear, the

BWT effect on kout and IC50 cannot be expressed on a ‘per

kg’ basis. Based on the 10th (64.5 kg) and 90th (115 kg)

percentiles of the observed BWT distribution, however, the

90% CIs for BWT effects for a reference 90-kg patient

were calculated to be (? 15%, - 10%) for kout and

(- 37.5%, ? 42%) for IC50. The cut-off of 90 kg was

employed based on the mean BWT of 89 kg. This stratified

VPC was considered instead of a prediction-corrected VPC

to allow a clear visualization of the BWT effect. The model

reasonably described the data.

Landmark analyses

The Emax models were successfully developed in all six

analyses linking Prt and IGA to the PK metrics at Week 16

and Week 28. All six prespecified covariates yielded

Spearman correlation coefficients\ 0.3, and thus were

retained in the stepwise search. All analyses identified a

BWT influence on the intercept. Furthermore, in the Week-

28 analyses, EC50 was found to be influenced by baseline

PASI scores in the IGA analyses, and influenced by base-

line disease duration in the Prt analyses. It is noted that

greater BWT or longer disease duration may indicate more

severe disease, perhaps in different ways. Therefore, col-

lectively, all analyses suggest that patients with more

severe disease may be less sensitive to treatment (Table 3).

In the landmark analyses for the endpoints at Week 16,

estimation was reasonable, with all RSEs within 30%.

However, the landmark analyses for the endpoints at Week

28 yielded relatively high RSEs for some key parameters,

including intercept and EC50. The lack of precision for

these estimations primarily resulted from lack of placebo

data in these analyses. Figure 3 shows the VPC results for

Prt at Week 16 using AUC0-W16; additional landmark

analysis VPC results are provided in Figs. S3–S5 in Sup-

plementary Materials. These demonstrated that the models

reasonably described the data.

Table 2 Longitudinal

exposure–response model

parameter estimates

Parametera Description Joint model (% RSE)

PASI 75/90/100 model components

a1,Prt Intercept - 5.66 (1.54)

d0,Prt Intercept 1.51 (1.36)

d2,Prt Intercept 1.28 (1.68)

Fp,Prt Maximum placebo effect 1.84 (4.09)

rp,Prt (1/day) Rate of placebo effect onset 0.023 (7.03)

IC50,Prt (lg/mL) Potency 0.038 (6.22)

DEPrt Drug effect 5.35 (1.54)

kout,Prt (1/day) Rate of drug effect onset 0.0212 (1.96)

Wkout Body weight effect on kout - 0.412 (12.0)

WIC50 Body weight effect on IC50 1.41 (16.3)

Var(gPrt) Variance of BSV 1.92 (4.37)

IGA model components

a1,IGA Intercept - 3.00 (1.52)

d0,IGA Intercept 1.61 (1.17)

d2,IGA Intercept 1.33 (1.60)

d3,IGA Intercept 2.17 (1.46)

Joint model component

Sc Scale parameter of latent variable 0.669 (1.39)

aParameters are indexed for Prt and IGA, respectively
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Simulations

The longitudinal E–R model-predicted medians (90% CIs) of

the population D–R relationship for Prt at Week 16 and Week

28 are shown in Fig. 4. At the 100-mg q8w dose regimen

evaluated in the Phase 3 trials, the predicted D–R relationship

was flat at Week 16 but moderately increased at Week 28.

This is consistent with the estimate of kout = 0.0212/day in

Table 2, which corresponds to a half-life of 4.67 weeks,

indicating that Week 28 may be closer to pharmacodynamic

steady state, at which point patients’ sensitivity to treatment

would be expected to show larger influences. The narrow CI

ranges are direct consequences of the small RSEs of model

parameter estimates shown in Table 2. The results for IGA

were similar and shown in Fig. S6 in Supplementary Mate-

rials. Simulation of the D–R in a range of 15–200 mg q8w

indicated that 100 mg q8w guselkumab treatment aligns with

the region of imminent response plateau. This supported the
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appropriateness of the 100-mg q8w regimen, given the

favorable safety profile of guselkumab [5, 6].

A landmark analysis E–R relationship plot for Prt with the

median and 90% PIs of exposure achieved by the dosing

regimens [1] is shown in Fig. 5. Similar to results of longi-

tudinal simulations, guselkumab 100 mg q8w was considered

to result in systemic exposures that provide high efficacy

approaching the plateau of the E–R curve at Weeks 16 and 28.

However, when compared with the Week-16 simulation, a

wide CI was predicted for Week-28 responses, resulting in

less informative conclusions. The analysis results for IGA

were similar (shown in Fig. S7 in Supplementary Materials).

The landmark analysis-predicted D–R relationships for Prt

and IGA at Week 16 also are shown in Fig. 6. Overall, in line

with results of the longitudinal analysis, these analyses were

considered to consistently indicate that the guselkumab

100-mg q8w treatment regimen was approaching the plateau

of the D–R relationships of Prt and IGA.
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Table 3 Landmark exposure–response model parameter estimates

Parameter Descriptor Week 16 using

AUC0-W16
a

Week 28 using

AUCss
a

Week 28 using

Css
a

PASI 75/90/100

b1 Baseline response rate for PASI90 in logit scale - 3.87 (5.32) - 4.24 (55.40) - 3.20 (53.10)

BWT on b1 Body weight effect on b1 - 1.10 (21.60) - 0.937 (30.50) - 0.929 (30.60)

d2 Rate of achieving PASI75 but not PASI90 in logit scale 1.27 (6.67) 1.46 (8.63) 1.46 (8.49)

d0 Rate of achieving PASI90 but not PASI100 in logit scale 1.55 (4.71) 1.64 (5.07) 1.66 (4.98)

Emax Maximum drug effect in logit scale 5.04 (4.40) 5.93 (38.10) 4.82 (33.60)

EC50 (lg/mL) Guselkumab exposure metrics to reach 50% maximum drug

effect

21.9 (25.70) 0.822 (82.70) 0.0220 (88.20)

DDUR on

EC50

Disease duration effect on EC50 – 0.699 (28.80) 0.976 (22.20)

IGA

b1 Baseline response rate for IGA = 1 in logit scale - 2.47 (7.04) - 3.90 (64.40) - 3.22 (55.30)

BWT on b1 Body weight effect on b1 - 1.19 (21.30) - 0.871 (34.10) - 0.883 (33.00)

d0 Rate of achieving IGA = 1 but not IGA = 0 in logit scale 2.12 (4.39) 1.92 (5.18) 1.94 (05.09)

Emax Maximum drug effect in logit scale 4.69 (4.41) 6.22 (39.40) 5.46 (31.90)

EC50 (lg/mL) Guselkumab exposure metrics to reach 50% maximum drug

effect

28.1 (25.20) 0.869 (70.30) 0.0212 (61.80)

BPASI on

EC50

Baseline PASI score effect on EC50 – 1.44 (26.50) 1.75 (23.90)

aParameter estimate (% relative standard error)
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Fig. 3 Visual predictive check of landmark analysis of PASI at Week

16. The observed PASI 75/90/100 response rates (red circles) were

determined according to 10 bins of the model-predicted guselkumab

exposure metrics and were plotted at the median exposure within each

bin. The red circles are the observed response rates in each bin. The

blue solid lines are the simulated median responses. The blue dotted

lines and the shaded areas both represent the simulated 90% PIs from

1000 replicates (Color figure online)
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Discussion

A previously established population E–R joint model [7]

for two ordered categorical endpoints, i.e., Prt (PASI75,

PASI90, and PASI100) and IGA scores, was applied to a

larger dataset composed of one Phase 2 and two Phase 3

studies. The joint model, with a shared latent variable

between the two ordered categorical endpoints, again

achieved significant improvement in model fit in terms of

NONMEM OFV, while using fewer parameters than

required when separately modeling the endpoints. As

described previously [7], the improvement was due to the

similarity between Prt and IGA, which accounted for the

correlation between BSVs for Prt and IGA in the joint

model. This confirms that Prt and IGA intrinsically mea-

sure overlapping disease characteristics, as well as the

advantages of the novel joint modeling approach. Fur-

thermore, as described previously [7], the joint modeling

improved parameter estimation precision, as evidenced by

small RSEs (Table 2), achieved by using all relevant

information. This translated to the narrow range of CIs and

thus increased confidence in the predicted D–R relation-

ships. In drug development, improving precision generally

allows the trial objectives to be achieved with fewer

patients and reduced costs [2].

Landmark analysis is commonly used in clinical

development [1], primarily due to its ease of conduct and

ability to draw conclusions that are easily explainable to

clinicians. Landmark analyses provide a straightforward

approach for characterizing D–R relationships and support

drug development when sufficient data are available. In

general, a wide exposure range achieved from well-planned

dose-ranging studies is needed. The relatively high uncer-

tainty in model parameter estimation for the endpoints at

Week 28 compared with those at Week 16 suggest that

inclusion of placebo or low-dose level data can be critical

for landmark analysis. It could be difficult to determine the

E–R relationship by using the PK and efficacy data from

only relatively high dose levels, which are typically eval-

uated in Phase 3 studies. Extrapolation using such an E–R

relationship with large uncertainty sometimes can be mis-

leading. In addition, selection of appropriate PK metrics is

important, as is the accuracy of the exposure metrics used.

The landmark analyses for Prt and IGA at both Week 16

and Week 28 support the guselkumab 100-mg q8w regimen

as an efficient dose for treating patients with moderate-to-

severe psoriasis, similar to the longitudinal models. Nev-

ertheless, with placebo data, Week-16 landmark models

were generally more reliable and yielded parameters with

better precision. Simulations using the established models

also suggested that Week-16 models generated predictions

with less uncertainty and are thus more informative in

supporting dose selection.

The analyses also suggested an influence of BWT on the

E–R relationship. While this influence could potentially

relate to more severe disease in heavier patients, the exact

mechanism is unclear. Therefore, it is difficult to determine

exactly which specific E–R model parameters are influ-

enced by BWT. Additional stratified simulations (not

shown) evaluating dose regimens suggested the lack of

influence of BWT, likely due to the 100-mg q8w regimen

being at or near the plateau of the D–R relationship. In this

context, BWT was not considered to warrant dose adjust-

ment for lighter patients, given the overall favorable safety

profile of guselkumab, and the BWT influence on the E–R

relationship for guselkumab found here should be treated

as an exploratory finding pending future confirmation. In
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the landmark analysis, in addition to BWT, baseline PASI

score and disease duration were found to influence EC50 in

models for endpoints at Week 28 but not Week 16. The

lack of influential covariates at Week 16 could be due to

the requirement of reaching steady state to detect such

relationships.
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Often, uncertainties in E–R analysis conclusions are

typically ignored [2], especially for landmark analyses. Our

analyses aimed to resolve these potential shortcomings via

a comprehensive plan, with inclusion of Phase 2 dose-

ranging data, investigation of multiple reasonable exposure

metrics for all endpoints, and the evaluation of uncertain-

ties for the predicted D–R relationship. In conjunction with

the longitudinal analysis, this helped to provide a thorough

and robust understanding of study conclusions [2].
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