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Abstract Non-small cell lung cancer (NSCLC) patients

greatly benefit from the treatment with tyrosine kinase

inhibitors (TKIs) targeting the epidermal growth factor

receptor (EGFR). However, emergence of acquired resis-

tance inevitable occurs after long-term treatment in most

patients and limits clinical improvement. In the present

study, resistance to drug treatment in patient-derived

NSCLC xenograft mice was assessed and modeling and

simulation was applied to understand the dynamics of drug

resistance as a basis to explore more beneficial drug regi-

men. Two semi-mechanistic models were fitted to tumor

growth inhibition profiles during and after treatment with

erlotinib or gefitinib. The base model proposes that as a

result of drug treatment, tumor cells stop proliferating and

undergo several stages of damage before they eventually

die. The acquired resistance model adds a resistance term

to the base model which assumes that resistant cells are

emerging from the pool of damaged tumor cells. As a

result, tumor cells sensitive to drug treatment will either die

or be converted to a drug resistant cell population which is

proliferating at a slower growth rate as compared to the

sensitive cells. The observed tumor growth profiles were

better described by the resistance model and emergence of

resistance was concluded. In simulation studies, the

selection of resistant cells was explored as well as the time-

variant fraction of resistant over sensitive cells. The pro-

posed model provides insight into the dynamic processes of

emerging resistance. It predicts tumor regrowth during

treatment driven by the selection of resistant cells and

explains why faster tumor regrowth may occur after dis-

continuation of TKI treatment. Finally, it is shown how the

semi-mechanistic model can be used to explore different

scenarios and to identify optimal treatment schedules in

clinical trials.

Keywords Acquired resistance � PKPD model �
Simulation � Tumor growth inhibition model � Tyrosine
kinase inhibitor � Patient-derived tumor xenograft mice

Introduction

Targeted therapies such as tyrosine kinase inhibitors (TKIs)

are widely used for cancer treatment. First generation of

TKI includes erlotinib and gefitinib, two small molecule

drugs with similar chemical structures which have been

approved for the treatment of NSCLC [1–3] and subse-

quently of various solid epidermoid cancers [4, 5]. Both

molecules target the ATP binding site of EGFR and inhibit

EGFR-induced activation of downstream signaling [6]. It

has been reported that long term treatment with these

EGFR-TKI drugs eventually leads to emergence of resis-

tance in most patients [1, 7, 8]. Two main type of resistance

have been described. Primary resistance, referring to

patients who are not responsive to the drug treatment and

secondary or acquired resistance, which is usually defined

as progression of disease after an initial period of clinical

benefit while the patient is still under treatment [9].
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Underlying mechanisms of resistance towards TKI drugs

have been thoroughly discussed in literature [8–14]. The

most frequently described molecular mechanism of

acquired resistance occurs in exon 20 (T790 M) [15–18].

This change leads to altered binding of the drug within the

ATP pocket [19]. Tumors with T790 M mutations were

found to have a slower, less aggressive course of tumor

progression [16, 20–22]. Despite initial responses, drug

effect drops and patients eventually progress due to

acquired resistance. In these cases, TKI treatment gets

commonly withdrawn and second line treatment is applied.

However, some reports mention that even though resis-

tance to the TKI treatment was identified, a discontinuation

of the treatment leads in some cases to a subsequent disease

flare [10, 15, 20]. Strategies to overcome resistance involve

combination therapies [23], mutant selective treatments

and altering conventional treatment schedules [22, 24–26].

Mathematical modeling has been applied in numerous

cases to investigate emergence of resistance and exploring

possibilities to overcome it [22, 27–30].

We recently conducted a translational PKPD study

based on in vitro and in vivo experiments to quantitatively

compare erlotinib and gefitinib and to retrospectively pre-

dict efficacious dose in humans [31]. The two compounds

were selected based on the strong tumor uptake differences

observed for erlotinib and gefitinib despite similar molec-

ular specificity. It was demonstrated that active drug

exposure at target site is higher for erlotinib despite having

lower total tumor to plasma ratios. Furthermore; the model-

based dose prediction matched the recommended clinical

doses well. However, model misspecification was apparent

in the high dose group which was not relevant to the

address the question of our previous work. It was specu-

lated that this was due to emergence of resistance and

therefore, these data were further explored in the present

study to investigate this in patient-derived NSCLC xeno-

grafts obtained by direct implants of surgically resected

tumors in mice. This animal model maintains morpholog-

ical similarities, tumor heterogeneity and recapitulates

molecular profiling of the original tumors [31]. The goal of

this work was to test if acquired resistance to treatment

with erlotinib and gefitinib can be observed in preclinical

studies and to simulate the dynamics of emergent resis-

tance. Applying parsimonious principles, we compared

model performance of two semi-mechanistic PK/PD

models with and without acquired resistance. This allowed

confirming or excluding emergence of resistance in xeno-

graft mice. With the final model, simulation studies were

conducted and the selection of resistant cells as well as

time-variant fraction of resistant to sensitive cells was

predicted. The proposed model provides insight into the

dynamic processes of emerging resistance and allows

exploration of dosing regimen.

Theoretical

PK model

An oral, 1-compartment model with first order absorption

and first order elimination, was fitted to the PK data from

the short and the long term experiments.

The PK model can be described with the following

equations:

dAd

dt
¼ � ka � Ad Ad 0ð Þ ¼ D ð1Þ

dAp

dt
¼ ka � Ad � ke � Ap Ap 0ð Þ ¼ 0 ð2Þ

Cp ¼
Ap

V � ðD � IÞ ð3Þ

where Ad corresponds to the quantity of drug in the depot

compartment, Ap [lg] to the amount of drug in plasma,

Cp[lg/L] to the plasma concentration and D [mg/kg] is the

weight normalized dose. V [L] represents apparent volume

of distribution, ka [1/d] corresponds the absorption rate and

ke [1/d] to the elimination rate. For gefitinib, a dose-de-

pendent decrease in volume of distribution was observed

and captured with the gefitinib-specific parameter I, while

it was fixed to 0 for erlotinib. Individual PK parameters

estimates are later fixed in the PKPD models.

TGI base model

Tumor volume (TV) is composed of dividing cells (S) and

damaged cells due to drug treatment (T1–T3). Unperturbed

tumor growth is described by a nonlinear growth model. This

model assumes a continuous switch fromexponential to linear

growth behavior as the tumor volume increases [32]. The drug

effect is delayed relative to the drug exposure in plasma and

captured by a signal transduction model as described by

Simeoni and colleagues [33].We estimated the drug effect via

a killing function involving a direct and linear effect model

[34]. It is described with the following equations:

TV = S + T1 + T2 + T3 ð4Þ
dS

dt
¼ 2� k0 � k1 � S

2� k0 � Sþ k1
� k2 � Cp � S S 0ð Þ ¼ TV0 ð5Þ

dT1

dt
¼ k2 � S� Cp � T1� k1 T1 0ð Þ ¼ 0 ð6Þ

dT2

dt
¼ k1 � ðT1� T2Þ T2 0ð Þ ¼ 0 ð7Þ

dT3

dt
¼ k1 � ðT2� T3Þ T3 0ð Þ ¼ 0 ð8Þ
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where TV0 is the tumor volume at the start of the study, k0
and k1 are the exponential and linear growth parameters, k1
is the rate accounting for the delayed effect and k2 repre-

sents the potency parameter of the compound.

Acquired resistance model

The base model is extended to capture acquired resistance

by introducing a compartment R representing the resistant

cell population which emerges upon drug treatment

(Fig. 1). As a result of drug treatment, tumor cells sensitive

to drug treatment undergo several stages of damage (T1–

T3), which are either killed or converted to a drug resistant

cell population with kSR describing the first order con-

version process as proposed by Li and colleagues [30]. The

conversion is integrated into the model as a delayed pro-

cess, consistent with the delayed drug effect. For the

resistant cell populations, the same structural model was

assumed for tumor growth but with distinct linear and

exponential growth rates. The parameter b denotes the ratio

of growth rate of resistant versus sensitive cells (Eq. 15).

Total tumor (TV) is the sum of sensitive (S), damaged (T1–

T3) and resistant (R) cells. A schematic representation of

the structural model is provided in Fig. 1 and is described

by the following equations:

TV ¼ Sþ T1þ T2þ T3þ R ð9Þ

dS

dt
¼ 2� k0 � k1 � S

2� k0 � Sþ k1
� k2 � Cp � S S 0ð Þ ¼ TV0 ð10Þ

dT1

dt
¼ k2 � S� Cp � T1� k1 T1 0ð Þ ¼ 0 ð11Þ

dT2

dt
¼ k1 � ðT1� T2Þ T2 0ð Þ ¼ 0 ð12Þ

dT3

dt
¼ k1 � T2� T3ð Þ � kSR� T3 T3 0ð Þ ¼ 0 ð13Þ

dR

dt
¼ 2� k0R � k1R � R

2� k0R � Rþ k1R
þ kSR � T3� DER R 0ð Þ ¼ 0

ð14Þ

And with the following relationship between the growth

rates of sensitive and resistant cells:

b ¼ k0R
k0

¼ k1R
k1

ð15Þ

where s denotes the average time it takes for tumor cell to

be eradicated or to convert to resistant cells given that

kSR � k1 and kSR can be neglected. This secondary

parameter is derived from the following equation:

s ¼ 3

k1
ð16Þ

Assuming a drug effect on the resistant cells (DER)

when plasma concentration (CP2) is above the threshold

concentration Cth

DER ¼ k2R � Cp2 if Cp2 [Cth elseDER ¼ 0 ð17Þ

The threshold concentration Cth was fixed based on an

in vitro study [20] reporting killing of resistant cells when

exceeding the threshold concentration (Cth_in_nvitro) of

1 lM of erlotinib (MW = 393.4 g/mol) and converted to a

total plasma threshold concentration (Cth) of 7150 lg/mL

by correcting for fraction unbound (fuÞ of 0.055 [35].

Cth ¼
Cth in vitro

fu
ð18Þ

Methods

In vivo tumor growth inhibition study

Tumor growth inhibition (TGI) studies were conducted in

primary patient NSCLC tumor (LXF A677) bearing mice

receiving erlotinib or gefitinib treatment. Experimental

details have been previously described elsewhere [31]. In

summary, the mice were randomized into 7 groups with 8

animals per group. Each group received either low, mid or

Fig. 1 Model structure of acquired resistance. As a result of drug

administration, tumor cells sensitive to drug treatment undergo

several stages of damage (T1, T2, T3) before the eventually die or get

converted to drug-resistant cells. Both, resistant and sensitive cells are

proliferating. Total tumor comprises sensitive, damaged and resistant

cells and fraction of resistant cells changes over time and as a function

of drug treatment. If drug concentration is above a threshold

concentration Cth, the resistant cells are eliminated by the drug

action. It is of note however that drug effect on resistant cells (DER)

with concentrations above threshold was used for simulations only as

no such effect could be identified during model parameter estimation
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high dose of erlotinib or gefitinib or vehicle only (control

group). The drugs were administered orally once per day

for 14 days. Tumor volume was monitored by caliper

measurements over 30 days and sparse PK samples were

collected. The detection limit for tumor volume was

5 mm3. The experimental study design is summarized in

table S1, supplementary material. An overview of missing

data due to early determination and data below limit of

quantification is summarized in supplementary table S2.

Parameter estimation

PKPD parameters were estimated using a population

approach with Monolix Version 4.2.2. (Lixoft), allowing

for estimation of fixed and random effects for each model

parameter and a residual error in one step [36]. Residual

errors for the PK were assumed to be proportional to pre-

dicted concentrations. For the PD, a combined error model

was selected. Diagnostic plots were inspected to select the

appropriate error model.

PK parameters estimated in previous report [31] were

used in the present study. The individual PK parameter

estimates were fixed and served as input in the PKPD

modeling.

PK parameters which were estimated and reported in a

previous publication [31] were used in the current study.

The individual PK parameter estimates were fixed and

served as input in the PKPD modeling. PD parameters were

estimated simultaneously by combining erlotinib and

gefitinib datasets while assuming the same tumor growth

rates of sensitive and resistant cells, delay parameter and

transfer rate to resistant cells. To allow a precise and

stable estimation of fixed effects, random effects were fixed

to low values if necessary. Model evaluation and selection

was based on model convergence, precision of the

parameter estimates, fitting criteria (Akaike Information

Criteria (AIC)) and visual inspection of diagnostic tools

such as visual predictive checks, residuals and observed

versus predicted plots.

Covariates

Covariates were tested for both PKPD models to test if

parameters change with dose. Based on the results (data not

shown) high dose treatment (100 mg/kg) was identified as

covariate for the transformation rate kSR in the resistance

model (Eqs. 9–14) and, in case of erlotinib, for the efficacy

parameter k2. The high dose group was assessed as cate-

gorical covariate in Monolix. Fixed effect and random

effect for the respective parameters are estimated for each

defined category (here low/mid vs. high dose) and the

statistical significance of differences between correspond-

ing estimates is evaluated and the corresponding p value

indicated. No PD covariates were identifiable and signifi-

cant (p value below 0.05) in case of the base TGI model

(Eqs. 4–8). A dose dependent change in the volume of

distribution was observed for gefitinib and computed by the

term V � D � Ið Þ (Eq. 3) as reported in [31]. I was esti-

mated for gefitinib and fixed to 0 for erlotinib (no dose

effect observed).

Simulation studies

Simulation studies were performed in Berkeley Madonna

v8.3.18. The aim of these simulation studies was to gen-

erate insights into dynamic changes of heterogeneous

tumors under drug treatment and to explore in silico other

treatment options in the preclinical as well as in the clinical

setting. The model codes are presented in supplementary

material (S3–S5). In order to compare dosing schedules in

mice, inter-individual variability was included on the

estimated model parameters (S4), 250 individual profiles

were simulated based on random sampling from the

respective parameter distribution space. The mean, the 5

and 95% confidence interval (CI) of the mean for these

profiles and additionally derived metrics were calculated:

CI ¼ l� 1:96 � r
n

ð19Þ

where l represents the mean, r the standard deviation and

n the number of samples. Additional metrics were quanti-

fied, minimal tumor volume achieved under the treatment

schedule, time to progression and tumor burden over time

(AUCE). The minimal tumor volume was derived from the

simulation output. Time to progression was defined as

timespan after treatment start until the tumor volume

supersedes the tumor volume measured at treatment start.

In order to show the impact of timing when the two dosing

schedules are compared and the corresponding AUCE after

30 and after 60 days are reported.

Results

PKPD model reveals acquired resistance in patient

derived xenograft mice

Data exploration (Fig. 2) shows dose dependent tumor

growth inhibition in patient-derived NSCLC xenograft

mice treated with erlotinib or gefitinib. Resistance to drug

treatment was not obvious based on visual inspection of the

mean data. However, some mice showed at the end of the

treatment phase reduced response to drug treatment (Sup-

plementary Fig S6) as indicated by visual inspection. In
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addition an unexplained bias occurred when the TGI data

are described with a direct effect model [31]. Furthermore,

it has been observed that in patients long term treatment

inevitably leads to resistance [1]. These findings lead us to

investigate potential emergence of resistance in this TGI

study in xenograft mice. In order to confirm or exclude

resistance to drug treatment, model performance of two

semi-mechanistic PK/PD models was compared, with

acquired resistance (Eqs. 9–14) and without resistance

(Eqs. 4–8). Both models were fitted simultaneously to the

individual data and the visual predictive checks are shown

in Figs. 3 and 4. All individual observations are within the

90% prediction intervals and overall, the data are reason-

ably well described by both models. However, while the

drug effect of the high dose group is over-predicted with

gefitinib (Fig. 4, lower panel), it is under-predicted with

erlotinib (Fig. 3, lower panel) with the base TGI model.

This model bias disappears when the same data sets are

fitted to the acquired resistance model (Figs. 3, 4, upper

panels). The variability was over-predicted at the higher

dose groups for erlotinib and gefitinib. The X-correlation
matrix was evaluated and no correlation between parame-

ters in its non-diagonal entries was observed (Supplemen-

tary Table S7). Table 1 summarizes the model performance

metrics. While the resistance model has two additional

parameters (n = 7), a lower Akaike information criterion

score (AIC 7560) was achieved, indicating improved

model performance of the resistance model as compared to

the base TGI model (AIC 7720). In addition, the residual

error (Table 1) is considerably decreased from 0.163 to

Fig. 2 Tumor growth inhibiton profiles (mean data) per treatment and dose group. Gefitinib is shown in red and erlotinib in blue. Dosing

schedule is indicated as small cubes above the curves

Fig. 3 VPC with resistance model (upper panel) and with TGI base model (lower panel) after treatment with erlotinib at different dose levels
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0.136 when adding a resistance term to the base TGI model

which suggests a more precise data description by the

acquired resistance model. In the present study, the total

number of missing data was 7% as displayed in table S2 in

supplementary material. The reason for missing data was

either because the animals were sacrificed due to high

tumor burden or due to occurrence of severe adverse events

during the study. Another reason was that data points were

below the detection limit (BLQ) of 6 mm3. It should be

noted that all BLQ values were observed at the end of the

treatment phase which was followed by observations dur-

ing drug wash-out phase. In the final analysis, we handled

BLQ data as missing information. During model building,

BLQ values were treated as left-censored data, but it did

not improve the model performance and did not reduce the

bias.

TGI model with acquired resistance predicts slowly

growing resistant cells

The final model parameter estimates for the resistance

model are displayed in Table 2. All parameters were

identifiable (Table 2) with standard errors below 25%.

Random effects were high (0.468–0.689), but well esti-

mated with low residual errors (below 25%). This high

dispersion was expected given the high variability

observed in the dataset. For both drugs, only one set of

parameter was estimated for system related parameters,

such as tumor growth rates k0 and k1. The drug-related

parameter k2, which is a measure of drug potency was

estimated separately for both drugs. As a result, for gefi-

tinib a 2–7-fold higher k2 value was observed (6.19

E-04 L/lg/d) as compared to high (of 3.15 E-04 L/lg/d)
and mid/low dose (9.21 E-05 L/lg/d) of erlotinib, for

which high dose was a covariate on this parameter. Given

the similar mode of action of both drugs, it was assumed

the transit rate (k1) and the conversion rate from damaged

to resistant cells (kSR) are the same for both drugs and only

one set of parameter was accurately estimated. The high

dose group was identified as a covariate on the transfor-

mation parameter (kSR) resulting in fourfold lower rate in

high dose (1.7 E-03 1/d) as compared to mid and low dose

group (7.4 E-03 1/d). Residual effects for s, k2-Gefitinib
and kSR were not identifiable and therefore fixed to low

values. The parameter b, denoting the ratio on growth rate

of resistant versus sensitive cells (Eq. 15), was estimated to

Fig. 4 VPC with resistance model (upper panel) and with TGI base model (lower panel) after treatment with gefitinib at different dose levels

Table 1 Model performance comparison of base TGI

Model evaluation Base TGI model Acquired resistance

TGI model

# parameter 5 7

Residual error 0.163 0.136

AIC 7718 7550

AIC akaike information criterion
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be 0.85. This result suggests slower growth of resistant

cells.

Time-variant fraction of resistant cells of total

tumor during and after treatment with erlotinib

Since all parameters were well estimated, the model was

applied to assess the dynamic processes of emerging

resistance. For illustration, this in silico exploration was

done for erlotinib only and the Berkeley Madonna code can

be retrieved from Supplementary material (S3). First, the

growth profile of total tumor was simulated as the sum of

sensitive and resistant cells in xenograft mice (Fig. 5)

treated with 100 mg/kg erlotinib, administered on day 3–8

and day 14–16 as tested experimentally. During the first

treatment cycle, the total tumor decreases and enrichment

of resistant cells remains negligible. However, during the

second treatment cycle, total tumor volume remains con-

stant due to two opposing effects, namely the reduction of

sensitive and the enrichment of resistant cells.

Next, simulations were conducted to predict the out-

come of a long term treatment study with 20 daily doses of

100 mg/kg erlotinib starting on day 3 followed by a wash-

out phase of 27 days. The simulated profiles are presented

in Fig. 6. At the start of the study, the tumor is composed

of sensitive cells only and the profiles of total tumor (black)

and sensitive cells (blue) superimpose. When high dose of

drug is administered, the sensitive tumor cells decrease due

to the drug induced cell killing. However, with drug

Table 2 Final PKPD parameter estimates, resistance model

Parameter Description Fixed effect (RSE %) Random effect (RSE

%)

Erlotinib Gefitinib Erlotinib Gefitinib

ka [1/d] Absorption rate 55.0 (X) 55.0 (X) – –

ke [1/d] Elimination rate 7.56 (10) 3.87 (10) 0.332

(39)

0.352

(20)

V [L] Volume of distribution 0.127 (15) 1.40 (11) 0.251

(X)

0.0278

(X)

I Factor denoting dose-dependent change in volume 0 (X) 0.00772 (22) – –

k0 [1/d] Exponential growth rate 0.217 (11) 0.487 (18)

k1 [mm3/d] Linear growth rate 42.8 (10) 0.653 (11)

k1 [1/d] Transit rate 1.52 (7) 0.2 (X)

b Ratio of growth rates of resistant versus sensitive cells 0.869 (18) 0.742 (18)

kSR [1/d] Transformation rate (damaged to resistant cells) 7.4 * 10-3 (8) 0.1 (X)

kSR (high dose) [1/d] Transformation rate (damaged to resistant cells), high dose

group

1.7 * 10-3 (30)

p = 2 * 10-6

–

k2 [L/lg/d] Drug effect, slope parameter 9.21* 10-5

(23)

6.19 * 10-4

(8)

0.655

(23)

0.2 (X)

k2 (high dose) [L/lg/
d]

Drug effect, slope parameter, high dose 3.15 * 10-4

(17)

p = 1.1 * 10-5

– – –

s (d) Average time for tumor eradication or emergence of

resistance

1.97 – – –

(X) denotes parameter estimates that were fixed and therefore no relative standard error is reported. The p corresponds to p-values which

indicates if the estimated kSR, and in case of erlotinib the estimated k2, is statistically different for the highest dose group (100 mg/kg) as

compared to the mid and low dose treatment group (25 mg/kg and 5 mg/kg)

Fig. 5 Simulation study in xenograft mice with 100 mg/kg erlotinib

administered on day 3–8 and day 14–16. PK (grey), total tumor

volume (black), as well as the tumor growth profiles of sensitive cells

(green) and resistant (red) cells are shown
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treatment, the accumulation of resistant cells starts (Fig. 6,

red line). As a result, total tumor shrinks and is now

composed of sensitive, damaged and resistant cells. After

initial response to drug treatment total tumor volume

(Fig. 6, solid black line) and fraction of resistant cells

(Fig. 6, dashed black line) increases, since the resistant

cells are selected and assumed not to respond to drug

treatment. Relapse of tumor occurs due to the slowly

growing resistant tumor cells and when drug treatment is

discontinued, the rate of tumor re-growth is markedly

increased. This is explained by the fact that a small fraction

of sensitive cells is starting to re-grow at their inherent

higher growth rate. After removal of the drug, fraction of

resistant cells decreases mainly because the sensitive cell

population rapidly overgrows the resistant cells.

Impact of dosing regimen on emergence

of resistance

We compared in silico resistance to drug treatment with

continuous versus pulsed dosing regimen. Similar PD

responses were obtained with the resistance model for both

dosing regimens (data not shown). However, Chmielecki

and colleagues [20] reported killing of resistant cells with

in vitro at concentration above 1 lM of erlotinib. Simi-

larly, for simulation purpose, the resistance model was

modified and a treatment effect on resistant cells in vivo

was assumed if free drug exposure exceeds the threshold

concentration of 1 lM of erlotinib (MW = 393.4 g/mol)

which corresponds to a total plasma threshold concentra-

tion (Cth) of 7150 lg/mL when correcting for fraction

unbound of 0.055 [35]. In our experimental setting such

effect on resistant cells could not be identified during

model parameter estimation. With the modified resistance

model (Supplementary material, S4), we compared in silico

continuous with pulsed dosing regimen achieving the same

average concentration in one treatment cycle. In line with

our TGI studies, high dose was simulated for the continu-

ous treatment with 100 mg/kg daily doses. The pulsed

treatment cycle started with 420 mg/kg given on the first

day, followed by 4 9 daily administration of 20 mg/kg the

following days. Simulated PK profiles of continuous and

pulsed dosing regimen in mice are displayed in Fig. 7a. In

both cases, the exposure exceeded the threshold concen-

tration (Fig. 7a). With continuous dosing, concentration

was maintained twofold above the threshold concentration

during the treatment cycle whereas maximal plasma con-

centration exceeded the threshold concentration fourfold

while exposure remained below the threshold concentra-

tion on 4 days of a 5 day cycle. When comparing the

predicted tumor growth profiles (Fig. 7b) a better anti-tu-

mor response was achieved with the pulsed dosing regimen

(Fig. 7b). Figure 7c depicts the tumor burden over time

under the two treatment schedules and Fig. 7d the differ-

ence between the two. It demonstrates a notably reduced

tumor burden over the simulated time span with the pulsed

treatment schedule. Other metrics, minimal tumor volume,

time to tumor progression and difference in tumor burden

after 30 and after 60 days under the two dosing regimen

were calculated (Table 3). While minimal tumor volume

and time to progression appeared similar for the two

treatment schedules, the tumor burden over time (AUCE)

was considerably lower under the pulsed treatment

schedule.

Simulation studies to select dosing regimen

for clinical trials with erlotinib

Next, we explored in silico the impact of dosing regimen to

reduce emergence of resistance in clinical trials with

erlotinib. Standard continuous therapy (150 mg daily dos-

ing) was compared to pulsed dosing regimen previously

tested in clinical trials [37], namely two daily pulses of

1050 mg followed by 5 daily doses of 50 mg in 7 day

cycle. Therefore, the mice PK parameters were replaced by

human PK parameters (model code in supplementary

material, S5). The simulated human PK profiles are shown

in Fig. 8a. With regards to drug-induced killing of resistant

cells, resistant cells will be killed if drug concentration is

above 7150 lg/mL. With continuous dosing regimen of

150 mg daily doses, the exposure remains below this

threshold concentration. With the pulsed treatment only

very negligible exposure above threshold seems feasible.

The clinical outcome was simulated (Fig. 8b) based on the

hybrid PKPD model with human PK as an input to the

acquired resistance model recapitulating the dynamics of

emergence of resistance in mouse. This approach is limited

Fig. 6 Simulation study in xenograft mice. Total tumor volume is the

sum of sensitive and resistant cells which are enriched upon drug

treatment. The fraction of resistant cells increases during drug

treatment and decreases when treatment is stopped
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when predicting the precise dynamic events of the clinical

outcome, however it allows a relative comparison of var-

ious dosing regimen assuming that the relative differences

in growth kinetics in mouse xenografts are likely preserved

in cancer patients [24]. In summary, the simulation predicts

a very minor potential delay of * 3 days under pulsed

treatment relative to continuous dosing regimen.

Discussion

NSCLC are heterogeneous tumors composed of multiple

subclones [8]. Resistance may occur as a result of selection

pressure mediated via the EGFR inhibition and clones with

Fig. 7 Simulation study with continuous versus pulsed dosing

regimen of erlotinib in mice assuming a threshold concentration of

7152 lg/mL (black dashed) before affecting resistant cells, a PK of

continuous, 100 mg/kg daily (green) and pulsed, 1 9 420 mg/kg and

4 9 20 mg/kg (red) dosing regimen, b corresponding tumor growth

inhibition profiles shown as mean and 5 and 95% confidence interval

of the mean, c the calculated AUCEs under continuous and pulsed

treatment and d the difference in AUCE under continuous and pulsed

treatment

Table 3 Comparison of continuous and pulsed treatment schedule in

mice—derived metrics

Metric Continuous Pulsed

TVmin (mm3) 46.8\ 60.9\ 73.9 45.3\ 69.5\ 84.0

Time to progression (d) 14.8\ 16.9\ 19.9 13.2\ 14.8\ 23.7

DAUCE30 1231\ 1589\ 1947

DAUCE60 9203\ 11357\ 13511

TVmin is the minimal tumor volume and DAUCE the area under the

curve of the tumor growth inhibition profile after 30 and 60 days

respectively. The metrics for both dosing schedules are reported as

mean (bold) and 5/95% confidence intervals of the mean
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either intrinsic or acquired resistance are selected driving

disease progression [8]. Emergence of acquired resistance

has been reported in most patients with EGFR mutant

NSCLC after long treatment with EGFR-TKI [9].

In the present study, we have investigated acquired

resistance to treatment with erlotinib or gefitinib in patient-

derived NSCLC xenografts to test if acquired resistance

can be observed in preclinical studies and to simulate the

dynamics of emergent resistance. Interestingly, resistance

to drug treatment could only be detected by modeling and

was not obvious from data exploration. An empirical

nonlinear tumor growth model [32] was used to describe

the unperturbed tumor growth kinetics. This is an important

prerequisite to well characterize and quantify the drug

effect [38], which is delayed relative to drug exposure in

plasma. Based on our previous results [31], we considered

plasma concentration as more relevant for the pharmaco-

dynamic effects as compared to total tumor concentration.

Erlotinib and gefitinib have different disposition profiles

with gefitinib displaying a 21-fold higher tumor to plasma

ratio of total drug concentration [31]. This is explained by

the physicochemical properties of gefitinib, particularly the

higher lipophilicity which is associated with a higher tissue

partition. In addition, due to its pKa of 5.4 and 7.2 as higher

binding in tumor tissue is expected due to ionic trapping in

the acidic tumor microenvironment. These data suggested

that tumor to plasma ratio which is based on total tumor

concentration is not directly associated with a higher con-

centration of pharmacologically active drug.

The proposed model of acquired resistance is an

extension of the base TGI model. It recapitalizes key

processes of acquired resistance, which is defined by

tumor-regrowth after initial tumor regression while patient

is still under treatment [9] and assumes that drug treatment

affects tumor cells sensitive to drug treatment which

undergo several stages of damage before they eventually

die or get converted to drug-resistant cells. This model

requires only two additional parameters; b, denoting the

ratio of growth rates of resistant versus sensitive cells and

kSR, representing a rate which converts damaged tumor

cells into resistant cells which are no longer killed by the

drug and which have the ability to proliferate [39]. The

base TGI and the acquired resistance model were both

fitted to the combined dataset including control, gefitinib

and erlotinib treatment groups. Based on parsimonious

principles, improved model performance was demonstrated

with the acquired resistance model obtaining a lower

Akaike criterion, lower residual errors and improved

goodness of fit plots. Furthermore, all parameters were well

identified from the data set. One set of parameters was

estimated for both drugs except for drug effect k2, which

was drug-specific. The proposed model uses a three com-

partment transit model to capture the drug effect on tumor

growth which is delayed relative to drug treatment [33].

This model assumes that upon drug action, a fraction of the

tumor cells stop proliferating and proceed through pro-

gressive degree of damage (T1–T3) before they eventually

die or become resistant. The secondary parameter s, which
denotes the average time it takes for tumor cell eradication

or occurrence of resistance was calculated to be 1.97 days

for both drugs. The assumption that the time delay between

drug exposure and observed PD effect recapitulated by the

Fig. 8 Simulation of clinical trial with erlotinib based on resistance

model parameter estimation and with PK parameters of mice replaced

by human parameter values. Simulation shows expected PK (a) and
corresponding tumor growth behavior (b). Simulations are done for a

continuous (black) and a pulsed (blue) treatment schedule. Different

threshold concentrations to achieve an effect on resistant cells are

simulated (red), with threshold 1 (solid red line) representing the

value derived from published in previously published in vitro data and

threshold 2 (dashed red line) representation more optimistic scenario.

The predicted anti-tumor response is shown in (b) with continuous

dose (solid black line), pulsed treatment assuming optimistic scenario

(dashed blue line, threshold 2) or more pessimistic scenario (solid

blue line)
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transit rate parameter k1 is the same for both drugs is

substantiated with reports on experimental data demon-

strating the similarity in molecular specificity particularly

with regards to downstream signaling. Both, erlotinib and

gefitinib are competitive inhibitors of the EGFR tyrosine

kinase and have been shown to possess almost identical

pharmacodynamic activities across a range of in vitro and

xenograft experiments [31, 40]. Furthermore, it has been

described, that the course of acquired resistance [20] as

well as the molecular mechanisms [17] are the same for

both drugs. Therefore, we assume that the parameters

related to acquired resistance are the same.

We identified the high dose group as covariate on the

conversion rate kSR. Interestingly, the concentration

reached at this dose is above the threshold concentration

above which cells are assumed to be killed when taking the

in vitro results into consideration [21]. In addition, the high

dose of erlotinib was identified as a covariate on the drug

effect parameter k2, suggestion a higher potency of high

dose group. This dose-dependency indicates a nonlinear

drug effect relationship. A sigmoid Emax-model was tested

to capture the nonlinear drug effect but underlying

parameters could not be identified under the current study

design. Furthermore, the parameters Emax and EC50 were

highly correlated. This suggests that the dose range tested

was not sufficient to explore the maximal response. The

higher k2 value of the high dose can be interpreted as an

increase in steepness of the dose–response curve at this

dose level. This is most likely around the EC50 whereas

the mid and low dose most likely below 20% of the

maximal response. Measuring additional dose levels higher

than 100 mg/kg or between the mid and high dose would

allow exploring the non-linear drug effect. Another limi-

tation of the current study design was that tumor samples

were not tested for presence of resistant cells and the

model-derived hypothesis was not substantiated with bio-

logical evidence. Genotyping of patient derived tumors in

mice is recommended in further tumor growth inhibition

studies to assess genetic alteration leading to TKI drug

resistance.

Wang and colleagues reported that * 20–30% of

NSCLC patients have no objective tumor regression on

initial EGFR TKI treatment due to intrinsic or primary

resistance to EGFR TKIs [39]. The proposed model does

not capture primary resistance to drug treatment and is

restricted to acquired resistance which occurs as a result of

drug treatment. It should be noted that in the current study,

initially, all animals responded to the drug treatment. In

addition, it was not possible to estimate an initial pool of

resistant cells (data not shown) to the observed data most

likely because resistant tumor cells are negligible at the

start of the study [21]. The model was applied to assess the

dynamic processes of acquired resistance which is of

clinical relevance. We simulated the response on overall

tumor growth and the accumulation of resistant cells during

and after long term treatment assuming no drug effect on

resistant cells. The model predicts tumor shrinkage at the

beginning of drug treatment followed by relapse during

treatment with a high fraction of resistant cells. In line with

clinical reports, the model suggests a worsening of diseases

progression after discontinuation of drug treatment due to

the rebound of faster growing sensitive tumor cells

[10, 15, 20]. This explanation is further supported by

in vitro findings [21] demonstrating that that sensitive and

drug resistant EGFR-mutant cells exhibit differential

growth dynamics with drug resistant cells showing slower

growth. Furthermore, resistant tumors are composed of a

heterogeneous mix of TKI-sensitive and -resistant tumor

cells and that stopping TKI therapy may permit expansion

[21]. In this in vitro study, EGFR-resistant cells were killed

by high concentration of erlotinib and it was suggested that

a pulsed treatment with high doses followed by lower doses

might be more beneficial than the traditional continuous

dosing schedule. Interestingly, a clinical trial was initiated

in order to test this potential benefit [37]. In the present

study, we could not identify a killing term on resistant cells

(data not shown). However, in simulations studies we

predicted a reduction in overall tumor volume when sim-

ulation dosing schedules achieving exposures above the

threshold concentration of 7150 lg/mL above which

resistant cells is assumed to be killed. With this model

expansion, we explored, based on in silico simulations, if

the suggested pulsed dosing regimen is superior to con-

tinuous treatment. In mice, we compared continuous to

pulsed dosing regimen with both regimen achieving the

same average concentration. After long term treatment, the

pulsed dosing regimen is predicted to have an improved

anti-tumor response in mice albeit only short exposure

peaks above the threshold concentration are achieved. The

continuous dosing regimen did not prevent emergence of

resistance despite having exposure levels slightly above the

threshold during the whole treatment period. Based on PK

data only, this result may be counterintuitive and illustrates

how in silico exploration can be used to better understand

the driving forces of a PD endpoint. In a next step, it is

proposed to test this new hypothesis experimentally and to

conduct vivo experiments to verify the outcome of the

simulation study. This will increase the confidence that

intermittent dosing regimen has an impact and reduces

emergence of resistance.

The proposed PKPD model is a semi-mechanistic model

which allows mechanistic interpretation of the drug effect

and enables simulations of untested scenarios. Several

retrospective studies could show a clear relationship of the

predicted efficacious exposure derived from the transla-

tional PKPD model and the observed clinical activity in
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cancer patients when accounting for the PK differences

between the species [31, 40, 41]. Therefore, we proposed a

hybrid PKPD model where human PK is used as input to

the acquired resistance model developed in mice. Tumor

growth rate in patient is generally observed slower than in

mice and the proposed hybrid PKPD model is not intended

to predict tumor growth dynamic in treated patients. Kill-

ing rate is also described as correlated to tumor growth rate

[42] and one could assume that net effect (growth minus

killing) could indeed translate from mice to human without

parameter scaling. This approach is supported by published

translational PKPD models [31, 40, 41]. If the goal was to

predict the time course of tumor growth and shrinkage in

patients, then all PKPD model components need to be

scaled to cancer patients. The challenge is to obtain rele-

vant parameters on tumor growth and shrinkage which

greatly depends on the context. For instance, it is reported

that the doubling time of cancer cells in in vitro systems is

much faster as compared to the doubling time after

engrafting into xenograft mice [43]. In addition, the time-

scale of tumor shrinkage in mice greatly differs cancer

patients [42]. In summary, when scaling the full PKPD

model to humans, additional uncertainty is introduced

which will reduced the confidence in model prediction.

Therefore, the hybrid model was seen as the better

approach to compare different dosing regimens without the

additional burden of scaling tumor growth and tumor

shrinkage parameters.

With the hybrid model, we simulated the expected

response in cancer patients of a previously reported

improved treatment schedule based on an evolutionary

modeling approach [21, 44]. This dosing schedule combi-

nes high-dose pulse and daily low-dose administration of

erlotinib and was previously tested in a Phase I trial [37].

The results of this Phase I study showed no improvement

with regards to progression free survival or delay of

emergence of resistance [37]. In line, our simulation results

showed a minor delay in tumor-regrowth compared to the

standard therapy treatment of 150 mg daily doses. It was

concluded that the pulse dosing was too low to affect

resistant cells to ultimately improve the clinical outcome.

Higher doses would need to be administered in order to

achieve sufficient exposure to kill resistant cells. However,

this will be limited to the tolerability of high doses. In order

to increase confidence in this threshold concentration, it is

suggested to compare this experimentally as proposed with

the simulation study which suggests a benefit of the pulsed

dosing regimen. In this study, continuous and pulsed dos-

ing regimen are compared with regards to tumor growth.

According to the simulations, this beneficial effect could

become apparent after 60 days of treatment. The proposed

dosing regimen will achieved the same overall exposure.

The continuous dosing regimen remains below the

threshold concentration, whereas the pulsed treatment

reaching concentration above the threshold concentration.

Conclusion

We proposed a semi-mechanistic model following parsi-

monious principles to characterize emergence of resistance

to drug treatment in patient derived NSCLC xenograft

mice. The model provides mechanistic insights into the

dynamic processes of acquired resistance. It predicts tumor

regrowth during treatment driven by the selection of

resistant cells and it offers an explanation why faster tumor

regrowth may occur after discontinuation of TKI treatment.

The model was further applied to compare in silico dif-

ferent dosing regimen and their impact on acquired resis-

tance. This allows to explore hypothesis and to design

studies allowing testing those. Finally, we propose to

explore in silico different scenarios and to identify optimal

treatment schedules for clinical trials.
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