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Abstract The paper extended the TMDD model to drugs

with two identical binding sites (2-1 TMDD). The quasi-

steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irre-

versible binding (2-1 IB), and Michaelis–Menten (2-1

MM) approximations of the model were derived. Using

simulations, the 2-1 QSS approximation was compared

with the full 2-1 TMDD model. As expected and similarly

to the standard TMDD for monoclonal antibodies (mAb),

2-1 QSS predictions were nearly identical to 2-1 TMDD

predictions, except for times of fast changes following

initiation of dosing, when equilibrium has not yet been

reached. To illustrate properties of new equations and

approximations, several variations of population PK data

for mAbs with soluble (slow elimination of the complex) or

membrane-bound (fast elimination of the complex) targets

were simulated from a full 2-1 TMDD model and fitted to

2-1 TMDD models, to its approximations, and to the

standard (1-1) QSS model. For a mAb with a soluble target,

it was demonstrated that the 2-1 QSS model provided

nearly identical description of the observed (simulated)

free drug and total target concentrations, although there

was some minor bias in predictions of unobserved free

target concentrations. The standard QSS approximation

also provided a good description of the observed data, but

was not able to distinguish between free drug concentra-

tions (with no target attached and both binding site free)

and partially bound drug concentrations (with one of the

binding sites occupied by the target). For a mAb with a

membrane-bound target, the 2-1 MM approximation ade-

quately described the data. The 2-1 QSS approximation

converged 10 times faster than the full 2-1 TMDD, and its

run time was comparable with the standard QSS model.

Keywords Target-mediated drug disposition � Quasi-

equilibrium approximation � Quasi-steady-state

approximation � Irreversible binding approximation �
Michaelis–Menten approximation � Nonlinear

pharmacokinetics � Drugs with two binding sites

Introduction

Equations that describe the pharmacokinetic and pharma-

codynamic behavior of drugs with target-mediated drug

disposition (TMDD) were introduced in [1]. A quasi-

equilibrium (QE) or rapid binding (RB) approximation of

the general TMDD model was developed in [2]. A quasi-

steady-state (QSS) approximation and a Michaelis–Menten

approximation were proposed in [3]. In these works it was

assumed that both, the drug and the target have only one

binding site. Here we extend the TMDD model and its

approximations to drugs that have two identical binding

sites (two-to-one binding). This is an important extension

as most therapeutic monoclonal antibodies (mAbs) belong

to this class [4, 5]. While the TMDD model with one-to-

one binding assumption describes mAbs sufficiently

accurately, development of mathematical models that

describe two-to-one binding more mechanistically may

facilitate the understanding of drug-target interactions and

their influence on pharmacokinetic and pharmacodynamic

properties of the system. To simplify notations, the models

for two-to-one binding will be referred to as 2-1 TMDD,

2-1 QSS, 2-1 QE, 2-1 IB, and 2-1 MM.
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Theoretical

Binding equations for a drug with two binding sites

A schematic representation of binding interactions of the

drug that has two identical binding sites with the target

that has one binding site is presented in Fig. 1. In this

section, we distinguish drug binding sites (by calling

them left and right). Figure 1a, b depict binding of the

right (a) and left (b) binding sites of the free drug C to the

free target R. We assume that the left and right sites are

identical, i.e. binding constants kon and koff are the same

for both sites. The free drug and the free target are defined

as the drug and the target that are not bound to each other.

These two processes (further called C–R and R–C

interactions) form two drug-target complexes, CR
�!

and

RC
�!

. These complexes correspond to the partially bound

drug, with one binding site occupied by the target. Fig-

ure 1c, d depict binding of these complexes to the target,

forming the complex that is further called RCR
��!

. This

complex corresponds to the fully bound drug, with both

binding sites occupied by the target.

First, we consider a more general case where binding

constants of the R–C and C–R interactions differ from

those of the R� CR
�!

and RC
�!� R interactions. The lower

panel of Fig. 1 shows differential equations that describe

each binding/dissociation process, assuming that other

processes (distribution, elimination, etc.) are not active.

Equations (1) combine all binding processes together:
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Fig. 1 Schematic

representation of binding

interactions. Y-shaped and

round-shaped forms represent

the drug and the target

respectively
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dC

dt
¼ �2konC � Rþ koff ðCR

�!þ RC
�!Þ;

dR

dt
¼ �2konC � R� akonðCR

�!þ RC
�!Þ � R

þ koff ðCR
�!þ RC

�!Þþ 2bkoff RCR
��!

;

dðCR�!þ RC
�!Þ

dt
¼ 2konC � R� koff ðCR

�!þ RC
�!Þ

� akonðCR
�!þ RC

�!Þ � Rþ 2bkoff RCR
��!

;

dRCR
��!

dt
¼ akonðCR

�!þ RC
�!Þ � R� 2bkoff RCR

��!
: ð1Þ

Here C, R, CR
�!

, RC
�!

, and RCR
��!

denote concentrations of

the respective moieties.

The complexes RC
�!

and CR
�!

in these equations are

identical and indistinguishable. To simplify the notation,

RC will be used for the sum of RC
�!

and CR
�!

complexes, and

R2C will be used to denote the RCR
��!

complex. Equations (1)

can then be re-written as

dC

dt
¼ �2konC � Rþ koff RC;

dR

dt
¼ �2konC � R� akonRC � Rþ koff RC þ 2bkoff R2C;

dRC

dt
¼ 2konC � R� koff RC � akonRC � Rþ 2bkoff R2C;

dR2C

dt
¼ akonRC � R� 2bkoff R2C:

ð2Þ

Note coefficients of 2 in front of several terms. They

appear when more than one binding process described in

Fig. 1 involves the same quantities.

Parameters a and b describe interaction between drug

binding sites. When a\ 1, occupancy of one binding site

negatively interferes with binding to the other binding site.

In the extreme case of a = 0, the second binding site is

blocked if the first binding site is occupied. Binding

equations would then degenerate to the one-to-one binding,

where the definition of kon parameter differs by a factor of

2 from the standard TMDD:

dC

dt
¼ �2konC � Rþ koff RC;

dR

dt
¼ �2konC � Rþ koff RC;

dRC

dt
¼ 2konC � R� koff RC;

ð3Þ

When a = 1, the association constants of the drug-target

binding are independent of the occupancy of the binding

sites. The binding equations then take the following form:

dC

dt
¼ �2konC � Rþ koff RC;

dR

dt
¼ �2konC � R� konRC � Rþ koff RC þ 2bkoff R2C;

dRC

dt
¼ 2konC � R� koff RC � konRC � Rþ 2bkoff R2C;

dR2C

dt
¼ konRC � R� 2bkoff R2C:

ð4Þ

The parameter b defines the dissociation constant of the

R2C binding. Values b[ 1 indicate that the dissociation

increases when the second binding site of the drug is

occupied by the target.

In this work, we investigate the simplest case of

a = b = 1. Then, binding equations are:

dC

dt
¼ �2konC � Rþ koff RC;

dR

dt
¼ �2konC � R� konRC � Rþ koff RC þ 2koff R2C;

dRC

dt
¼ 2konC � R� koff RC � konRC � Rþ 2koff R2C;

dR2C

dt
¼ konRC � R� 2koff R2C:

ð5Þ

In order to derive equations of target-mediated drug dis-

position, Eq. (5) need to be supplemented by terms for target

production and elimination, drug input and elimination, and

by equations that describe distribution of the drug to tissues.

General target-mediated drug disposition model

for drug with two binding sites

In this section, mathematical formulation of the TMDD

model is extended to drugs with two binding sites. The drug

is described by a two-compartment model with combined

linear elimination and target-mediated drug disposition/

elimination following intravenous (IV) and subcutaneous

(SC) dosing. Extending the system (5), one can arrive at

dAd

dt
¼�kaAd; Adð0Þ¼FSCD1 ;Cð0Þ¼D2=Vc;

dC

dt
¼ InðtÞþkaAdþktpAT

Vc

�ðkelþkptÞC�2konC �R

þkoff RC;

dAT

dt
¼ kptC �Vc�ktpAT ; ATð0Þ¼0; Rð0Þ¼ ksyn=k� ;

dR

dt
¼ ksyn�k�R�2konC �R�konRC �Rþkoff RCþ2koff R2C;

dRC

dt
¼2konC �R�ðkintþkoff ÞRC�konR �RCþ2koff R2C;

dR2C

dt
¼ konR �RC�ðkintþ2koff ÞR2C ; RCð0Þ¼RC2ð0Þ¼0:

ð6Þ
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Here C, R, RC, and R2C are the concentrations of the

free (unbound) drug, the target, the drug-target complex

with one target molecule, and the drug-target complex

with two target molecules in the central (serum) com-

partment; kel is the linear elimination rate constant, kpt

and ktp are inter-compartment rate constants, kon, koff, and

kint are the binding, dissociation, and internalization

(elimination of the complex) rate constants; kdeg and ksyn
are the degradation (elimination of the target) and target

production rate constants; Vc is the central compartment

volume; In(t) is the infusion rate; FSC is the absolute

bioavailability of the subcutaneous dose. Initial conditions

correspond to the case where the free drug that is not

present endogenously is administered as a subcutaneous

dose D1 and bolus dose D2. It is assumed that the drug

binding to each binding site is independent of the other

site. Moreover, internalization (elimination) rate of two

drug-target complexes is assumed to be the same

(although generalization to the case of two different

internalization rates is straightforward).

Following the procedure developed for TMDD equa-

tions with one-to-one binding, one can introduce total drug

and total target concentrations as follows:

Ctot ¼ C þ RC þ R2C; Rtot ¼ Rþ RC þ 2R2C ð7Þ

Then, Eqs. (6) can be re-written as equations for Ctot and

Rtot:

dAd

dt
¼ �kaAd; Adð0Þ ¼ FSCD1 ; Cð0Þ ¼ D2=Vc;

dCtot

dt
¼ InðtÞ þ kaAd þ ktpAT

Vc

� ðkel þ kptÞC � kintðRC þ R2CÞ;

dAT

dt
¼ kptCVc � ktpAT ; ATð0Þ ¼ 0;

dRtot

dt
¼ ksyn � k�R� kintðRC þ 2R2CÞ; Rtotð0Þ ¼ ksyn=k� :

ð8Þ

and two equations that describe two types of drug-target

complexes:

dRC

dt
þdR2C

dt
¼2konC �R�ðkintþkoff ÞRC�kintR2C;

dR2C

dt
¼ konR �RC�ðkintþ2koff ÞR2C ; RCð0Þ¼RC2ð0Þ¼0:

ð9Þ

The advantage of this form is that the large terms (terms

that contain the parameter kon) are localized in two Eq. (9)

rather than distributed throughout the entire system. This is

convenient for both, the theoretical analysis of the system

and for solving the differential equations numerically.

Quasi-steady-state approximation

Similarly to TMDD equations with one-to-one binding, the

quasi-steady-state approximation of the TMDD 2-1 system

can be derived by assuming that the free (unbound) drug C,

the free (unbound) target R, and the drug-target complexes

RC and R2C are in quasi-steady-state [3], where binding

rates are balanced by the sum of dissociation and inter-

nalization rates on the scale of the other processes:

2konC � R� ðkint þ koff ÞRC � kintR2C¼ 0;

konR � RC � ðkint þ 2koff ÞR2C ¼ 0:
ð10Þ

By introducing the dissociation rate constant KD = koff/

kon and irreversible binding rate constant KIB = kint/kon one

can arrive at

2 � C � R ¼ ðKD þ KIBÞRC þ KIBR2C;

R � RC ¼ ð2KD þ KIBÞR2C
ð11Þ

Supplementing these two equations by the definition of

total drug concentration Ctot ¼ C þ RC þ R2C one can

solve for C, RC and R2C to arrive at

C ¼ Ctot

ðKD þ KIBÞðKD þ KIB=2Þ þ KIBR=2

KD þ KIB þ Rð ÞðKD þ KIB=2 þ RÞ ;

RC ¼ Ctot

Rð2KD þ KIBÞ
KD þ KIB þ Rð ÞðKD þ KIB=2 þ RÞ ;

R2C ¼ Ctot

R2

KD þ KIB þ Rð ÞðKD þ KIB=2 þ RÞ :

ð12Þ

Finally, substituting terms in the definition of the total

target concentration

Rtot ¼ Rþ RC þ 2R2C

by these expressions, one can get an implicit equation that

defines R as a function of Rtot:

Rtot ¼ Rþ 2CtotR

KD þ KIB þ R
: ð13Þ

Resolving this equation for R will get

R ¼ 1

2
� 2Ctot þ KD þ KIB � Rtotð Þ

�

þ 2Ctot þ KD þ KIB � Rtotð Þ2þ4ðKD þ KIBÞRtot

q i

ð14Þ

This is remarkably similar to the expression for

C through Ctot for the QSS approximation of the standard

TMDD system.

The QSS approximation can then be re-written in the

form:
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dAd

dt
¼ �kaAd; Adð0Þ ¼ FSCD1 ; Ctotð0Þ ¼ D2=Vc;

dCtot

dt
¼ InðtÞ þ kaAd þ ktpAT

Vc

� ðkel þ kptÞC

� kintCtot

R � ð2KD þ KIB þ RÞ
KD þ KIB þ Rð ÞðKD þ KIB=2 þ RÞ ;

dAT

dt
¼ kptC � Vc � ktpAT ; ATð0Þ ¼ 0; Rtotð0Þ ¼ ksyn=k� :

dRtot

dt
¼ ksyn � k�Rtot � kint � k�ð Þ � Ctot �

2R

KD þ KIB þ R
:

ð15Þ

where C is expressed as in (12) through R and Ctot, and R is

expressed as in (14) through Ctot and Rtot.

When internalization rate of the complexes kint is equal

to the degradation rate of the free target kdeg, the total target

concentration is a constant parameter of the system and the

last equation can be removed.

Michaelis–Menten approximation

To further simplify these equations, the total concentration

of the target is assumed to be low compared to free drug

concentration. In this case, in expressions for R (14), and

RC and R2C (12), Ctot can be replaced by C, resulting in

R � KD þ KIBð Þ=2 � Rtot

C þ KD þ KIBð Þ=2
; RC � C � Rtot

C þ KD þ KIBð Þ=2
; R2C � 0;

if the terms of the order of R2 or Rtot
2 are disregarded (see

‘‘Appendix’’ for the derivation). Then the last terms of

equations for Ctot and Rtot in (15) can be simplified (see

‘‘Appendix’’) as follows:

R � ð2KD þ KIB þ RÞ
KD þ KIB þ Rð ÞðKD þ KIB=2 þ RÞ �

Rtot

C þ KD þ KIBð Þ=2

2R

KD þ KIB þ R
� Rtot

C þ KD þ KIBð Þ=2
;

ð16Þ

allowing to arrive at the Michaelis–Menten approximation:

dAd

dt
¼ �kaAd; Adð0Þ ¼ FSCD1 ; Ctotð0Þ ¼ D2=Vc;

dC

dt
¼ InðtÞ þ kaAd þ ktpAT

Vc

� ðkel þ kptÞC � kint

Rtot � C
KD þ KIBð Þ=2 þ C

;

dAT

dt
¼ kptC � Vc � ktpAT ;

dRtot

dt
¼ ksyn � k�Rtot � kint � k�ð Þ � Rtot � C

KD þ KIBð Þ=2 þ C
;

Adð0Þ ¼ D1; Cð0Þ ¼ D2=Vc ; ATð0Þ ¼ 0; Rtotð0Þ ¼ ksyn=k� :

ð17Þ

These equations are equivalent to the MM approxima-

tion of the standard TMDD system where KSS =

(KD ? KIB)/2.

As before, if kint is equal to kdeg, the total target con-

centration is a constant parameter of the system, and the

last equation can be removed. Then, the system is descri-

bed by the two-compartment model with parallel linear and

Michaelis–Menten elimination.

Quasi-equilibrium approximation

Derivation of the QE approximation is identical to the QSS

approximation with the only change that QSS conditions

are replaced by QE conditions, where the free drug, the

target, and the two drug target complexes are assumed to

be in quasi-equilibrium [3]. All QE equations can be

obtained from the corresponding QSS equations by setting

KIB = 0. Then, C, RC, and R2C are expressed through Ctot

and R as follows:

C ¼ K2
DCtot

KD þ Rð Þ2
; RC ¼ 2KDCtotR

KD þ Rð Þ2
; R2C ¼ CtotR

2

KD þ Rð Þ2
:

ð18Þ

while R is expressed as the following function of Ctot and

Rtot:

R ¼ 1

2
� 2Ctot þ KD � Rtotð Þ

�

þ 2Ctot þ KD � Rtotð Þ2þ4KDRtot

q i

:

ð19Þ

Equations for the quasi-equilibrium approximation can

then be re-written in the form:

dAd

dt
¼ �kaAd; Adð0Þ ¼ FSCD1 ; Ctotð0Þ ¼ D2=Vc;

dCtot

dt
¼ InðtÞ þ kaAd þ ktpAT

Vc

� ðkel þ kptÞC � kintCtot

R � ð2KD þ RÞ
KD þ Rð Þ2

;

dAT

dt
¼ kptC � Vc � ktpAT ;

dRtot

dt
¼ ksyn � k�Rtot � kint � k�ð Þ � Ctot �

2R

KD þ R
;

Adð0Þ ¼ D1; Ctotð0Þ ¼ D2=Vc ; ATð0Þ ¼ 0; Rtotð0Þ ¼ ksyn=k� :

ð20Þ

As before, the last equation can be removed if kint is

equal to kdeg.

The MM approximation for this system has the same

form as the MM approximation for the standard TMDD

system where KSS = KD/2.
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Irreversible binding approximation

The irreversible binding approximation can be obtained

from the QSS approximation by assuming koff = 0 (re-

sulting in KD = 0). Then

C ¼ CtotKIB=2

ðKIB=2 þ RÞ ;
RC ¼ CtotKIBR

KIB þ Rð ÞðKIB=2 þ RÞ ;

R2C ¼ CtotR
2

KIB þ Rð ÞðKIB=2 þ RÞ ;

ð21Þ

and

R ¼ 1

2
� 2Ctot þ KIB � Rtotð Þ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ctot þ KIB � Rtotð Þ2þ4KIBRtot

q

� ð22Þ

The MM approximation for this system has the same

form as the MM approximation for the standard TMDD

system where KSS = KIB/2.

Investigation of the two-to-one model

To investigate the two-to-one model and its approxima-

tions, several simulation studies were performed. NON-

MEM 7.3.0� software [6] was used for simulations,

estimation of parameters, and computation of predictions.

FOCEI estimation method was used for model fitting.

First (Case 1), the full 2-1 TMDD model and the 2-1

QSS approximation were used to compute and compare

typical predictions of the free drug, the free target, the total

drug, the total target, and each of the two drug target

complexes over time for 3 dosing scenarios (single doses of

100 or 600 nmol IV, or 2 doses of 1000 nmol SC 28 days

apart). Parameters from Table 2 (‘‘True’’ values in ‘‘Slow

internalization’’), typical for mAbs and soluble targets,

were used in simulation.

In Case 2, a population PK data set was simulated that

imitated a typical design of a phase 1 and phase 2 studies

(Table 1). Concentrations of various quantities were sim-

ulated from the full 2-1 TMDD model using the parameters

from Table 2 (‘‘True’’ values in ‘‘Slow internalization’’).

The simulated concentrations of the free drug and of the

total target were then used to fit the following models:

• Full 2-1 TMDD model written in its original form (1);

• Full 2-1 TMDD model written as in (3);

• QSS 2-1 approximation (10);

• Standard TMDD model;

• QSS approximation of the standard TMDD model.

For all models estimated parameters were compared

with the true values. Predictions of all quantities (including

unobserved) were also computed and compared with the

true (i.e. simulated from the full 2-1 TMDD model) values.

Assays for the free drug often can’t distinguish between

the free and partially bound drug (where one binding site is

occupied by the target) and what is reported is the sum of

them. Thus, the same simulations as in Case 2 were per-

formed for Case 3, where the sum of the free and partially

bound drug (Cpartial) was used in estimation instead of the

free drug concentrations. In the standard TMDD and QSS

models (where there is no Cpartial), this sum (‘‘measured’’

drug concentration) was assumed to represent the free drug.

The QSS approximation is most useful for drugs that

bind to soluble target, where elimination of the drug-target

complex is slow. For drugs with membrane-bound target,

where internalization rate is fast, the Michaelis–Menten

approximation is expected to perform best. To test whether

this applies for drugs with two binding sites, simulations

performed for Case 2 were repeated for Case 4, where

parameters typical for membrane-bound targets were used

in simulations (Table 2, ‘‘True’’ values in ‘‘Fast Internal-

ization’’). The full 2-1 TMDD, 2-1 QSS, and MM models

were then used to estimate the parameters. Since concen-

trations of the target are not usually available for mem-

brane-bound targets, only free drug concentrations were

used for estimation.

Table 1 Dosing and sampling scheme in the simulated studies

Study N Dosing Sampling times Number of samples in the dataset

Case 2 Case 3

1 6 IV, 100 nmol 1, 6, 12, 24 h; then 3, 7, 14, 21,

28, 35, 42, 49, and 56 days

3312 free drug concentrations

and 3312 total target

concentrations

3312 free and partially free

drug concentrations and 3312

total target concentrations
6 IV, 300 nmol

6 IV, 600 nmol

6 SC, 1000 nmol

2 100 IV, 600 nmol 1, 24 h; then 1, 7, 14, 21, 28,

56, 63, 70, 77, 84, 91, 98, and

105 days
100 SC, 1000 nmol
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Results

In Case 1, predictions of the full 2-1 TMDD model and the

2-1 QSS approximation (Fig. 2) were almost identical for

all quantities.

In Case 2, the 2-1 TMDD model was able to reproduce

the true values (Fig. 3) for all quantities. The 2-1 QSS

model also demonstrated good prediction of the true values

(Fig. 4) for all quantities, except for a minor bias in pre-

dictions of low unobserved free target concentrations. The

corresponding results were similar in Case 3 (where

C ? Cpartial was used for estimation).

In Case 2, the standard QSS approximation correctly

predicted observed quantities (Fig. 5), but provided biased

predictions of the active drug (C ? Cpartial) and the free

target. In Case 3, the standard QSS model provided biased

predictions of the free drug concentration but correctly

predicted the observed quantities (Fig. 6) and provided

reasonable predictions of the free target concentration. This

explains why the standard QSS approximation works rea-

sonably well in the majority of real clinical data sets.

In Case 2 and Case 3 (soluble target, slow elimination

rate of the complex), the full 2-1 TMDD models converged

and provided accurate estimates for all model parameters,

Table 2 True and estimated model parameters

Parameter Description Slow internalization Fast internalization

True Case 2b Case 3c Case 4d

Full 2-1 TMDD 2-1 QSS Full 2-1 TMDD 2-1 QSS True MM model

CL (L day-1) Clearance 0.3 0.293 0.294 0.292 0.292 0.3 0.295

VC (L) Central volume 3.0 2.96 2.96 2.91 2.91 3.0 2.95

Q (L day-1) Inter-compartment

clearance

0.2 0.200 0.200 0.197 0.197 0.2 0.200

VP (L) Peripheral volume 3.0 2.95 2.94 2.87 2.87 3.0 2.91

FSC Bioavailability 0.7 0.682 0.682 0.680 0.680 0.7 0.685

ka (day-1) Absorption rate 0.5 0.518 0.519 0.518 0.518 0.5 0.520

kon (nM L-1 day-1) Binding rate 20 43.3 – 52.1 – 10 –

koff (day-1) Dissociation rate 2 4.43 – 5.15 – 0.10 –

kint (day-1) Internalization rate 0.2 0.200 0.201 0.199 0.198 10 –

ksyn (nM day-1) Synthesis rate 1 1.04 1.04 1.03 1.03 1 1.02a

kdeg (day-1) Degradation rate 10 10.3 11.0 10.3 10.8 10 –

x2
CL

Variance of CL 0.04 0.0333 0.0333 0.0337 0.0335 0.04 0.0403

x2
V1

Variance of VC 0.04 0.0359 0.0359 0.0431 0.0433 0.04 0.0367

x2
Q

Variance of Q 0.04 0.0424 0.0424 0.0524 0.0523 0.04 0.0291

x2
V2

Variance of VP 0.04 0.0437 0.0437 0.0403 0.0404 0.04 0.0517

x2
ka

Variance ka 0.04 0.0564 0.0564 0.0547 0.0548 0.04 0.0431

x2
kint

Variance of kint 0.04 0.0492 0.0492 0.0514 0.0531 0.04 –

x2
ksyn

Variance of ksyn 0.04 0.0281 0.0281 0.0296 0.0294 0.04 0.0412a

x2
kdeg

Variance of kdeg 0.04 0.0459 0.0459 0.0463 0.0491 0.04 –

r2
drug

Variance of residual error 0.0225 0.0212 0.0212 0.0221 0.0221 0.0225 0.0227

r2
target

Variance of residual error 0.04 0.0391 0.0391 0.0390 0.0390 – –

KD koff/kon 0.1 0.1023 0.0702 0.0988 0.0598 0.001 –

KIB kint/kon 0.01 0.0046 0.0279 0.0038 0.0404 1 –

KSS (KD ? KIB)/2 0.055 0.0535 0.0491 0.0513 0.0501 0.501 0.529

Log normal (that is, normal in the log-transformed parameter space) inter-subject variability was assumed. Log normal residual variability was

implemented as additive residual errors in the log-transformed dependent variables space
a Parameter Vmax of the MM model estimates ksyn as Vmax = Rtot • kint = ksyn�kint/kdeg = ksyn
b Case 2: estimation based on C and Rtot

c Case 3: estimation based on C ? Cpartial and Rtot

d Case 4: estimation based on C
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except for kon and koff rates (Table 2). The 2-1 QSS models

provided accurate estimates of all parameters, except KD

and KIB. KIB was estimated with large uncertainty, and

fixing it to zero provided the identical fit.

Model fit [objective function value (OF)] and run times

for all models in Case 2 and Case 3 are shown in Table 3.

The run time of the full 2-1 TMDD models was approxi-

mately 10 times longer than that of the 2-1 QSS models.

The run time of the standard QSS approximations was

comparable to the 2-1 QSS models with KIB fixed to 0

(Table 3). The OF values were higher for the standard

TMDD model and its QSS approximation compared to all

2-1 models.

In Case 4 (membrane-bound target), full 2-1 TMDD

models failed, 2-1 QSS models were unstable, while the

model with parallel linear and Michaelis–Menten

elimination provided a nearly identical fit, much faster

convergence, and accurate estimates of relevant model

parameters (Tables 2, 3).

Discussion

Equations of the TMDD model and its QSS, QE, IB, and

MM approximations were derived for drugs with two

binding sites. The 2-1 QSS model was the most general

approximation. The 2-1 QE and 2-1 IB approximations can

be obtained from 2-1 QSS by setting KIB = 0 or KD = 0,

respectively. The QSS 2-1 model correctly estimated

model parameters (except KIB and KD) and predicted

concentration–time course of drug and target concentra-

tions when it was fitted to the data simulated from the full

Fig. 2 Case 1: Comparison of full TMDD 2-1 and QSS 2-1 model predictions
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2-1 TMDD model. Similarly to the case of the standard

QSS approximation, the largest discrepancy between true

and predicted values were observed for the free target

concentrations at time of rapid changes of drug concen-

trations due to binding, when the equilibrium was not yet

attained.

It was shown that numerical properties of the full 2-1

TMDD model were influenced by the specific form of the

equations. In its original form (1), the NONMEM output

indicated numerical difficulties. To overcome them, pre-

cision of differential equation computations, the TOL

parameter, had to be increased from TOL = 9 to

TOL = 11.When the form (3–4) was used, where fast-

changing terms appeared in only two equations, the model

was more stable, at least for the investigated simulated

data, and there was no need to increase TOL.

While advances in computer power and the software

made numerical solution of the full 2-1 TMDD model

possible, they did not (and could not) resolve the identifi-

ability issue: binding parameters of the system cannot be

determined from the routinely available data. Indeed, the

parameters kon and koff were estimated with low precision

and high bias.

The 2-1 QSS approximation provided a good fit, with

model predictions in a good agreement with the simulated

(true) data. The only noticeable discrepancy was in free

target concentrations during the first few hours after the

first dose, when the binding processes were not yet

completed.

Unlike the QSS approximation of the standard TMDD

model, the 2-1 QSS approximation has the same number

of parameters as the full 2-1 TMDD model, and thus it

Fig. 3 Case 2: 2-1 TMDD model predictions versus true (simulated) values. Free drug and total target concentrations used in estimation
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may also be prone to the identifiability problem. When

KD and KIB were estimated, KIB was estimated with high

uncertainty. The fit was nearly identical when KIB was

fixed to zero, thus reducing the 2-1 QSS approximation to

the corresponding 2-1 QE approximation even though KIB

was not zero in the simulated data. The problem of

parameter identifiability can be handled on case by case

basis. One possible option is to test three models: with

estimated KIB and KD, with KIB fixed to zero, and with

KD fixed to zero. If one of the simpler models (with one

of the parameters fixed to zero) provides the same fit as a

more complex model (with both parameters estimated),

this model can be used for further development.

While the 2-1 QSS approximation does not reduce the

number of estimated parameters, its equations have better

numerical properties since they do not need to describe fast

binding processes.

The standard QSS model was able to reproduce

observed data (simulated from the full 2-1 TMDD model),

independently on whether the free drug or free and partially

bound drug was measured. The model, obviously, could

not distinguish between different types of drug-target

complexes, but when the combination of the free and

partially bound drug was treated as the free drug concen-

tration, the model provided reasonable estimates of free

target concentrations.

As expected, in the example with fast internalization

rate (i.e. fast elimination of the drug-target complex), the

best results were obtained by the model with parallel linear

and Michaelis–Menten elimination, and the parameter

Fig. 4 Case 2: 2-1 QSS model predictions versus true (simulated) values. Free drug and total target concentrations used in estimation
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estimates of this model were consistent with true (simu-

lated) values.

The run time of the 2-1 QSS model with KIB set to zero

was only about 30–40% longer than that of the standard

QSS approximation. In return, the model allowed more

granularity in describing the underlying biological system.

When the computer power is available, it could be bene-

ficial to use a more mechanistic 2-1 QSS model to describe

the observed data. Even though the full 2-1 TMDD model

successfully converged in our simulated examples, it

required at least tenfold more time than the 2-1 QSS model,

making its use impractical when the data set is large.

Applicability and precision of the 2-1 QSS approxima-

tion was numerically evaluated for two specific sets of

parameters. It would be expected that conditions for

applicability of the standard QSS approximation [3, 7]

should also be valid for 2-1 QSS equations. However,

further research may be needed to explore and confirm

parameter ranges where the 2-1 QSS approximation is

applicable.

The standard one-to-one TMDD model has been suc-

cessfully used to describe pharmacokinetic and pharma-

codynamic properties of monoclonal antibodies. However,

it was a lingering question about the discrepancy between

the known structure of mAbs (that have two binding sites)

and the assumption of one-to-one binding. The model

proposed here resolves this discrepancy by providing a

more mechanistic description of mAbs/target binding. With

relatively small numerical overhead, the model provides a

more precise description for this important class of drugs.

Fig. 5 Case 2: Standard QSS model predictions versus true (simulated) values. Free drug and total target concentrations used in estimation
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Fig. 6 Case 3: Standard QSS model predictions versus true (simulated) values. Sum of free and partially bound drug, and total target

concentrations used in estimation

Table 3 Comparisons of model

fit (OF) and run times
Description Case 2 Case 3 Case 4

OF Run time OF Run time OF Run time

Original TMDD 2-1 13,575 2757 14,955 4009 12,132a 12,379

Reformulated TMDD 2-1 13,575 2307 14,955 2251 12,132a 21,507

QSS 2-1 with kD, kIB estimated 13,581 264 14,960 359 12,131 1293

QSS 2-1 with kIB = 0 (QE) 13,582 177 14,960 171 12,132 756

Standard QSS 13,614 136 15,120 123 – –

Standard full TMDD 13,609 1801 15,115 1549 – –

MM model – – – – 12,141 267

a Minimization failed
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Appendix

Expression for R

From (14), using the formula a - b = (a2 - b2)/(a ? b)

with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ctot þ KD þ KIB � Rtotð Þ2þ4ðKD þ KIBÞRtot

q

;

b ¼ 2Ctot þ KD þ KIB � Rtotð Þ
ð23Þ

one arrives at

Assuming that Rtot is small compared to Ctot and dis-

regarding the terms of the order of Rtot
2 , one can approxi-

mate the dependence of R on Rtot by the first term of the

Taylor expansion of R as the function of Rtot. Specifically,

R � Rtot

dR

dRtot

� �

Rtot¼0

¼ Rtot

ðKD þ KIBÞ
2Ctot þ KD þ KIB

¼ KD þ KIBð Þ=2 � Rtot

C þ KD þ KIBð Þ=2
: ð25Þ

One can observe that use of the first term of the Taylor

expansion is equivalent to setting Rtot = 0 in the denomi-

nator of (24).

Expression for RC

From (12), disregarding the terms of the order of R2 and

Rtot
2 (equivalent to setting R = 0 in the denominator of

(12)) and then using the expression (25) for R, one can get

RC � R � Ctot

KD þ KIBð Þ=2
� R � C

KD þ KIBð Þ=2

� Rtot � C
C þ KD þ KIBð Þ=2

:

Expression for R2C

From (12), disregarding the terms of the order of Rtot
2 one

immediately arrives at R2C � 0:

Expressions (16)

Disregarding the terms of the order of Rtot
2 and using (25)

for R, one can get:

R � ð2KD þ KIB þ RÞ
KD þ KIB þ Rð ÞðKD þ KIB=2 þ RÞ �

2R

KD þ KIB

� Rtot

C þ KD þ KIBð Þ=2
:

2R

KD þ KIB þ R
� 2R

KD þ KIB

� Rtot

C þ KD þ KIBð Þ=2
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