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Abstract
This article gives an overview of a technique called optimal control, which is used to optimize real-world quantities

represented by mathematical models. I include background information about the historical development of the technique

and applications in a variety of fields. The main focus here is the application to diseases and therapies, particularly the

optimization of combination therapies, and I highlight several such examples. I also describe the basic theory of optimal

control, and illustrate each of the steps with an example that optimizes the doses in a combination regimen for leukemia.

References are provided for more complex cases. The article is aimed at modelers working in drug development, who have

not used optimal control previously. My goal is to make this technique more accessible in the biopharma community.
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Introduction

One month before our June 2011 wedding, my husband

Colin easily completed a 100-mile bike ride (and bragged

that he passed many of the other cyclists, but none passed

him). One month after our wedding, he was diagnosed with

stage 4 metastatic gastric cancer. Without much warning,

we were faced with an urgent question: which treatment

option to choose? Admittedly, the options were limited and

not very effective for gastric cancer.

In a situation with limited time and resources, how do

we determine the best possible treatment for a patient with

a given disease? That is, without the luxury of more than a

decade or two billion dollars [1], what is the best we can do

with the currently-available therapies?

Optimal control provides one potential way to answer

this question, and it requires much less time and money

than it takes to develop a new drug. It requires close col-

laboration among team members with disease knowledge

and computational expertise, and access to a differential

equation solver. If we create a semi-mechanistic model of

the disease, we can optimize combination regimens in

silico for the drugs currently available. This is particularly

useful when we have so many potential therapies for a

disease, that there are too many combinations of dose

levels to test, even preclinically (in animal studies). This

technique can also be used to optimize doses and schedules

for new compounds, especially when they are being tested

in combination with other therapies. If our model is good

enough, then, by design, the optimal control regimen

should be at least as good as any other, but could be much

better.

The optimal control approach differs from quantitative

systems pharmacology (QSP) due to the optimization and

its quantitative therapeutic goal. The limitations of

numerical optimization algorithms mean that optimal

control systems are generally smaller than QSP models,

and semi-mechanistic rather than mechanistic. Semi-

mechanistic models may include only key populations and

interactions, which represent ‘‘net effects’’, rather than

specific mechanisms. Such models are fit-for-purpose, to

answer specific questions, and their parameters may be

estimated from individual- or aggregate-level data.

A QSP model that includes all currently-known mech-

anisms in a given setting may have so many parameters

that they cannot be estimated from data. It also can take

longer to create, and may be too large to perform opti-

mization on. In that case, particular regimens can be
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selected and tested in silico, and the predictions compared.

This approach is sometimes referred to as a standard

‘‘guess and check’’ method. The more therapies and dose

levels there are to choose from, the less likely this approach

is to identify regimens with the best outcomes. For these

reasons, QSP models are often used to address other issues,

such as mechanisms of action for efficacy and safety,

translation of preclinical results to the clinic, and identifi-

cation of new biomarkers [2].

The general process for applying optimal control is

shown in Fig. 1. The first step is to create an appropriate

model of the dynamics of the disease and the effects of

therapies on the dynamics. The model should be detailed

enough to incorporate effects of the particular therapies of

interest. Next, the goal of the treatment needs to be quan-

tified. Usually we want to maximize the benefits of the

therapies and minimize their side effects. When we com-

bine terms representing these effects, using appropriate

signs and weights, we obtain a mathematical expression to

be optimized. Once we have determined parameter values

to use for the system (see the ‘‘Discussion’’ section for

more on this), we can compute the optimal control solution.

We should then evaluate the method by comparing out-

comes for a predicted optimal regimen with outcomes for

standard regimens.

In my husband’s case, the cancer was so advanced that

his treatment was considered palliative from the moment of

diagnosis. We did not have the time or resources to set up

and solve an optimal control problem. Also, there were

limited treatment options for his cancer, and most of the

chemotherapies used were so toxic, their dosing was lim-

ited by the maximum tolerated dose. In such cases, the

optimal doses would typically be as high as possible, so I

said to Colin’s oncologist, ‘‘Throw him under the bus.’’

Because Colin was so athletic and fit before his diagnosis,

we figured he could tolerate the highest doses they would

use, which might buy us more time. He suffered side

effects, but tolerated the harsh treatments, and got some

temporary tumor size reduction. He passed away in

February 2012, seven months after his diagnosis [3].

How much difference could optimal control have pro-

vided? Probably not much for Colin’s disease stage and

limited therapeutic options. But how much difference could

optimal control provide more generally? Even without any

optimization, standard ‘‘guess and check’’ methods predict

that schedule changes could yield significant improvements

in combination therapy [4–7]. Clinical data reveal cases in

which dose and schedule differences lead to different

patient outcomes [4, 8–12]. Below, I present two examples

of the types of results predicted using optimal control.

Example 1

In a model for a hypothetical patient infected with human

immunodeficiency virus (HIV), we considered two classes

of drugs, protease inhibitors (PIs) and reverse transcriptase

inhibitors (RTIs), as well as the development of resistance

to them. The mathematical model incorporated an HIV

patient’s healthy T cells (immune system cells) and their

infection with virus that was either wild-type (not resis-

tant), resistant to just PIs, resistant to just RTIs, or resistant

to both. We used optimal control to predict a regimen that

would achieve the best possible outcome.

The predicted optimal regimen agreed with the known

paradigm for HIV treatment with those drugs, which was

‘‘hit early, hit hard’’. Initial doses were very high, and were

then tapered off. This was compared to a more standard

regimen with constant dose levels, but with the same total

exposure to the drugs. That is, the optimal regimen was

constrained to have the same area under the curve (AUC)

as the standard regimen, for each drug.

For the hypothetical patient modeled in this example,

the two regimens yield different outcomes (see Fig. 2).

With the standard regimen, the patient has CD4? T cell

counts that dip below 200 cells/lL, which is the clinical

threshold for acquired immunodeficiency syndrome

(AIDS). A patient with AIDS is susceptible to life-threat-

ening opportunistic infections. In this state, a salvage

therapy could be used to increase the patient’s CD4? T cell

counts, but such therapies generally have harsh side effects

[13].

In contrast, the optimal regimen keeps the patient out of

AIDS. Additionally, at the end of the therapy, the patient

has a CD4? T cell count that is about 70% higher than if

they had been on the standard regimen. See [14, 15] for

more details of the model and the application of optimal

control. Regimens like the predicted optimal one shown in

Fig. 2 (top right) are not typically used in a clinical setting.

Although some therapies are administered with variable-

dosing programmed into an intravenous pump, most are

Fig. 1 Steps in optimization of drug regimens. Evaluation can be performed by running preclinical (animal) or clinical (human) studies and

comparing outcomes to the optimal control predictions.
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not. In order to obtain clinically-feasible regimens, con-

straints are usually imposed, as in Example 2.

Example 2

Patients with chronic myeloid leukemia (CML) have many

treatment options. There are five approved targeted thera-

pies [16–20]. Because these targeted therapies are pre-

scribed for daily use over years, and because resistance to a

therapy can arise, one goal that has been attempted is long-

term treatment-free remission. There was a suggestion in

the literature that combining two targeted therapies might

help with that goal [21]. Immunotherapy is an additional

treatment option, and has been tested in combination with a

targeted BCR-ABL1 inhibitor in treating CML patients

[22].

To look for regimens that could help achieve long-term

treatment-free remission, we modeled the in-host tumor-

immune dynamics of CML. Our fit-for-purpose model was

composed of a quiescent leukemic cell population, a pro-

liferating leukemic cell population, and an immune effect

(tied to effector T cell levels). We compared various

monotherapy and combination therapy regimens for fixed-

dose levels. We then used optimal control to predict a

regimen that could achieve the best possible outcome. In

contrast to the highly-variable drug levels that were

allowed in the HIV treatments of Example 1 above, we

focused on clinically-feasible regimens. See [23] and [24]

Fig. 2 HIV therapy example: How much better can an optimal control

regimen be, in comparison to a standard constant-dose regimen? The

solid orange curve represents a protease inhibitor (g1) and the dashed

brown curve represents a reverse transcriptase inhibitor. Each has

been scaled so that 0 represents no drug administered and 1 represents

a level achieving complete efficacy. The solid black curve represents

a healthy T cell population (T) and the dashed purple curve represents

an infected cell population (I00). The dotted green line indicates 200

cells=lL. Total exposure (area under the curve, AUC) is the same for

both regimens, for each drug individually. Both regimens control the

infected cell levels, but the optimal regimen gives a better outcome

for the patient’s healthy T cell levels. Adapted from [15] (Color

figure online)
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for the details of the model and how the clinically-feasible

regimens were calculated.

Table 1 compares selected regimens using a measure of

how well each one achieved the therapeutic goal in a

hypothetical typical patient. This measure (called an

objective functional or objective function) incorporates the

sizes of the leukemic populations and the amount of each

drug administered. Smaller values of the objective func-

tional are better, and the constrained approximation to the

optimal regimen is predicted to be about 25% better than

the best combination with fixed-dose levels. See [23–26]

for more details.

Background

History of optimal control

The accomplished mathematician Pontryagin ran an

applied math seminar at the Steklov Mathematical Institute

in Moscow in the 1950s. One week, two Soviet Air Force

engineers showed up with a problem they could not solve:

five differential equations with three controls, which

modeled the minimal time trajectory of an aircraft [27].

Previous simpler problems had been solved either by ad

hoc analytic techniques or by using approximation meth-

ods. (In the 2016 movie Hidden Figures, mathematician

Katherine Johnson of NASA uses Euler’s method to

approximate a rocket trajectory changing from elliptic to

parabolic, and to calculate the landing position for astro-

naut John Glenn’s 1962 orbit of the earth [28].)

Pontryagin could not solve the problem the two engi-

neers showed him, and realized he needed a general

method to do so. He reportedly worked on the problem

during three nights of insomnia and developed the

important idea of adjoint functions in Pontryagin’s Maxi-

mum Principle [27]. With his former students Gamkrelidze

and Boltyanskii, he further developed the theory, and they

published it in Russian in various academic journals and a

book [29–33]. English translations of the work appeared a

short time later. The Soviets did not use the theory for the

first two Sputnik satellites, launched in 1957 [27]. It was

only after those two launches that they first computed

trajectories for re-entry into the earth’s atmosphere. In this

way, the theory of optimal control was born out of the need

of a high-priority application. The papers of Gamkrelidze

[27] and of Pesch and Plail [34] summarize the develop-

ment of optimal control by Pontryagin’s group.

It turned out the Americans were working on similar

problems, and developed related techniques for some

special cases. The Research and Development (RAND)

Corporation was established in Santa Monica, California

after World War II by the US Army Air Forces. It was a

nonprofit set up to provide research and analysis to the

armed forces [34]. In the early 1950s, a group of mathe-

maticians working at RAND wrote a set of papers [35–38]

that held some ideas similar to those the Soviets later

developed independently. However, the cases considered

by the RAND group were based on the calculus of varia-

tions and could not solve the types of problems the optimal

control theory developed by the Soviets did, including

problems with constraints. The Sputnik and later Soviet

satellite launches, and the increased recognition of the

importance of mathematical modeling in real-world

applications, spurred an increase in scientific and techno-

logical initiatives in the US. These included the 1958

National Defense Education Act (NDEA) [39] and the

founding of the Defense Advanced Research Projects

Agency (DARPA) [40] and the National Aerospace and

Science Administration (NASA) [41].

Applications of optimal control

Today, optimal control is not only used for aerospace—it is

also used in automotive, oil and gas, manufacturing, supply

chain management, economics, and many other applica-

tions with the potential for big savings. This includes

systems that model large objects, as well as systems that

model a large number of small objects. When even a small

percentage improvement would yield substantial benefit,

optimal control is a natural tool to apply. Of course, many

optimal control solutions provide more than a small per-

centage improvement.

Some of the first major applications of optimal control

outside of engineering were in economics. Merton used

optimal control in the 1970s to optimize consumption

investment portfolios [42]. The famous Black–Scholes

formula for options pricing was derived as the solution to a

Table 1 Chronic myeloid leukemia example: how much better can a

constrained optimal control regimen be, in comparison to various

standard constant-dose regimens? The drugs represented by u1 and u2
are both targeted BCR-ABL1 inhibitors; the drug u3 represents an

immunotherapy adapted from [23]

Regimens (doses in mg) Value after 5 years

u1 u2 u3 Objective functional

400 0 0 280 9 103

0 140 0 212 9 103

0 0 240 471 9 103

0 70 80 233 9 103

200 70 0 40.7 9 103

200 70 80 37.9 9 103

Constrained approx. to optimal regimen 28.7 9 103
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stochastic optimal control problem [43]. This work became

the basis for a boom in options trading in financial markets

worldwide. Numerous tests have shown that the prices

predicted by the Black–Scholes formula are close to

observed prices in many cases [44]. In 1997, Merton and

Scholes were awarded the Nobel Prize in Economics for

this work [45]. (Black was already deceased at the time of

the award.)

Outside of manufacturing applications, optimal control

has not yet been adopted widely in the biotechnology/

pharmaceutical (biopharma) industry. Phase 2 clinical trials

to determine dose levels can cost hundreds of millions of

dollars, and their success depends on meeting specified

endpoints. Optimal control could be used to predict dose

levels and schedules that increase the probability of clinical

trial success. However, applications of optimal control to

combination regimens have largely been in academic

research. For example, see the books by Swan [46], Martin

and Teo [47], Lenhart and Workman [48], and Schättler

and Ledzewicz [49].

Although the potential for benefit is large, there appear

to be two primary reasons for the slow adoption of optimal

control: first, the biopharma industry tends to be cautious in

adopting new techniques, due to uncertainty around regu-

latory views; and, second, there have been questions about

how well the mathematical models characterize the dis-

ease-therapy dynamics. Regarding the second reason, the

options pricing models in economics, despite similar con-

cerns, were able to provide significant value, and thus were

considered adequate in their characterization of the system

that they were modeling. Additionally, mathematical

models of pharmacokinetics (drug concentrations over

time) and pharmacodynamics (drug effects over time) have

continued to improve over the several decades they have

been in use. They provide excellent starting points for

mathematical models to use for optimal control.

In the past, QSP models were viewed with similar

skepticism, and were used by only the most innovative

biopharma companies. However, the National Institutes of

Health (NIH), in collaboration with leaders in the field,

issued a white paper on QSP and its potential applications

in drug development in 2011 [2]. In 2014, the US Food and

Drug Administration (FDA) used a QSP model to support

its request to a sponsor for dose regimen changes [50].

Since these events, more industry resources have been

allocated to support the use of QSP models in drug

development.

One notable application of control theory in the bio-

pharma industry was the work that formed the basis of the

2016 FDA approval of the ‘‘artificial pancreas’’ for patients

with type 1 diabetes [51]. In this system, a glucose monitor

samples the patient’s blood sugar levels and provides

feedback to the control device (control theory and feedback

control are discussed further in the next section). A

mathematical model is used to calculate precise amounts of

insulin which are administered from the attached insulin

pack to help control the glucose levels. Patients still self-

inject a large insulin bolus before meals, but the automated

and frequent monitoring system that relies on a feedback

control model reduces the incidence of dangerous hyper-

glycemia episodes throughout the day.

The successes of mathematical models for treatment of

diabetes, HIV, hepatitis C, and other diseases, have shown

that it is possible to create models that capture essential

disease-therapy dynamics. Similar to the situation for QSP

in the past, optimal control has been applied to biological

questions in academia for many years. Efforts have begun

in the biopharma industry to apply optimal control to drug

regimen optimization. See, for example, the recent work

done at Bristol-Myers Squibb [23] (note: this project was

ended for reasons unrelated to the optimal control work,

before the model predictions could be evaluated with data).

Theory and an example to illustrate it

In this section, I give some exposition of the theory of

optimal control. I also illustrate each step of the procedure

by applying it to a previously-published model of therapy

for patients with CML [52, 53]. This example was selected

because it illustrates the calculations needed for the most

common cases.

What is control theory?

Control theory refers to the ability to change a system in a

desired way. A common setting for control theory is a

system of ordinary differential equations (a dynamical

system) that represents states we are interested in tracking

and changing. We use controls to alter one or more states

of the system, which will cause a change in the outcome.

For example, the states might be the three positional

coordinates of the center of gravity of a rocket, (x, y, z), as

governed by gravity and aerodynamics. The controls might

be the direction and force produced by a combustion

engine. Changing the controls allows us to change the

position of the rocket, while it is still being governed by a

system that includes the effects of gravity and aerody-

namics. If we check the states (the coordinates) at certain

times, and use that information to decide how to change the

controls, this is called feedback control. So if unanticipated

wind or debris have affected the position of the rocket, a

measurement will reveal the effect, and we can adjust the

firing of the engine to take that into account.

A simpler example of feedback control is a water stor-

age tank with a float valve. When the water level rises, the
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float rises too, and shuts off an input valve. When the water

level drops, the float drops too, and the input valve is

opened, allowing more water to flow in. In this case, the

feedback control is automatic. The water level is the state

of interest, and the input water is the control.

Likewise, thermostats can be made with metals or gas-

ses that expand with heat. The thermometer is configured

so that when the ambient temperature is high enough, the

expansion causes the electrical circuit to open, which

causes the furnace to stop running. When the ambient

temperature drops enough, the material contracts, the cir-

cuit is completed again, and the furnace is triggered by the

electrical signal to turn on. The temperature is the state,

and the heat generated by the furnace is the control.

The artificial pancreas described above is another

example of feedback control. The glucose level is the state,

and the insulin input is the control.

What is optimal control?

Optimal control tries to find the controls (which may vary

over time) that get the system as close as possible to a

desired outcome. The desired outcome is quantified by an

objective functional that is maximized or minimized. The

word functional simply means the objective is a function of

one or more functions. While the objective is still a func-

tion, the term functional is more precise, just as the term

square is more precise (when applicable) than rectangle.

Optimal control uses the same type of state and control

functions that are used in control theory, but we add the

objective functional and optimize it while the system

behaves according to specified equations.

Semi-mechanistic dynamical systems models
of diseases

The dynamical systems of interest in drug development are

those that represent states related to diseases. For example,

in the case of a cancer of the blood, the concentration of

cancerous cells in a patient’s peripheral blood could be a

state we are interested in. We can incorporate anti-cancer

treatments as controls in the system. In the dynamics of

cancer and therapy, there are host immune system cells that

play important roles, and they would be included as states

as well. The idea of a ‘‘minimal model’’ that captures the

key characteristics of the state and control dynamics leads

us to ‘‘semi-mechanistic models’’ [49, p. 38].

The model in [53] is semi-mechanistic and includes

cancer cells, C(t), and two types of immune system cells:

naive T cells, TnðtÞ, and effector T cells, TeðtÞ. Each of the

cell types is dependent on time t, and time-dependent drug

levels (controls) are denoted by u1ðtÞ and u2ðtÞ. The

relationships between the cell concentrations and the con-

trols are represented in the differential equations shown

here:

dTn

dt
¼ sn � u2dnTn � knTn

C

C þ g

� �
ð1Þ

dTe

dt
¼ anknTn

C

C þ g

� �
þ aeTe

C

C þ g

� �
� u2deTe � ceCTe

ð2Þ
dC

dt
¼ ð1� u1ÞrcC ln

Cmax

C

� �
� u2dcC � ccCTe ð3Þ

where Tnð0Þ, Teð0Þ, and C(0) are known. The parameters

sn, dn, kn, g, an, ae, de, ce, rc, Cmax, dc, cc are all assumed to

be non-negative constants. More information about the

system and the parameters is given in Moore and Li [52]

and Nanda et al. [53].

Because the states of interest are Tn, Te, and C, Eqs. (1)–

(3) are called the state equations. In modeling a physical

system, it is common that the known information is about

local interactions. For example, the last term of Eq. (3) is

comprised of three factors multiplied by each other: the

constant parameter cc; the concentration of cancer cells, C;

and the concentration of effector T cells, Te. We used this

mass action form because we were modeling cell contact-

dependent killing of cancer cells by effector T cells. The

parameter cc takes into account both the rate at which

effector T cells and cancer cells have encounters, and the

proportion of those encounters that lead to the loss of the

cancer cell.

By modeling rates of local interactions and events, we

get expressions for the rates of change, such as those rep-

resented in Eqs. (1)–(3). Solving the system of differential

equations means solving for the cell populations whose

rates of change we modeled. So we start with differential

equations composed of local, instantaneous information,

and then solve to obtain functions that describe the cell

population levels over time. In the examples detailed in this

work, fixed values are used for the parameters. The

selected values are intended to represent a typical patient.

Methods for handling differences and uncertainty in

parameter values are included in the ‘‘Discussion’’ section.

Objective functionals

In addition to a mathematical model for the system we wish

to control, we also need a mathematical model for the

treatment goal or objective. For a disease such as cancer, it

could be important to minimize the cancer cell levels

during and at the end of the treatment period. For the

immune cells in the model, we may wish to keep their

levels from being too low at the end of the treatment
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period. And therapies generally have a risk of side effects,

so we don’t want to use more than necessary during the

treatment period. To put all of these goals together, we

decide on a sign (positive or negative) and a relative weight

for each goal and add the quantities we wish to minimize.

For example, for the system above, our treatment goal

might be expressed as minimizing J, where

Jðu1;u2Þ¼
Z tf

0

CðtÞþB1

2
u21ðtÞþ

B2

2
u22ðtÞ

� �
dtþB3Cðtf Þ�B4Tnðtf Þ;

ð4Þ

where each Bi, i ¼ 1; 2; 3; 4, is a positive relative constant

weight, and tf is the end time of the treatment period. We

wish to minimize terms in the objective J; since the naive

T cells appear in a negative term, minimizing this term

maximizes the naive T cell concentration at the end of the

treatment period. The controls u1 and u2 appear inside the

integral as quadratic or squared terms for convenience.

This choice is less common these days, and is examined

further in the ‘‘Discussion’’ section.

The sizes of the relative weights reflect the importance

of the various terms in the therapeutic goal. Generally, we

rely on disease knowledge to decide on values for the

weights. Decision analysis is a formal approach to quan-

tifying this knowledge [54]. Alternatively, ranges of values

can be sampled for the weights, yielding qualitative

information about patterns of optimal regimens. Marler and

Arora [55] examine ways to decide on relative weights in

the objective functional in this and more general settings.

Because the treatment goal depends on u1 and u2, which

are functions of time, J is called a functional (recall this

means it is a function of one or more functions). J also

depends on C during the treatment period, but C is deter-

mined by the dynamical system given by the state equa-

tions (1)–(3). The functions u1 and u2 are the only

quantities we can control, so they are the inputs, and we

consider J to be a function of them, Jðu1; u2Þ. Once we

have determined an expression for the objective functional

J, we want to optimize it. In this example, we optimize by

minimizing J. To do that, we will take derivatives and set

them equal to zero. However, to maintain the underlying

dynamical system at the same time, we need the theory of

optimal control.

Optimal control

The key idea behind optimal control is the way the

dynamical system and the objective functional are tied

together through the adjoint functions. To organize the

necessary calculations for optimal control, we first form the

Hamiltonian H (so-called because of its similarity to the

Hamiltonian in classical mechanics; cf. [56]). The

Hamiltonian is a functional that provides a convenient way

to record and combine information about the objective

functional and the underlying system dynamics. It combi-

nes the right-hand sides of the state equations with the

derivative of the objective functional, using the adjoint

functions to multiply the state equation components. The

theory of optimal control that Pontryagin developed spec-

ifies what to do to H to obtain controls ui that optimize the

objective functional. In particular, certain derivatives of

H define the adjoint functions through differential equa-

tions (the adjoint equations). See the book of Lenhart and

Workman [48] for a readable beginner’s introduction to

these ideas in optimal control applied to a general setting.

For concreteness, we show the Hamiltonian for the

system and objective functional considered above, which

demonstrates how to handle common forms:

H ¼C þ B1

2
u21 þ

B2

2
u22 þ k1 sn � u2dnTn � knTn

C

C þ g

� �� �

þ k2 anknTn
C

C þ g

� �
þ aeTe

C

C þ g

� �
� u2deTe � ceCTe

� �

þ k3 ð1� u1ÞrcC ln
Cmax

C

� �
� u2dcC � ccCTe

� �
:

ð5Þ

The factors k1, k2, and k3 are the adjoint functions, and

they are functions of time t, as are the state functions Tn,

Te, and C and the control functions u1 and u2. The adjoint

functions are used to bring the underlying system dynamics

into the optimization (note that they are multiplied by the

right-hand sides of the state equations (1)–(3)). The first

three terms of H are the terms that are inside the integral in

J. The other two terms of J that are not inside the integral

contribute the additional transversality conditions that

accompany the adjoint equations. Namely, they give the

conditions k1ðtf Þ ¼ �B4, k2ðtf Þ ¼ 0, and k3ðtf Þ ¼ B3.

When the adjoint equations are combined with these final-

time conditions, they specify the adjoint functions ki
uniquely, just as the state equations and their initial con-

ditions specify the state functions uniquely.

Thanks to the way H is defined, the adjoint equations

can be expressed in terms of H:

dk1
dt

¼ � oH

oTn
;
dk2
dt

¼ � oH

oTe
;
dk3
dt

¼ � oH

oC
; ð6Þ

where oH
oV

denotes the partial derivative of H with respect to

the variable V, for V ¼ Tn, Te, or C. (As a reminder, the

partial derivative of H with respect to V is calculated by

treating every parameter or variable except V as a constant,

and then taking the derivative of H as usual with respect to

V.) For the leukemia example considered here, the reader

can check that computing the partial derivatives specified

in (6) gives the following adjoint equations:
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dk1
dt

¼ k1 u2dn þ kn
C

C þ g

� �
� k2ankn

C

C þ g
; ð7Þ

dk2
dt

¼ k3ccC � k2 ae
C

C þ g
� u2de � ceC

� �
; ð8Þ

dk3
dt

¼k1knTn
g

ðC þ gÞ2
� 1

� k2 anknTn
g

ðC þ gÞ2
þ aeTe

g

ðC þ gÞ2
� ceTe

 !

� k3 ð1� u1Þrc ln
Cmax

C

� �
� 1

� �
� u2dc � ccTe

� �
:

ð9Þ

Now we have defined all the needed pieces and can state

the problem fully. The problem is to find the drug levels

u1ðtÞ and u2ðtÞ (which may vary over time) that minimize

the objective functional J for the disease-therapy system

governed by Eqs. (1)–(3). To achieve this, we take the

partial derivatives of the Hamiltonian H with respect to u1
and u2 and set them equal to zero. That is, we compute the

optimal regimens u1 and u2 for this system by setting oH
du1

and oH
du2

equal to zero and solving for u1 and u2. For our

example leukemia model, these equations give:

oH

ou1
¼ B1u1 � k3rcC ln

Cmax

C

� �
¼ 0; ð10Þ

oH

ou2
¼ B2u2 � k1dnTn � k2deTe � k3dcC ¼ 0: ð11Þ

Solving Eqs. (10) and (11) for u1 and u2 give:

u1 ¼
k3rcC lnðCmax

C
Þ

B1

; ð12Þ

u2 ¼
k1dnTn þ k2deTe þ k3dcC

B2

: ð13Þ

We combine these solutions with any lower or upper

bounds on u1 and u2 to obtain piecewise-defined functions

for u1 and u2 in terms of the state and adjoint functions.

Although it may look like we have explicit formulas for the

controls (the u1 and u2 functions) and are done, in fact we

need to know the state and adjoint functions over time. The

state functions are given by Eqs. (1)–(3) and their initial

values (at time t ¼ 0). However, Eqs. (1)–(3) depend on the

controls. The adjoint functions are given by Eqs. (7)–(9)

and their final values (at time t ¼ tf ), and Eqs. (7)–(9)

depend on the state functions. With all of the interdepen-

dencies between the control, state, and adjoint functions,

the optimal control solutions generally have to be com-

puted using numerical approximation methods.

One iterative approximation method starts with guesses

for u1 and u2. For example, we might guess that both

control functions are constant, with u1 ¼ 0:9 and u2 ¼ 2:5.

We can then solve Eqs. (1)–(3) for the state functions,

which allows us to solve Eqs. (7)–(9) for the adjoint

functions. These state and adjoint functions can be used in

Eqs. (12) and (13) to calculate the control functions. These

updated controls can be used to start the process all over

again. Once the iterative process results in no more chan-

ges in the controls (up to a specified tolerance), then we

have found the optimal controls. We can plot these

numerical solutions for u1 and u2 (see Fig. 3), as well as the

cell levels Tn, Te, and C over the treatment period [53].

Discussion

A number of software packages are available for solving

optimal control problems. Some of the better-known

packages include PROPT (Tomlab, Vasteras, Sweden),

DIDO (Elissar Global, Carmel, CA, USA), and GPOPS II

(RP Optimization Research, Gainesville, FL, USA), all

three of which require Matlab (MathWorks, Natick, MA,

USA); there is also the open-source program PSOPT

written in C?? (Victor M. Becerra, University of Ports-

mouth, UK). These packages all use approximation meth-

ods based on pseudospectral collocation, and can solve

complex optimal control problems. For smaller problems

like the ones described in this paper, it is also possible to

write a forward-backward iterative loop as described at the

Fig. 3 Numerical solutions for

u1 and u2 for various values of

parameter dc. Three different

choices for the sensitive

parameter dc give different

optimal regimens for the

therapies u1 and u2 for a

hypothetical patient. From [53]
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end of the previous section. I wrote the code for the

problem in Gu and Moore [15] as a loop in Mathematica

(Wolfram Research, Champaign, IL, USA). For the prob-

lem in Moore et al. [23], we used Tomlab and Matlab. For

modelers beginning work in optimal control, I recommend

this latter approach. However, for the types of examples

discussed in this article (up to five states, up to three

controls) any of these software approaches should work.

Because the numerical solving is so challenging, equilibria

and stability should be determined before approximating

the solutions. This can help avoid local minima for J.

The objective functional shown as an example in Eq. (4)

includes quadratic terms inside the integral. This form was

often chosen in the past because the convexity of the

quadratic terms makes certain steps of the optimal control

problem easier [49, p. 49]. However, methods for handling

a variety of functional forms are commonly used now.

Thus if toxicity risk for a drug u(t) correlates with its

exposure, we can use a penalty term of the form
R tf
0
uðtÞdt

(area under the curve, AUC) rather than
R tf
0
u2ðtÞdt. If

toxicity risk of a drug correlates better with the maximum

concentration or the time above a threshold concentration

c, we can incorporate terms of the appropriate form:

maxt2½0;tf � u or
R tf
0
fcðtÞdt where

fcðtÞ ¼
1 if uðtÞ[ c;
0 if uðtÞ� c:

�
ð14Þ

The regimen optimization examples discussed in this paper

all had fixed-time therapy duration; however, optimal

control also allows us to include optimization of the

duration of the therapy itself by considering an objective

functional term with the form
R tf
0
1 dt.

There are situations in which pharmacokinetics (PK, the

drug concentrations over time) should be incorporated into

the mathematical model of the disease and therapy

dynamics. In Example 1, this was not done, as the dosing of

the drugs was daily and the time period considered was

most of a year. For reference, Shudo et al. [57, 2.5–2.6]

considered the effect of once-weekly dosing over a period

of a few weeks. Models without PK were able to describe

the drug effect, with only slight differences from models

with PK. For similar reasons, the other examples in this

paper also do not include PK. Martin and Teo [47]

specifically address the incorporation of PK in optimal

control models when it is needed, such as when optimizing

the timing of doses.

To integrate optimal control into the development of

drug regimens, there are additional considerations that are

important for any mathematical modeling we might use.

These include tying the model closely to data, handling

parameter variability and uncertainty, and evaluating

model predictions. I discuss these below, and indicate

information unique to optimal control where relevant.

Data-rich settings provide opportunities to capture key

disease-therapy dynamics, which are an important first

step. Performing sensitivity analysis on the mathematical

model can identify parameters that the outcome is largely

insensitive to [58, 59]. These ‘‘insensitive parameters’’ can

be fixed, and the ‘‘sensitive parameters’’ estimated by fit-

ting the model to data or from the literature.

Nonlinear mixed effects modeling to fit the model to

data gives both population information and a set of

parameters for each individual. A new population of indi-

viduals can be simulated by sampling ranges of parameter

values, given specified probability distributions for selec-

tion of the parameter values. Computing optimal control

regimens for multiple parameter sets (for either previously-

studied or simulated groups of individuals) can yield

qualitative recommendations for the intended treatment

population. Robust control is an approach to finding regi-

mens that maintain some level of performance over dis-

tributions such as parameter ranges [60]. Stochastic

optimal control is another method for handling parameter

variability, as well as uncertainty [61].

A frequent assumption in pharmacokinetic/pharmaco-

dynamic modeling is that the structure of the equations is

the same in animals and humans, and only the parameter

values differ. When parameter values in a model are

obtained by fitting the model to animal preclinical data, we

can use allometric scaling to predict certain corresponding

parameter values for a human population (cf. [62]).

Alternatively, parameter values can be obtained by directly

fitting the model to human clinical data. Optimal control

modeling that is tied closely to clinical data includes the

work of Swan and Vincent [63], Iliadis and Barbolosi [64],

and Zhang et al. [65].

In addition to tying models closely to data, evaluation of

a predicted optimal regimen with experimental data is very

important. Study outcomes from regimens that are pre-

dicted to be optimal should be compared with those from

standard regimens. Such evaluation tests whether assump-

tions in the model, the objective functional, and the

parameter estimates, are acceptable and lead to desired

outcomes.

Conclusion

The techniques and examples in this article are intended to

support mathematical modelers in the biopharma industry

in using optimal control to optimize drug regimens. The
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papers of Swan and Vincent [63], Kirschner et al. [66], Gu

and Moore [15], Nanda et al. [53], and Moore et al. [23]

provide additional details for applying optimal control to

examples like the ones included in this article. The book of

Kamien and Schwartz [67] gives a good exposition of

problems like these, as well as more complex problems,

such as states with delayed differential equations, state

inequalities, integral state equations, and stochastic optimal

control.

Optimal control has been applied in numerous industries

with great success since its mathematical formulation in the

1950s. Its application to predicting optimal drug regimens

or strategies dates back to the 1970s. Recently, it has begun

to be used within the biopharma industry to help with the

selection of combination regimens.

As with any mathematical modeling approach, the

quality of the predictions depends on the quality of the

models. With mathematical models that are increasingly

able to accurately capture the dynamics of certain disease

states, there are expanded opportunities to take advantage

of the technique. In planning therapeutic regimens for

preclinical or clinical use, we can apply optimal control to

these models, to predict optimal regimens based on quan-

titative therapeutic goals. Current availability of software

and expertise makes this feasible for use in the biopharma

industry. Thus optimal control is yet another well-estab-

lished modeling technique we can now leverage more

broadly to increase drug development successes, and to

give patients the chance for more time with their loved

ones.
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