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Abstract
The inhibitory effect of anti-obesity drugs on energy intake (EI) is counter-acted by feedback regulation of the appetite

control circuit leading to drug tolerance. This complicates the design and interpretation of EI studies in rodents that are

used for anti-obesity drug development. Here, we investigated a synthetic long-acting analogue of the appetite-suppressing

peptide hormone amylin (LAMY) in lean and diet-induced obese (DIO) rats. EI and body weight (BW) were measured

daily and LAMY concentrations in plasma were assessed using defined time points following subcutaneous administration

of the LAMY at different dosing regimens. Overall, 6 pharmacodynamic (PD) studies including a total of 173 rats were

considered in this evaluation. Treatment caused a dose-dependent reduction in EI and BW, although multiple dosing

indicated the development of tolerance over time. This behavior could be adequately described by a population model

including homeostatic feedback of EI and a turnover model describing the relationship between EI and BW. The model

was evaluated by testing its ability to predict BW loss in a toxicology study and was utilized to improve the understanding

of dosing regimens for obesity therapy. As such, the model proved to be a valuable tool for the design and interpretation of

rodent studies used in anti-obesity drug development.
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Introduction

Drug therapy of obesity in man has been hampered by the

development of drug tolerance [1]. In clinical studies, body

weight (BW) typically drops by up to 10% within the first

6 months of drug treatment, but then reaches a plateau and

returns to levels of the placebo control groups upon treat-

ment cessation. For instance, this response pattern has been

observed for rimonabant [2], sibutramine [3–5], a combi-

nation of fenfluramine ? phentermine [6], and pramlintide

[7–9].

Studies in rats with measurement of daily food intake

(FI) and BW indicated that the limited effect of anti-obe-

sity drugs on BW is related to a loss of FI inhibition [1].

Typically, FI is maximally reduced on the first few days

after initiation of drug treatment, but then rapidly increases

and within 2 weeks attains a plateau at levels similar to, or

only slightly lower than those of vehicle-treated rats. Fol-

lowing withdrawal of the drug, a rebound phase can even

be observed, in which animals consume more food than the
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vehicle control group, leading to a return of BW compa-

rable to that of control animals. This phenomenon is

common to a range of agents with different mechanisms of

action, including drugs such as the serotonin-nore-

pinephrine reuptake inhibitor sibutramine [10, 11], the

serotonin-releasing agent fenfluramine [12], the melano-

cortin-4 receptor activator melanotan II [13], as well as

peptide hormones such as leptin [14], amylin [15–17] and

glucagon-like peptide 1 (GLP-1) [18] or the GLP-1 ana-

logue liraglutide [11, 19]. Therefore, the underlying feed-

back mechanism may not be target-specific, but rather

related to the tight regulation of FI aimed at maintenance of

a stable BW [1]. Short-term feedback signals from the

gastrointestinal tract (e.g., cholecystokinin, peptide tyr-

osine and GLP-1) promote satiety leading to meal termi-

nation, while long-term adiposity signals (leptin and

insulin) regulate long-term energy homeostasis and BW

[20]. The peptide hormone amylin is thought to transmit

both satiety and adiposity signals [21].

In this study, we focus on data from an anti-obesity-drug

development program for synthetic long-acting analogues

of amylin (LAMY). Amylin is synthesized in pancreatic b-
cells and is co-secreted with insulin in response to inges-

tion meal [21–23]. It activates specific receptors in the

hindbrain area postrema to suppress glucagon release,

gastric emptying and FI, leading to reductions in blood

glucose and ultimately BW [23]. Upon chronic adminis-

tration to normal or diet-induced obese (DIO) rats via

subcutaneous minipump, amylin inhibited FI (albeit with

the above-described phenomena of tolerance and rebound),

and caused a specific reduction in fat mass while main-

taining lean mass [15, 16, 24, 25]. In two of these studies

[15, 16], amylin was also found to prevent the compen-

satory decrease in energy expenditure (EE) that is typically

observed with BW loss. Instead, the EE (expressed as a

function of total BW) was increased, which was attributed

to a relative increase in lean body mass, which is

metabolically more active. However, since the amylin-

mediated effect on EE was much smaller than its effect on

FI, the latter was regarded to be the primary cause of BW

loss.

In our LAMY drug development program, amylin ana-

logues were screened using short-term studies in lean rats

and selected peptides were tested in longer-term studies in

DIO rats. Energy intake (EI) and BW were used as phys-

iological response and clinical response biomarkers,

respectively [26]. The presence of feedback regulation of

EI complicates the determination of drug properties such as

the IC50 from the rat studies. In this case, mathematical

modeling accounting for feedback mechanisms serves as a

valuable tool for data interpretation that may improve

compound selection, study design and human dose esti-

mation. Several models for EI and its feedback regulation

have been published, ranging from simple, descriptive

turnover models [27] to complex, mechanistic models

incorporating the effects of leptin in regulating EI and

expenditure [28, 29]. A semi-mechanistic model of inter-

mediate complexity has been reported recently, referred to

here as the ‘‘Gennemark model’’ [30]. In this model, EI

data from the vehicle control group serves as a set point or

reference, and drug-induced deviation from the set point

drives a feedback signal that counteracts the drug effect

and restores EI to the set point. This model described EI

data from food restriction studies in rats and humans as

well as EI data from mice and rats dosed with appetite-

suppressing drugs. While this demonstrates the broad

applicability of the model, the data base for the model

fitting (e.g. the number of dose groups) was limited and

could not support the adequate estimation of all model

parameters. Moreover, the model did not include BW,

which is the main variable of interest in obesity drug

development.

This article introduces a modified version of the Gen-

nemark model that uses a more parsimonious homeostatic

feedback function and additionally incorporates the rela-

tionship between EI and BW (Fig. 1). The model was

developed based on rich data from lean and DIO rats

treated with LAMY using various dosing regimens, which

enabled an adequate estimation of all model parameters.

We used a population approach to account for inter-indi-

vidual variability and investigated whether model param-

eters differ between lean rats and DIO rats. Recognition of

these differences would allow the prediction of drug effects

in chronic DIO studies based on acute studies in lean rats

that were used for compound-screening. We evaluated the

model by testing its ability to predict a toxicology study

that was not part of the model development dataset.

Finally, we utilized the new model to understand how

dosing regimens could be optimized for treatment of

obesity.

Materials and methods

Rat studies

Ten independent preclinical studies using rats treated with

LAMY are included in this publication. Studies 1, 8 and 9

were PK studies in Sprague–Dawley rats and Wistar rats,

respectively. Studies 2–5 were single dose PD studies in

lean Sprague–Dawley rats, studies 6 and 7 were longer-

term, chronic PD studies in DIO Sprague–Dawley rats and

study 10 was a 2-week toxicology study in lean Wistar rats

(LAMY). An overview of the study details is given in

Table 1. All animal experiments were conducted in

accordance with internationally accepted animal welfare
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guidelines and were approved by the respective commit-

tees for animal research in Germany and Denmark. Male

Sprague–Dawley rats were obtained from Taconic A/S,

Denmark (studies 1–4 and 6) or Janvier Labs (studies 5 and

7–10). The animals were allowed to acclimatize for at least

7 days to their new environment before entering a study.

The rats were housed in groups of n = 2 at 20–22 �C,
relative humidity of 45–65% (study 1), 50–80% (studies

2–4 and 6) or 55 ± 10% (studies 5 and 7–10) and a

12:12 h light–dark cycle. During each study, animals had

access to food and water ad libitum. In studies 1–5 and

8–10 normal chow was used (studies 1–4: Altromin 1324,

Brogaarden A/S, Gentofte, Denmark; study 5 and 8–10:

Diet 3430, Kliba Nafag, Provimi Kliba AG, Kaiseraugst,

Switzerland). In studies 6 and 7, rats received a high-fat

diet (HFD, study 6: 60% of total energy from fat, 58126

DIO Rodent Purified, Herfølge, Denmark; study 7: 60% of

total energy from fat, D12492 Ssniff Spezialdiäten GmbH,

Soest, Germany) for 12 or 20 weeks, respectively, prior to

dosing and throughout the treatment period. The LAMY

was freshly formulated prior to dosing using 50 mM his-

tidine, 200 mM mannitol buffer pH 7 with and without 1%

ammonia (studies 7 and 1–4, 6, respectively), 20 mM

phosphate, 5% mannitol buffer pH 6 (studies 5, 8–10). In

studies 6 and 7 animals received the vehicle on days with

no LAMY administration. Drug concentration was ana-

lyzed in blood samples from defined time points. In PD

studies 2–7, FI and BW were measured daily at the time of

dosing. In all studies FI was assessed per cage, representing

the FI of two rats (FI per rat was assumed to be half of the

FI per cage).

Analysis of LAMY concentration in plasma

Blood samples of were collected in Microvette� tubes

0.50 mL K3EDTA (Sarstedt). The Microvette� tubes were

ice-chilled prior to sampling. After collection, the blood

was gently mixed by inverting the tube several times and

stored upright on ice until centrifugation. Blood samples

were centrifuged for 5 min at 8.3009g at 4 �C. After

centrifugation, plasma was aliquoted and stored below

- 70 �C until further analysis. Plasma concentrations of

LAMY were analysed using a liquid chromatogra-

phy/tandem mass spectrometry (LC/MS/MS) with an cal-

ibration range of 1–1000 nM for studies 1–4, 6 (Xevo TQ-

S, Waters, Milford, Massachusetts, USA), and a range of

0.5–1000 for studies 5, 7–10 (QTrap 6500?, Sciex, Tor-

onto, CA). Samples were pretreated with ethanol for pro-

tein precipitation before the analysis.

Modeling and simulation activities

Software, estimation methods and model
evaluation

Model development and parameter estimation was per-

formed using Phoenix WinNonlin 6.4, NLME 1.3 (Certara,

Princeton, New Jersey, USA). Nonlinear mixed-effects

(NLME) modeling was performed by applying the first-

order conditional estimation–extended least squares

(FOCE–ELS) with an interaction estimation method. A

stepwise approach was used for model development.

Fig. 1 Schematic representation of the PK/PD model. The PK/PD

model consists of a PK model, an EI model and a BW model. The

LAMY concentration–time profile is described by a 2-compartment

model with first-order absorption from a depot compartment. The

concentration in the central compartment inhibits EI via the drug

inhibitory function I(C). This leads to a negative discrepancy relative

to the reference EI without drug treatment, EIref. The resulting

cumulative EI imbalance Y drives the appetite control signal h(Y7),

which increases EI, thereby counter-regulating the drug inhibition.

Several transit compartments (Y2–Y7) are included to describe the

time delay between EI imbalance and homeostatic feedback. BW is

characterized by a turnover model with EI as input and first-order BW

loss. Variables for which data were available are indicated by grey

shading. The model parameters are written in italics
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Firstly, the PK model was developed based on available

plasma concentration data. Secondly, PD data (daily EI and

BW) were modeled simultaneously using PK parameters

estimated in step 1. This approach was chosen because

there were many more PD observations compared to PK

observations, and therefore the PK model could otherwise

be affected by potential misspecifications in the PD model.

Overall, BW was considered as the most important variable

to assess the anti-obesity drug effect.

Simulations were performed by applying R, version 3.1.0

(R Foundation for Statistical Computing, Vienna, Austria.

ISBN 3-900051-07-0, URL http://www.R-project.org). In

addition to the standard R packages, ggplot2, version 1.0.0

and deSolve, version 1.10-9 were used for plot generation

and model-based simulations, respectively [31, 32].

Model selection and evaluation in all steps of model

development were based on the following criteria: (a) suc-

cessful model convergence (successful parameter estima-

tion as well as estimation of the variance–covariance

matrix), (b) numerical model selection criteria (- 2 times

log likelihood (- 2LL), cut-off D3.84 for degrees of

freedom, df = 1, representing a B 0.05 for nested mod-

els), (c) precision of fixed and random parameter estimates

(95% confidence interval of the respective parameter esti-

mates did not include zero or one dependent on parameter

inclusion), (d) standard goodness-of-fit plots (plots of

observations versus (individual) predictions, individual

predicted and observed time profiles, residual plots as well

as e- and g-distribution plots) and (e) visual-predictive

checks, stratified by both study and dose group, but nor-

malized for different starting BW. For visual predictive

checks, simulations were performed 100 times for each

subject and observation. The simulated time profiles were

used to calculate the 95% confidence interval of the median

time profiles, as well as the 80% prediction interval (10th–

90th percentiles). For an adequate description of the data,

the median of the observations should be within the cal-

culated confidence interval and 80% of the observed data

should be within the calculated 80% prediction interval of

the simulated data.

The structural model

The PK/PD model describing the relationships between

LAMY plasma concentration, EI and BW is illustrated in

Fig. 1. The structural model consists of three parts, (a) the

PK model for the LAMY compound, (b) the EI model, and

(c) the BW turnover model.

The pharmacokinetic model

Different models ranging from 1- to 3-compartment mod-

els were investigated. In addition to the standard PK

models, different absorption models with zero-order, par-

allel first-order absorption processes, and parallel first- and

zero-order absorption processes were investigated. A two

compartment model with first-order absorption was finally

selected as the best PK model and used as a basis to

evaluate the FI and BW model.

The food intake model

The second part of the structural model describes the FI

and how the FI is inhibited by the LAMY compound. We

assumed that the LAMY inhibits EI without influencing EE

because the effect of amylin agonism on EE is not well

investigated and seems to be negligible relative to the

effect on EI [21–23]. Moreover, in-house indirect

calorimetry studies did not show a significant change in EE

following treatment with 2 nmol/kg LAMY every 2 days

for 16 d, followed by an increased dose of 5 nmol/kg every

2 days for 14 d (data not shown). Therefore, EI was

modeled as a function of LAMY plasma concentration by

adapting an EI model with homeostatic feedback [30].

Energy intake was measured and modeled as cumulative EI

(EIcum) in kcal over a full day. In the model this was

obtained by integration of Eq. (1) over 24 h (see Eqs. 1

and 2):

EIðtÞ ¼ EIref � I C tð Þð Þ þ hðY7ðtÞÞ ð1Þ

EIcum ¼ r
24

0

EIðtÞ ð2Þ

where EI(t) is energy intake at time t, EIref represents the

reference EI without drug treatment, I(C(t)) is the con-

centration-dependent inhibitory function at time t and

h(Y7(t)) represents the appetite control signal at time t that

will be defined below. Since our biomarker was EIcum over

24 h (i.e., daily measurements of EI), EIcum was calculated

separately for each day by setting the initial condition to

zero at the start of each day. Using continuous measure-

ment of EI, we observed that rats feed primarily in the time

from 5 pm to 5 am (dark phase 6 pm–6 am), consuming

2–3 major meals (data not shown). Therefore, EIref was

assumed to be constant for 12 h (starting 1 h prior to the

dark phase) and was assigned to 0 for the remaining 12 h.

This simple approach was used rather than a more accurate

modeling of the complex pattern of EIref because contin-

uous measurements of EI were not performed in the

reported studies. The circadian rhythm may be disregarded

in case of constant drug concentrations (e.g., infusion), but

should be considered when drug concentrations change

significantly between the day and night phase. Since the

LAMY compound is slowly absorbed, with peak plasma

concentration (Cmax) reached after 24 h, we decided to

incorporate the circadian rhythm of FI in order to
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accurately describe the FI, regardless if the drug is

administered in the day or night phase.

I(C) was given by a sigmoid function of the plasma

concentration C:

I Cð Þ ¼ 1� Imax � Cn

ICn
50 þ Cn

ð3Þ

where Imax is the maximum inhibitory potential, IC50 is the

LAMY concentration for 50% inhibition and n is the Hill

exponent.

Feedback regulation of EI in the model is driven by the

difference in EI with and without drug treatment. In order

to consider not only the EI difference at time t, but also a

memory of previous imbalances, a cumulative energy-im-

balance function Y(t) was suggested by Gennemark et al.

[30]. Here, Y(t) is obtained by integration of the ordinary

differential equation:

dY

dt
¼ ðEIref � EIðtÞÞ � ktr � Y ð4Þ

The FI data indicated a delay before the cumulative energy

imbalance elicits a feedback, potentially representing the

time for turnover of signal mediators and/or signal trans-

duction. Different numbers of transit compartments were

empirically investigated to account for the delay in the

feedback (range of transit compartments, n = 1–20). The

best transit compartment model was selected as described

in the model evaluation section. The equations for a transit

feedback model with 7 transit compartments are described

in Eqs. (5) and (6):

For i ¼ 2�6 :
dYi

dt
¼ ktr � ðYi�1 � YiÞ ð5Þ

For i ¼ 7 :
dY7

dt
¼ ktr � Y6 � k � Y7: ð6Þ

where ktr represents a first-order transit rate constant, and

k represents the first-order rate constant describing the

disappearance of the feedback signal from Y7.

The appetite control signal h(Y7) is a linear function of

Y7 with the empirical slope parameter h:

h Yð Þ ¼ h � Y7: ð7Þ

The body weight model

The third and last part of the structural model is the BW

model. As the BW change over time directly depends on

the EI over time, the parameters of this model were

simultaneously estimated with the second part of the

structural model (the FI model). The change in BW over

time was modeled by a turnover model (Eq. 8), as previ-

ously described by [27]:

dBW

dt
¼ EF � EI � kBW � BW : ð8Þ

where EF represents the efficiency factor that describes

conversion of energy (in kcal) to BW (in g) and kBW is a

first-order rate constant describing the BW loss. The indi-

vidual BW was initialized with the first measured BW for

each rat. In contrast to the PK or EI model, the BW will not

achieve steady-state because rats continue to grow

throughout their life [33, 34]. As indicated earlier, the

LAMY had no direct influence on energy conversion or

relative BW loss; therefore, no drug effect terms were

included in Eq. (8).

Equation (8) is a simplified version [35–37] of a

mechanistic body composition model that has been used

for mice [38–40], rats [41] and humans [35–37]. Our

parameters EF and kBW correspond to 1/q and e/q,
respectively, where q and e were previously defined by the

following equations.

q ¼ gFM þ qFM þ agFFM þ aqFFM
ð1� bÞð1þ aÞ ð9Þ

e ¼ 1

ð1� bÞ
cFM þ acFFM

ð1þ aÞ þ k

� �
ð10Þ

FM and FFM denote the 2 compartments fat mass and fat-

free mass and a is a function describing the relationship

between changes in FFM and FM. q is the energy density

for changes in (F)FM, b is a parameter for diet-induced

thermogenesis, c is a proportionality constant for the

relationship between metabolic rate and (F)FM, g is a

proportionality constant for the relationship between

energy expenditure and change in (F)FM and k is a pro-

portionality constant for physical activity per g (F)FM.

Detailed descriptions of the body composition model [40]

and its linearization [35, 37] are provided elsewhere.

The statistical model

The statistical model consists of two parts, the first one

describing the inter-individual variability and potential

inter-occasion variability, and the second part describing

the residual (unexplained) variability. The inter-individual

variability (IIV) was investigated in a stepwise procedure

after each step of the model development (e.g., PK model,

EI and BW model). Additional IIV terms were added

subsequently according to the selection criteria described

above (except the likelihood ratio test = drop in - 2LL).

Inter-individual variability in rate constants was assumed

to be log-normally distributed (to prevent negative

parameter estimates, Eq. 11). For other model parameters,

both log-normal and normal distributions of IIV were

investigated (Eq. 12):
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hk;i ¼ hk � egk;i ð11Þ

hk;i ¼ hk � ð1þ gk;iÞ ð12Þ

where hk is the population estimate of the model parameter

k, hk,i is the individual parameter estimate for parameter

k in individual i, and gk,i is the value of the random effect

parameter on parameter k for the individual i. Inter-occa-

sion variability could not be investigated as only one EI

and BW data point was available for each individual per

occasion, therefore no differentiation between inter-occa-

sion variability and residual variability can be performed.

Different residual variability models (RV), accounting,

e.g., for possible measurement errors, residual unexplained

IIV, unexplained inter-occasional variability, and model

misspecification, were investigated. Proportional (Eq. 13),

additive (Eq. 14) and combined residual variability models

(proportional ? additive) were each investigated for

plasma concentration, EI, and BW:

yi;j ¼ fi;j � ð1þ ei;jÞ ð13Þ

yi;j ¼ fi;j þ ei;j: ð14Þ

where yi,j is the jth observation for the ith individual, fi,j is

the corresponding individual prediction and ei,j is the

residual variability term.

Covariate analysis

Potential covariate-parameter relationswere pre-selected based

on physiological plausibility, exploratory plots, as well as the

data that were available for investigation. The covariates rat

model (lean vs DIO), study type (PK vs PD studies) and

investigatorwere tested on PKparameters. The covariates BW,

rat model, study type, as well as food were additionally inves-

tigated on PD parameters. If none of these covariates could

describe specific trends between and within studies, the study

itself was investigated as a covariate to empirically quantify the

difference to the other studies. The covariate-parameter rela-

tionswere investigated as bothproportional or power covariate-

parameter relationships, using centering on the population

mean in case of continuous covariates. Covariate effects were

tested by forward selection and were included if they reduced

the value of the -2LL by at least 3.84 points (a B 0.05,

assuming v2-distribution of the difference in the - 2LL

between the two nested models, 1 degree of freedom).

Results

LAMY pharmacokinetics

The PK of the LAMY in plasma was investigated in lean

rats following i.v. and s.c. administration (study 1). As is

typical for peptides [42], the i.v. PK was bi-exponential and

was well-described by a 2-compartment PK model (Fig. 2,

Table 2). The central volume of distribution (Vc) was

0.044 L/kg (95% confidence interval (CI): 0.0420–0.0460

L/kg), which is consistent with the plasma volume of

Sprague–Dawley rats of comparable weight (0.041 L/kg

[43]) and consistent with the distribution of the LAMY in

plasma and extracellular fluid. The terminal half-life fol-

lowing s.c. administration in lean rats was 31 h, as desired

for a long-acting peptide. The maximum concentration

after s.c. administration was reached at 24 h post dose, due

to a low absorption rate constant (ka) of 0.0334 h-1

(0.0315–0.0353 h-1).

LAMY concentrations were also measured in pharma-

codynamic (PD) studies 2–7 following a range of doses,

indicating dose-linearity of the PK (Fig. 3a). There was a

trend for higher dose-normalized concentrations in DIO

rats than in lean rats, which prompted us to do a covariate

analysis on the disposition parameters Vc, Cl, Vp and

Q. Plausible covariates would be the water content or fat-

free mass since the distribution of peptides is usually

confined to body water [42]. However, as these covariates

were not measured and could not easily be estimated, we

used the categorical covariate ‘rat model’. This covariate is

also more convenient for the prediction of PK/PD studies

without prior knowledge of the exact baseline body

weights. The weight normalized volume and clearance

parameters were significantly lower in DIO than in lean

rats (52.6% (46.4–58.8%) and 22.6% (13.5–31.7%),

respectively; Table 2). A comparable difference in PK

parameters and resulting higher exposure in DIO rats ver-

sus lean rats was observed for another peptide drug, namely

liraglutide (see Supplementary Fig. 1, Supplementary

Table 1).

Fig. 2 LAMY Pharmacokinetics. Graphs show individual measured

concentrations (symbols), as well as PK model fits (lines), following

i.v. (grey) and s.c. (black) administration of 20 nmol/kg of the LAMY

to lean rats (study 1)
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There were also significant inter-study differences in the

bioavailability (F) after s.c. administration. F was 0.489

(0.312–0.665), 0.582 (0.498–0.665) and 0.886

(0.798–0.972) in the PK study 1 and the PD studies 2–4 in

lean rats at Zealand Pharma (ZP), the PD study 6 with DIO

rats at ZP, and the PD studies 5 and 7 at Boehringer

Ingelheim, respectively. Notably, a covariate effect on all

systemic disposition parameters instead of F would

describe the data equally well, but a change in F was

thought to be more plausible (e.g., analytic bias, slightly

different dose administered etc.). Overall, the model pro-

vided an adequate description of all PK data with exception

of four outliers (Fig. 4a, Supplementary Figs. 2, 3).

Description of EI and BW data

The effect of the LAMY on EI and BW was tested in 5-day

studies with a total of 109 lean rats (studies 2–5), and in

chronic studies with a total of 64 DIO rats that had received

a high-fat diet for several weeks prior to treatment (studies

6–7, see Table 1). In 5-day treatment studies, single

LAMY doses, ranging from 3 to 200 nmol/kg, were

administered s.c. to lean rats. This led to a dose-dependent

decrease in daily EI and BW (shown exemplary for study 2

in Fig. 3b, c, also compare Fig. 5). EI was reduced most on

day 2, but then returned to baseline faster than expected

based on measured plasma LAMY concentrations (Fig. 3a,

b), suggesting feedback regulation of EI. This becomes

clear when comparing EI at two different time points with

similar measured concentrations (e.g., 1 day after dosing of

10 nmol/kg and 4 days after dosing of 30 nmol/kg, Fig. 3a,

b). The feedback regulation is also reflected in the con-

centration-EI relationships presented in Fig. 3d. EI

inhibition resulted in BW loss relative to the vehicle group,

which was maximal within 24 h from the maximum EI

effect.

The anti-obesity effect of chronic LAMY treatment was

investigated in DIO rats. A dosing interval of 2 days was

used to measure effects with a low fluctuation of peptide

concentration as expected for humans with weekly

administration, while higher dosing intervals of 4 days

were included to be able to observe the feedback-driven

return of EI and BW to baseline. Overall treatment duration

was ca. 4 weeks, a time frame that corresponds approxi-

mately to 1 year in humans when adjusting for average life

span of the species [30]. The EI over time in DIO rats was

comparable to that in lean rats, showing a quick initial drop

in EI followed by a slow increase. After approximately

12 days, EI reached a steady state slightly lower than that

of the vehicle group (shown for studies 6 and 7 in Fig. 6

and Supplementary Fig. 7, respectively). When comparing

groups in studies 6 and 7 that received the same (10 nmol/

kg every 4 days), one notices that the maximum EI

reduction was achieved after 2 days in study 6 compared to

a maximum FI inhibition 1 day after LAMY administration

in study 7. Knowing the PK of LAMY and the circadian

rhythm of FI, this can be explained by the different timing

of LAMY administration in the two studies (see Table 1).

In study 6, LAMY was administered directly at the start of

the feeding phase (night phase). Since the drug is absorbed

slowly (tmax = 24 h), maximum plasma concentrations and

hence inhibition of FI was not achieved within the first

feeding phase. In study 7, LAMY concentrations during the

feeding phase on the first day were higher since the LAMY

compound was administered 8 h before the feeding phase.

This also demonstrates the importance of applying a dose–

Table 2 PK parameter

estimates
Parameter name Abbrev. Unit Estimate RSE (%)

Population PK parameters

Bioavailability F – 0.489 16.7

1st-order absorption rate constant ka h-1 0.0334 2.61

Central volume of distribution Vc L kg-1 0.0440 2.05

Peripheral volume of distribution Vp L kg-1 0.0592 1.66

Clearance Cl L kg-1 h-1 0.00255 3.23

Intercompartmental clearance Q L kg-1 h-1 0.00968 16.7

Covariate parameters

% change in Vc and Vp in DIO rel. to lean rats – - 52.6 20.4

% change in Cl and Q in DIO rel. to lean rats – - 22.6 5.94

% change in F in study 5 and 7 (BI vs ZP studies)a – 81.2 11.1

% change in F in study 6a – 19.1 45.4

Residual variability parameters

Residual variability in concentration (proportional) rplasma %CV 31.9 7.55

aThe fitted values of F should not be regarded as physiological, but rather as factors accounting for inter-

experimental variability
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Fig. 3 PK, EI and BW in an acute screening study in lean rats (study

2). Graphs and points show time profiles of plasma concentration (a),
daily EI (b) and BW (c) in lean rats following a single s.c. dose of

LAMY at 0 nmol/kg (light grey), 3 nmol/kg (medium grey), 10 nmol/

kg (dark grey) and 30 nmol/kg (very dark grey). Symbols and

whiskers represent a the mean ± SD for 2 animals (observed

concentration), b and c the mean ± SD for 4 cages with 2 animals

per cage (observed daily EI), or 8 animals (observed BW),

respectively. d Hysteresis plot of concentration versus daily EI.

Labels in d indicate time in days

Fig. 4 Bland-Altman plots of residuals versus mean of individual

predicted and observed values. Data are shown for plasma concen-

tration (a), daily energy intake (EIcum) (b) and body weight (c) from
i.v. PK studies (black), s.c. PK studies (grey), and PD studies (white).

The dashed lines represent the mean ± the standard deviation, as well

as the mean difference between the individual prediction and

observation
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exposure–response analysis, as a standard dose–response

analysis would not be sufficient to describe this time-de-

pendent food inhibition.

BW initially decreased relative to the vehicle group and

reached the lowest values ca. 11 days following maximum

EI inhibition, but did not drop further in the last 2 weeks of

treatment (Fig. 6). The vehicle-corrected BW loss was

5.77% (1 nmol/kg every 2 days), 10.1% (3 nmol/kg every

2 days) and 16.3% (10 nmol/kg every 4 days) in study 6,

and to 11% (3 nmol/kg every 2 days) and 10% (10 nmol/

kg every 4 days) in study 7 (Supplementary Fig. 7).

Overall, the results indicate the presence of a feedback

regulation of EI that gives rise to tolerance against the

LAMY with multiple dosing.

Modeling of EI and BW

We investigated whether the EI and BW data can be

described by a PK/PD model that integrates drug-mediated

inhibition of EI and counter-modulatory feedback (Eqs. 1–

8). The parameters of the model were estimated simulta-

neously based on data from studies 2–7. The incorporation

of the circadian rhythm of FI was necessary for the model

to describe the observed dependence of the time to maxi-

mum EI reduction on the time period between drug

administration and the feeding phase. A good description

of the initial EI reduction enabled an adequate estimation

of the model parameters, especially the IC50.

The feedback signal in our model is a linear function of

the difference in cumulative EI between treated and

untreated rats (Eqs. 6, 7). It includes only a single

parameter h and is therefore more parsimonious than the

previously used Gompertz function with the upper

asymptote hmax and the slope parameter hslope [30]. While

the Gompertz function was investigated, it did not provide

any statistical superiority. The feedback function was

added to, rather than multiplied with [30] EIref (Eq. 1)

because the latter could not properly describe an initial EI

inhibition[ 90% followed by feedback-mediated EI

increase. A time delay of the feedback signal in the form of

transit compartments was required to adequately describe

the strong initial reduction in EI in combination with a

feedback after the first days. The parameter estimate for ktr
was 0.277 h-1 (0.248–0.305 h-1), corresponding to a mean

transit time of 25.3 h for onset of the feedback.

IIV terms were tested for all PD parameters, but the data

could only support IIV estimation for EI without drug

treatment during the feeding phase (EIref,on) and the IC50. A

plot of gEI,ref,on separated by study revealed inter-study-

differences in EIref,on, which could partly be described by a

Fig. 5 Visual predictive check for study 2 (lean rats treated with

LAMY). Graphs show time profiles of daily EI (top) and BW

(bottom) in lean rats receiving vehicle (a, e) or LAMY s.c. at 3 nmol/

kg (b, f), 10 nmol/kg (c, g) or 30 nmol/kg (d, h). Symbols are

individual data for 4 cages with 2 animals per cage (daily EI), or 8

animals (BW). BW data are normalized to initial BW. Black lines

represent the median of observations while the dark grey shading

indicates the simulation-based 95% confidence interval of the median.

The 80% prediction interval (10th–90th percentiles) is shown as light

grey shading
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covariate effect of 7.27% (3.40–11.1%) higher EI in DIO

rats than in lean rats. This is in agreement with previous

studies comparing EI in male SD rats fed standard and

high-fat diets [44, 45]. Furthermore, the data indicated that

EIref,on in study 5 differed from the other studies in lean rats

with 24.8% (15.7–33.8%) higher EI. Potential reasons

could be the different diet source, animal provider or study

site used in study 5 (see Table 1).

When adding an IIV parameter on the first-order rate

constant describing the BW loss (kBW) instead of the IC50,

plots of observations versus population predictions indi-

cated a model misspecification especially for rats with very

high BW. This trend could partly be described by a power

covariate-parameter relationship (see footnote c of

Table 3), which assigns lower values of kBW,i to individuals

with higher BW. The population estimate of kBW
(0.00169 h-1 (0.00140–0.00199 h-1)) is equivalent to a

half-life of 17.1 days (representing the time to 50% weight

loss in the absence of FI). IIV on kBW was not retained in

the final model because prediction versus observation plots

indicated a better data description when adding IIV on IC50

instead of kBW.

All fixed and random effect parameters of the model

were estimated with acceptable precision with relative

standard errors (RSE) B 20% (see Tables 2, 3), except the

covariate influences of the rat type on EI (RSE = 27.2%)

and the higher F in study 6 (RSE = 45.4%). The model

performance was evaluated using Bland–Altman plots

(Fig. 4) and standard goodness-of-fit plots (Supplementary

Figs. 2, 3). In addition, visual predictive checks were

performed (Figs. 5, 6, Supplementary material Figs. 4, 5,

6, 7).

Overall the model provided an adequate description of

the data, although the median of the EI observations lay

below the calculated 95% confidence interval of the sim-

ulation-based median in Fig. 6c and d. This indicates that

the speed of the feedback on EI within individual dose

groups was overestimated. Moreover, the model could not

describe the trend for a study-specific time-dependent

decrease (Fig. 6) or increase (Supplementary Fig. 7) of EI

in the vehicle control group. As no reason for this inter-

study discrepancy was identified, this phenomenon was not

included in the model. Therefore, the highest EI values

(representing reference EI at the end of study 7) were

under-predicted (see Fig. 4b). However, the model resid-

uals of the PK and BW model appeared randomly and

approximately normally distributed (Supplementary

Fig. 3), as expected for an adequately specified mathe-

matical model [46]. The most important readout, the BW,

was well described over the whole range of predicted BW

(see Fig. 4c).

Fig. 6 Visual predictive check for study 6 (DIO rats treated with

LAMY). Graphs show time profiles of daily EI (top) and BW

(bottom) in DIO rats receiving vehicle (a, e) or LAMY s.c. at 1 nmol/

kg every 2 days (b, f), 3 nmol/kg every 2 days (c, g) or 10 nmol/kg

every 4 days (d, h). Symbols are individual data for 4 cages with 2

animals per cage (EI plots) and 8 animals (BW plots). BW data are

normalized to initial BW. Color coding is as in Fig. 5
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The impact of the differences in PK parameters and kBW
between lean and DIO rats was illustrated by simulating a

4-week treatment with 10 nmol/kg LAMY every 2 days,

followed by a 2-week washout phase (Fig. 7a–c). The

simulation shows higher plasma concentrations in DIO

than lean rats, leading to a slightly higher initial EI

reduction and thus faster BW loss. The model predicts a

rebound of EI following treatment discontinuation that is

consistent with observations in the literature (see for

example [1]). The steady-state relationship between aver-

age LAMY concentration (Cave) and EI (EIave) during

treatment was determined by simulating 12 doses in a

1000-fold dose range (Cave and EIave were used for the

steady-state relationship to be applicable to different dose

intervals). This showed that the Cave required at steady

state for a 10% reduction of EIave is * 30 nmol/L

(Fig. 7d). At average concentrations[ 100 nmol/L EIave
approached a lower asymptote with approximately 15%

reduction relative to the vehicle-treated reference group.

Model-based design of a toxicology study

Dose selection for toxicology studies is a balancing act for

obesity drugs because doses need to be sufficiently high to

examine adverse effects, but should not elicit BW

loss[ 20% relative to the vehicle group according to

animal ethics regulations. Therefore, we used the LAMY

PK/PD model to plan a toxicology study with lean Wistar

rats. The PK parameters were determined from i.v. and s.c.

LAMY PK studies in Wistar rats to account for strain

differences in PK between Wistar and Sprague–Dawley

rats (see Supplementary Table 2). The PD parameters were

assumed to be equal in the two rat strains although there

may well be differences in growth rate or feedback. Dosing

three times a week with 2, 6, 20 and 60 nmol/kg was

predicted to cause BW loss of 3.28, 9.52, 16.2 and 19.1%,

respectively, relative to the vehicle group. The data were in

broad agreement with these predictions (Fig. 8). The model

correctly predicted the saturation of BW loss at the two

highest dose levels, although the maximum BW loss in

these two groups was slightly over-predicted (possibly due

to an under-estimation of homeostatic feedback).

Simulation of dose escalation

Using model-based simulations, we explored the utility of

escalating dosing schemes, because these are often used to

increase tolerability in rat toxicology studies and in the

clinic (e.g., for liraglutide [47] and pramlintide [48]). As

shown in Fig. 9, a dose of 9 nmol/kg causes a higher

Table 3 PD parameter estimates

Parameter Abbrev. Unit Estimate RSEa (%)

Population parameters of the PD model

Concentration for 50% inhibition IC50 nmol L-1 13.1 6.48

Hill exponent n – 1.57 13.1

Maximum inhibitory potential Imax
b – 1 –

1st-order rate constant for decline of Y(t) k h-1 0.00212 11.9

1st-order transit rate constant for input to and output from transit compartments ktr h-1 0.277 5.23

Slope parameter of h(Y) h – 0.0277 6.96

EI without drug treatment during the feeding phase EIref,on kcal�h-1 5.94 1.24

Efficiency of converting energy to BW EF g�kcal-1 0.272 9.83

1st-order rate constant for BW loss kBW h-1 0.00169 8.84

Covariate parameters

Power effect of BW on kBW
c COVBW,kBW – - 0.696 6.01

Proportional effect of rat type (DIO) study on EIref,on COVDIO,EIref,on % 7.27 27.2

Proportional effect of study 5 on EIref,on COVSt5,EIref,on % 24.8 18.6

Inter-individual variability parameters

Inter-individual variability in baseline EI xEIref,on %CV 4.82 11.0

Inter-individual variability in IC50 xIC50 %CV 42.5 15.3

Residual variability parameters

Residual variability in daily EI, EIcum (additive) rEIcum kcal 13.3 3.32

Residual variability in BW (additive) rBW g 4.49 6.29

aRelative standard error
bImax was fixed to 1 because data show that full inhibition of EI is possible
cIndividual parameter kBW,i = kBW�((BW/454.068)^COVBW,kBW

226 Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:215–233

123



reduction of EI in treatment-naı̈ve rats than in rats previ-

ously dosed for 12 days with lower doses of 3 nmol/kg and

6 nmol/kg every 2 days. In the latter case a higher cumu-

lative energy imbalance and thus a higher feedback signal

is already in place at the time of the first 9 nmol/kg dose

(on day 12) due to previous energy imbalances (Fig. 9c).

This simulation exercise suggests that dose escalation may

be a reasonable strategy for clinical trials. It could be

applied if the FI reduction was too strong in a single rising

dose Phase I study but higher doses were required to

maintain sufficient efficacy also for chronic treatment.

Discussion

Data on the effect of a LAMY on EI and BW in lean and

DIO rats are presented. Similar to amylin [15, 16, 24] and

other appetite-suppressing drugs [1], the LAMY used

showed a pronounced initial reduction of EI that levelled

off to a steady-state with EI slightly lower than in the

vehicle group upon chronic treatment (Fig. 6, Supple-

mentary Fig. 7). This biphasic response pattern was overall

well-described by a modified version of a previous PK/PD

model accounting for homeostatic feedback of EI [30].

In contrast to the previous publication [30], we used a

larger data base for a single compound (different doses and

dosing intervals), which allowed the estimation of all

Fig. 7 Comparison of LAMY PK/PD between lean rats and DIO rats.

a, b Simulated time profiles of concentration (a) and reference-

normalized daily EI (b) and BW (c) for DIO (black lines) and lean

rats (grey lines) dosed with 10 nmol/kg every 2 days for 4 weeks,

followed by 2 weeks without treatment. Dotted lines indicate levels in

the vehicle control group. Simulations used the PK/PD population

estimates given in Tables 2, 3. d Steady-state relationship between

the average concentration (Cave) and the average EI (EIave) within one

dose interval. The steady-state relationship is identical for lean and

DIO rats
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model parameters with adequate precision (Tables 2, 3).

The ability of the model to integrate lean and DIO rat data

from seven different studies using different dosing sched-

ules increased the confidence in the predictive power of the

model. Inter-individual variability was accounted for by

using a population approach. This is especially useful for

modeling of highly variable BW data, because the shape of

the typical BW time profile may be very different from

individual BW time profiles. The model predicted a steady-

state relationship between Cave and EIave with a lower

asymptote of 15% reference-corrected reduction, which is

in contrast to the greater EI reduction (35%) predicted by

the previous model at high concentrations [30] (a lower

asymptote was not shown in the respective publication).

This is due to the use of a linear function in place of the

saturable Gompertz function previously used to account for

physiological limits of feedback regulation [30]. There will

be an upper physiological limit for the feedback, but its

determination would require prolonged fasting (e.g., by

using high LAMY doses), causing greater weight loss than

allowed by animal ethics considerations. In the absence

such data, the presented linear function provides a good

mathematical approximation of the observed effects.

Model predictions deviated from observations mainly in

two respects. Firstly, the model did not describe the study-

specific time-dependent change of EI in vehicle-treated

DIO rats (Fig. 6a, Supplementary Fig. 7). This could be

considered in the model by assuming that the baseline EI,

EIref, is not constant, but a linear function of time. How-

ever, the opposing trends in EI observed in studies 6 and 7

would have required the additional inclusion of covariate

and/or random effects, which was not supported by the

available data. Secondly, the observed increase in EI fol-

lowing maximum EI reduction in DIO rats was slower than

predicted (see Fig. 6). A reason might be that rats ate less

due to nausea, which is a common adverse event of amylin-

and GLP1-analogues in the clinic [8, 47], and has also been

observed in rats treated with these agents [49, 50]. Nausea

was not accounted for in the model, because its underlying

mechanism as well as its dose and time dependence are

poorly understood. An alternative reason may be a com-

bination of feedback mechanisms with different time scales

that are not described by the model with only a single

feedback mechanism included. In the future, it would be

useful to discriminate short-term satiation feedback and

long-term adiposity feedback [20]. This however, would

require time-resolved data of the relevant hormone levels

in plasma.

In addition to the discrepancies discussed above, the

model has the following limitations. Firstly, a complete

understanding of the PK is limited by the sparsity of

plasma LAMY concentration data—especially for DIO

rats. Therefore, reasons for the observed inter-study vari-

ability in PK cannot be identified easily. Secondly, the

model does not account mechanistically for potential drug-

mediated changes in homeostatic feedback. For instance,

there is evidence that amylin agonism restores sensitivity to

leptin [9], which is a peptide hormone secreted by adipose

cells in proportion to adipose tissue mass and regulates BW

by inhibiting FI and increasing energy expenditure [51].

Thus, feedback stimulation of FI may decrease with time of

LAMY treatment, although there was no indication of this

in our data. Finally, our descriptive BW model simplifies

the relationship between EI and BW. More mechanistic

models for body composition of mice [38–40], rats [41]

and humans [35–37] have been published previously.

These models consider the two compartments fat mass

(FM) and fat-free mass (FFM) with different energy den-

sities, whose weight changes are driven by the difference

between EI and EE. EE in the models accounts for physical

activity and metabolic rate (and their dependence on FM

and FFM) as well as basal and diet-induced thermogenesis

and the energy required for degradation of fat or protein. A

key assumption of the body composition model is that the

relationship between changes in FFM and FM can be

described by a time-invariant Forbes function a. The model

by Selimkhanov et al. [41], that was developed for rats of

the same strain and gender as used in our studies, assumed

that a is constant. In this case the body composition model

can be simplified by introducing the parameters q and e
([35–37], see Eqs. 9 and 10). This yields the one-com-

partment BW model used by us (see Eq. 8) where EF and

kBW equal 1/q and e/q, respectively. The values of EF

(0.101 g/kcal) and kBW (0.000937 h-1) as calculated from

the parameters of the rat body composition model [41] are

Fig. 8 Prediction of BW in a toxicology study (study 10). The graph

shows predictions (lines) and mean BW (symbols) of Wistar rats

dosed with LAMY s.c. thrice weekly (Monday, Wednesday and

Friday), as indicated by the vertical black lines, with 0 nmol/kg

(black), 2 nmol/kg (dark grey), 6 nmol/kg (medium grey), 20 nmol/

kg (grey) and 60 nmol/kg (light grey). All data are normalized to the

mean BW of the vehicle group
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similar to our fitted estimates of EF (0.272 g/kcal) and kBW
(0.00169 h-1). However, the values are not directly com-

parable because we included an additional parameter to

consider the observed decrease of individual kBW with

increasing BW (COVBW,kBW). This covariate effect was

required for an adequate description of the data and may

have accounted for effects not incorporated in the mecha-

nistic model (e.g., lower physical activity or better insu-

lation of the body in obesity). Moreover, it may have

compensated for the crude and restrictive assumption of a

constant a value. Selimkhanov et al. already noticed that

their model with a constant a did not adequately describe

body composition of rats treated with a drug that impacted

FM more than FFM. LAMY would also fall into that cat-

egory, since amylin agonism is known to specifically

reduce FM while maintaining FFM [15, 16, 24, 25].

Therefore, the use of the Selimkhanov model would not

have improved the description of our BW data. However,

future rat studies that include the measurement of EE and

fat mass may allow the development of more suit-

able mechanistic body composition models.

Despite its limitations, our model provided an adequate

description of the BW of rats ranging from 250 to 700 g,

over time scales typically used in preclinical proof-of-

concept studies. The model may therefore be valuable for

model-informed study design.

Our PK/PD model was developed based on data for both

lean and DIO rats. The simultaneous modeling of lean and

DIO rat data allowed identifying differences in parameters

between the two rat models. The weight-normalized vol-

ume and clearance parameters of the tested LAMY were

lower in DIO than in lean rats (Table 2). The validity of

this result is limited by the sparse exposure data for DIO

rats and the lack of an intra-study comparison of LAMY

PK in lean and DIO rats, but was corroborated by

liraglutide PK data (Supplementary Table 1,

Fig. 9 PK/PD simulation illustrating the effect of dose escalation.

Time profiles of concentration (a), reference-corrected daily EI (b),
the cumulative energy imbalance Y7 (c) and reference-corrected BW

(d) from a simulation using the PK/PD parameters for DIO rats from

Tables 2 and 3. Grey line: Dosing with 9 nmol/kg every 2 days.

Black line: Dose escalation, dosing every 2 days with 3 nmol/kg

(doses 1–3), 6 nmol/kg (doses 4–6) and 9 nmol/kg (doses 7–14).

Vertical dotted lines indicate the different dosing periods
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Supplementary Fig. 1). Lower weight-normalized disposi-

tion parameters for DIO rats are in line with theoretical

considerations, since peptides generally distribute in body

water [42], but lean and DIO rats differ more in fat mass

than in water content. Since these considerations are also

applicable to humans, the BW dependence of the PK

should be investigated in clinical studies with our LAMY.

BW was previously found to be a predictor of the apparent

clearance (Cl/F) of liraglutide in patients with type 2 dia-

betes or obesity [52–54]. In these studies the covariate

effect on Cl/F was described by an allometric relationship

with exponent\ 1, which is in line with a decrease of

weight-normalized Cl with BW. Regarding the parameters

of the BW model, the modeling identified a dependence of

individual kBW on BW (discussed above), but no difference

between EF in lean and DIO rats. For both rat types, EF

was estimated to be 0.272 g/kcal. This means that

approximately 3.7 kcal are required to gain 1 g of BW.

This value is between the estimated values of energy

density for changes in FM (9.4 kcal/g) and FFM (1.8 kcal/

g) in rat [55].

The knowledge of the parameter differences and simi-

larities between lean and DIO rats can help in the design of

DIO studies based on acute studies in lean rats that are

earlier in the screening cascade of drug discovery. The data

from chronic DIO studies may then be used to refine the

model and to plan toxicology studies that are typically

performed in lean rats. The utility of this approach is

illustrated by the adequate prediction of a toxicology study

using the LAMY PK/PD model (Fig. 8). This approach

does not necessarily require the amount of data reported in

this manuscript. Based on our experience and exploratory

runs, the following studies appear sufficient to inform an

adequate model: (1) a single dose PD study in lean rats,

using 3 different doses that span the range from low to high

EI effects; (2) a chronic PD study with 4-week multiple

dosing in DIO rats, using three different doses (and dif-

ferent dose intervals if possible); and (3) a single dose PK

study in both lean and DIO rats. Ideally, both PD studies

should include the washout phase, since data on the

rebound of EI and the resulting BW gain contain valuable

information about the feedback and the BW model. Our

simulation showed that a study extension by ca. 10 days

would suffice to observe the rebound phase (Fig. 7). This

would facilitate model parameterization with little addi-

tional expense, especially when using automatic recording

of FI and limiting BW measurements to two or three times

weekly. Once the model is calibrated (combined with an

external evaluation for a second compound), it may be

sufficient to perform a single dose PD study in lean rats per

compound (again ideally including the washout phase). By

modeling these data, different drug candidates can be

ranked according to their in vivo IC50, which cannot be

estimated otherwise (see Fig. 3d). Using the determined

IC50 values, the efficacy in DIO rats may then be predicted

to enable selection of only the most promising candidates,

at the most suitable dosing regimens, for subsequent testing

in rats.

Our model was also used for simulations to identify

dosing schemes that may be useful for preclinical or clin-

ical studies—provided that the model translates to human

at least qualitatively. This showed that a step-wise dose

escalation can be used to avoid a high initial EI reduction

even though this delays BW loss (Fig. 9). The more uni-

form EI inhibition achieved with dose escalation may be

useful to avoid adverse effects possibly associated with

strong EI inhibition in rats and humans, and to increase

patient compliance in the clinic.

The ultimate goal would be the translation of our model

to man in order to predict the efficacious dose in the clinic

and to determine optimal dosing regimens (see for example

[56]). The PK of peptides can usually be translated to man

using allometric scaling or using existing clinical PK data

from comparable peptides. The BW model for the rat could

be replaced by the corresponding human model [35–37].

The question how feedback mechanisms translate to human

would be the most challenging one. In order to answer this

question, modeling of data from rodent and clinical studies

with the same compound would be required. To our

knowledge such a comparison has not been performed so

far. In addition to homeostatic feedback considered in our

model, hedonic and cognitive feedback circuits may also

play a role in man [57]. In the absence of more detailed

knowledge on feedback mechanisms, the effective con-

centrations determined in rodents can provide a reasonable

target concentration in human (comparable affinity of

LAMY to the human and rat receptor, data not shown

here).

Conclusions

We showed that a LAMY can reduce EI and BW in rats,

although homeostatic feedback of EI leads to tolerance

with multiple dosing. This behavior was adequately

described by a population PK/PD model including home-

ostatic feedback for EI, and an EI-dependent turnover

model to describe the BW change over time. The model

was evaluated by predicting the expected BW in a separate

toxicology study. Furthermore, the model provides the

opportunity to extrapolate from lean single dose studies to

multiple dose DIO rat studies in drug development. In

summary, the model may be valuable for the design and

interpretation of rodent studies with anti-obesity drugs.
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