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Abstract Exposure–response modeling plays an important

role in optimizing dose and dosing regimens during clinical

drug development. The modeling of multiple endpoints is

made possible in part by recent progress in latent variable

indirect response (IDR) modeling for ordered categorical

endpoints. This manuscript aims to investigate the level of

improvement achievable by jointly modeling two such

endpoints in the latent variable IDR modeling framework

through the sharing of model parameters. This is illustrated

with an application to the exposure–response of guselk-

umab, a human IgG1 monoclonal antibody in clinical

development that blocks IL-23. A Phase 2b study was

conducted in 238 patients with psoriasis for which disease

severity was assessed using Psoriasis Area and Severity

Index (PASI) and Physician’s Global Assessment (PGA)

scores. A latent variable Type I IDR model was developed

to evaluate the therapeutic effect of guselkumab dosing on

75, 90 and 100% improvement of PASI scores from

baseline and PGA scores, with placebo effect empirically

modeled. The results showed that the joint model is able to

describe the observed data better with fewer parameters

compared with the common approach of separately mod-

eling the endpoints.

Keywords Population pharmacokinetic/pharmacodynamic

modeling � NONMEM � Clinical drug development

Introduction

Exposure–response (E–R) modeling of clinical endpoints is

important in drug development for facilitating informative

dosing selection. A widely used class of E–R models

includes the indirect response (IDR) models [1]. These

models are most often used to describe pharmacodynamics

endpoints with the mechanism of delay. However, many

clinical trial endpoints are based on disease scores that are

not physiological variables. For example, two types of

commonly used efficacy measurements in psoriasis are the

Psoriasis Area and Severity Index (PASI) score, ranged

0–72 with 0.1 increments, and Physician’s Global Assess-

ment (PGA) scores, a 6-point scale measuring disease

severity (0 = cleared, 1 = minimal, 2 = mild, 3 = mod-

erate, 4 = marked, and 5 = severe) [2]. Clinical trial

endpoints typically include proportions of patients

achieving various criteria including the following: PASI

75, PASI 90, and PASI 100, representing 75, 90, and 100%

improvement in PASI score from baseline, respectively;

PGA score = 0, or PGA score B1. Applications of IDR

models to categorical clinical endpoints have emerged in

the last decade via the latent variable approach [3].

E–R modeling using PASI scores as continuous vari-

ables have been conducted before [4–7], however evidence

of their ability to accurately predict the PASI criteria

appears lacking. PGA scores are most effectively analyzed

as an ordered clinical endpoint [8]. The PASI criteria (Pc),
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namely PASI 75, PASI 90, and PASI 100, can be combined

into one ordered categorical endpoint Pc having four pos-

sible outcomes: Pc = 0, if achieving PASI 100; Pc = 1, if

achieving PASI 90 but not PASI 100; Pc = 2, if achieving

PASI 75 but not PASI 90; and Pc = 3, if not achieving

PASI 75. Conceivably, because Pc and PGA both measure

the same disease activity, their E–R characteristics should

be similar, thus jointly modeling them should allow better

integration of information. When modeling a continuous

and a categorical endpoint measuring the same disease

activity, Hu et al. [9] recently showed that joint modeling

of endpoints could be more parsimonious and yet better

describe the individual endpoints, compared with sepa-

rately modeling the endpoints. This report addresses whe-

ther this type of improvement is possible when modeling

two categorical endpoints. The answer is by no means a

priori clear, due to the difference in nature between con-

tinuous and categorical endpoints. Additionally, with two

categorical endpoints, the optimal choice of a common

latent variable may not be obvious.

Psoriasis is a chronic immune-mediated skin disor-

der [10–12]. Interleukin (IL)-12 and -23 have been impli-

cated in the pathogenesis of psoriasis [13–15], and agents

that block IL-12 and IL-23 have demonstrated efficacy in

the treatment of moderate-to-severe plaque psoriasis [14].

Guselkumab is a monoclonal antibody that specifically

blocks IL-23. Using data from a Phase 2b dose-ranging

clinical trial of guselkumab in psoriasis [2], this report

investigates the potential benefit of jointly modeling two

categorical clinical endpoints and the source of potential

improvement, and discusses the impact of latent variable

choice.

Methods

Study design

A Phase 2, randomized, double-blind, parallel, dose-rang-

ing study was conducted in patients with moderate-to-

severe plaque psoriasis. Approximately 240 patients

were randomly assigned to treatment with subcuta-

neous injection of guselkumab 5, 50, or 200 mg at

Weeks 0 and 4 followed by every-12-week (q12w)

dosing, or 15 or 100 mg, with q8w dosing, or placebo.

The placebo group crossed-over to the 100 mg q8w

dosing at Week 16. The last dose was given at Week

40. Data from the Week 40 database lock was used for

analysis. The detailed study design has been previously

published [2].

Guselkumab serum concentration, antibodies, PASI,

and PGA measurements

Serum samples of guselkumab, along with PASI and PGA

scores, were collected q4w during Weeks 0–40. At visits

when study patients received the study agent, blood sam-

ples were collected prior to study agent administration. A

validated electrochemiluminescence immunoassay with a

lower limit of quantification (LLOQ) of 0.01 lg/mL at a

minimum required 1:10 dilution was used to measure

serum guselkumab concentrations. A small number (5.3%

in total) of post-dose pharmacokinetic (PK) measurements

were below LLOQ and excluded from analysis. Serum

samples for the evaluation of antibodies to guselkumab

were collected at Weeks 0, 16, and 40. Antibodies were

detected using a validated sensitive and drug-tolerant

electrochemiluminescence immunoassay method using the

MSD platform. The observed sensitivity of this anti-drug

antibody (ADA) assay was 3.1 ng/mL for antibodies to

guselkumab in human serum that did not contain guselk-

umab; as validated, 15 ng/mL of antibodies to guselkumab

could be detected in the presence of up to 3125 ng/mL of

guselkumab in human serum samples. Study patients were

classified as having a positive antibody status if antibodies

to guselkumab were detected in the sample at any visit

after guselkumab treatment. The final dataset contained

238 patients with 2014 PK measurements, 2220 post-

baseline PASI scores, and 2456 PGA scores.

Population pharmacokinetics model

The population PK analysis was conducted for guselkumab

to generate individual parameters that adequately describe

patient PK profiles to facilitate E–R modeling. Based on

earlier experience [5], a confirmatory population PK

analysis [16, 17] was implemented using a one-compart-

ment model with first-order absorption and first-order

elimination [apparent clearance (CL/F), apparent volume

of distribution (V/F), and absorption rate constant (ka)].

Between-patient random effects on CL/F, V/F and ka were

included using lognormal distributions. Correlation

between BSVs on CL/F and V/F was also included, along

with baseline body weight effects on them using a power

model standardized to the median baseline body weight of

90 kg. An additive-plus-proportional error model was used,

with the standard deviation (SD) of the additive component

fixed at approximately 0.0029 based on the LLOQ value of

0.01 and assuming a uniform distribution of U(0, LLOQ).

In our experience, this usually will result in similar data

likelihood, nearly identical PK model parameter estimate,

and slightly shortened run time, and could occasionally
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stabilize parameter estimation. Individual Bayesian PK

parameter estimates for patients were obtained for the E–R

model development.

Latent variable indirect response model framework

The latent variable approach presumes an underlying latent

variable such that the endpoint occurs when the latent

variable crosses certain thresholds. More precisely, let n be

the number of categories of an ordered categorical variable

Y, L(t) be the latent variable, and ak be the thresholds

where k = 1, 2, …, n-1, such that:

ACR� k , LðtÞ\ak

model L(t) as:

LðtÞ ¼ MðtÞ þ re ð1Þ

where M(t) is the model predictor, e is distributed with

mean 0 and variance 1, and r is the error standard devia-

tion. Assuming that e follows the standard normal distri-

bution, then:

prob½Y� k� ¼ prob½LðtÞ\ak� ¼ prob½e\ðak � MðtÞÞ=r�
¼ U½ðak � MðtÞÞ=r�

In this setting of latent variables, r is not identifiable and

may be assumed to be equal to 1; this gives:

U�1½probðY� kÞ� ¼ ak � MðtÞ ð2Þ

which corresponds to probit regression. Assuming e fol-

lows a logistic distribution leads to logit regression. In the

context of E–R modeling, this derivation was first given in

Hutmacher et al. [18]. To stabilize parameter estimation, ak
are typically better re-parameterized; e.g., for n = 3, as (a1,

d0, d2) with d0, d2[ 0 such that a0 = a1 - d0 and

a2 = a1 ? d2.

The latent variable representation Eq. 2 allows mecha-

nism-based models to be used for M(t). Between-subject

variability is typically modeled at the intercept level with

an additive normal distribution g * N(0, x2). Modeling

the total treatment effect as the sum of placebo effect fp(-

t) and drug effect fd(t), this leads to the mixed-effect probit

regression, as follows:

U�1½probðY� kÞ� ¼ ak þ fpðt) þ fdðt) + g ð3Þ

The placebo effect may typically be modeled empirically,

e.g., with an exponential function:

fpðtÞ ¼ �Fpexpð�rp tÞ ð4Þ

where Fp is the maximum placebo effect and rp is the rate

of onset. The drug effect was modeled using a latent

variable R(t), governed by:

dRðtÞ
dt

¼ kin 1 � Cp

IC50 þCp

� �
� kout RðtÞ ð5Þ

where Cp is drug concentration, and kin, IC50, and kout are

parameters in a Type I IDR model. It was further assumed

that at baseline R(0) = 1, yielding kin = kout. The reduc-

tion of R(t) was assumed to drive the drug effect through:

fdðtÞ ¼ DE½1 � RðtÞ� ð6Þ

where DE is a parameter to be estimated that determines

the magnitude of drug effect.

Theoretically, the representation of drug effect in

Eqs. 3–6 has been shown to be equivalent to a change-

from-baseline latent-variable IDR model [19], under which

kout may be interpreted as the rate of drug effect onset and

offset, and DE may be interpreted as the baseline of the

latent variable prior to normalization [3]. Theoretical

characteristics of general change-from-baseline IDR mod-

els, which have one less parameter than their corresponding

IDR models, have been derived [19, 20]. Change-from-

baseline latent IDR models are needed in the modeling of

categorical endpoints because the latent variable is deter-

mined only up to a constant and therefore needs to be

normalized [3, 18]. For more details on the theoretical

characteristics of latent variable IDR models, see [3].

No covariate effects were explored for the E–R model

due to the small sample size.

E–R modeling of PASI criteria and PGA scores

Equations 3–6 were first fitted to Pc and PGA data sepa-

rately, and then simultaneously with BSV correlation and

shared parameters explored. Practically, maximum sharing

could occur if the underlying latent variables for the two

endpoints differ by only a scale factor, in which case only

one parameter Sc could be used to jointly model Pc and

PGA, as follows:

U�1½probðPc� kÞ� ¼ ak;PC þ fpðt) þ fdðt) + g ð7Þ

U�1½probðPGA� kÞ� ¼ ak;PGA þ Sc½fpðt) þ fdðt) + g� ð8Þ

with fp(t) and fd(t) given by Eqs. 4–6. In theory, sharing on

the intercept parameters could also occur, which would

imply similarities between the Pc and PGA category sep-

arations. However this type of similarity may be unlikely in

practice.

Fitting Eqs. 3–8 simultaneously to the Pc and PGA data

reduces the total number of fixed and random effect

parameters by 4 and 1, respectively, compared with sepa-

rately modeling the endpoints.
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Model estimation and evaluation

The sequential PK/PD modeling approach was used by first

fixing the individual empirical Bayesian PK parameter

estimates [18]. NONMEM version 7.3 was used for all

modeling [21]. The LAPLACE estimation option was used

for population PK parameter estimation, and the Impor-

tance estimation option was used for E-R modeling. While

most models were pre-specified in this analysis, a decrease

in the NONMEM minimum objective function value

(OFV) of 10.83, corresponding to a nominal p value of

0.001, was considered the threshold criterion of whether

including an additional model parameter improves the

model fit in certain assessment of E–R modeling. Visual

predictive check (VPC) was used for model evaluation by

simulating 500 replicates [22].

Results

Demographics and baseline characteristics

Baseline body weight, the only influential PK covariate,

ranged between 45 and 175 kg, with a mean (SD) of 91

(22) kg. Fourteen patients had positive ADA status, nearly

evenly spread across the six treatment groups. More

detailed demographics and baseline covariates were

reported previously [2].

Guselkumab population pharmacokinetic modeling

Parameter estimates of the confirmatory analysis are given

in Table 1. Standard goodness-of-fit diagnostics (shown in

Figure S1 in Supplementary Material) indicated no

anomalies. PK parameter estimates and their standard

errors appeared within expectations and were comparable

with those of Phase 1 [3, 23]. Estimating the standard

deviation of the additive component of the residual error

(instead of fixing at approximately 0.0029) resulted in an

estimate of 0.0016 with an associated RSE of near 100%,

nearly identical NONMEM OFV, and nearly identical

estimates for the remaining parameters. This supported

fixing this parameter based on the theoretical consider-

ation. Figure 1 shows the VPC results. The observed

95% percentiles for the 5 mg group were abnormally

high, which might be partly due to the fact that two

patients incorrectly received higher doses. While VPC

accounted for the effect of the incorrect doses, the added

variability might have not been fully accounted for. The

exact reason is unclear and could be due to sample

variation. Overall, the model reasonably described the

observed data. It is noted that the number of patients

with positive ADA status was below 20, the pre-specified

threshold of allowing reliable estimation in the confir-

matory analysis [16, 17], and therefore excluded from

the covariate inclusion. With over eight PK samples per

patient, any potential ADA effect was considered unli-

kely to substantially affect the quality of the individual

empirical Bayesian parameter estimates, whose genera-

tion for subsequent E–R modeling was the main objec-

tive of this PK analysis.

PASI response model

Equations 3–6 were fitted to the PASI response data.

Estimation of the model was stable, and model parameter

estimates are given in Table 2. Estimation precision was

reasonable. VPC results are shown in Fig. 2, and the model

reasonably described the observed data.

PGA model

The number of PGA scores of 4 and 5 were relatively

small, totaling 209, and therefore, they were combined with

Table 1 Population pharmacokinetic model parameter estimates

Parameter Unit Description Estimate (relative standard error, %)

CL/F L Apparent clearance 0.567 (3.7)

V/F L/day Apparent volume of distribution 14.3 (3.4)

Ka 1/day Absorption rate constant 4.93 (4.9)

BWTCL Baseline body weight effect on CL/F 1.16 (11.1)

BWTV Baseline body weight effect on V/F 1.04 (13.1)

xCL
2 Variance of between-subject variability for CL/F 0.307 (23.3)

xV
2 Variance of between-subject variability for V/F 0.229 (26.0)

xCL,V Correlation between xCL
2 and xV

2 0.252 (27.6)

r2 Variance of proportional residual error 0.0757 (13.9)
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PGA scores of 3. Consequently, n = 4 was used in

Eqs. 3–6 to model the probability of achieving PGA scores

of k = 0, 1, 2, or 3. The model parameter estimates are

given in Table 2. Estimation precision was reasonable.

VPC results are shown in Fig. 3, and the model reasonably

described observed data.

PASI—PGA correlation model

Because Pc and PGA are both measures of disease activity,

patients responding to one type of measure may be

expected to also respond to the other type; therefore their

corresponding BSV terms (gPc and gPGA in Table 2) may

be expected to be correlated. To investigate this, a BSV

correlation model was employed by fitting the Pc and PGA

data simultaneously, applying Eqs. 3–6 to Pc and PGA

with distinct fixed and random effect parameters, and

incorporating an additional correlation effect between the

gPc and gPGA using a bivariate normal distribution. This

resulted in a NONMEM OFV decrease of over 300, indi-

cating a significant improvement of the fit. The model

parameter estimates are given in Table 2. The parameters

for individual Pc and PGA components were similar to

those obtained with the separate models. The correlation

between gPc and gPGA was estimated as 0.94. While posi-

tive correlation was expected, the high correlation magni-

tude suggested that one common BSV term could be

sufficient.
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Fig. 1 Visual predictive check results of the guselkumab population pharmacokinetics model by treatment group
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Joint PASI—PGA model

Modeling Pc and PGA data together also provided a

framework to assess the similarity of fixed effects between

endpoints along with that of random effects. It could be

hypothesized that, based on binding, a single latent variable

could govern both endpoints through IDR models. Indeed,

comparing the separate Pc and PGA model parameter

estimates in Table 2 shows that the rate parameters rp and

kout were relatively similar between the endpoints, along

with the potency parameter IC50. Furthermore, the maxi-

mum effect parameters Fp and DE appeared to differ in a

relatively narrow range of 1.5–2, and the standard devia-

tions of BSV differed similarly as well. This suggested that

the underlying latent variables for the two endpoints could

indeed differ by only a scale factor, and motivated the use

of only one parameter Sc to jointly model Pc and PGA as in

Eqs. 7–8.

The final joint model of fitting Eqs. 4–8 simultaneously

to the Pc and PGA data resulted in a NONMEM OFV

increase of 64 compared with the correlation model. The

joint model used five fewer fixed-effect parameters and two

fewer random-effect parameters, indicating a significant

improvement of the fit. Comparing with the separate

model, the joint model used five fewer fixed-effect

parameters and one fewer random-effect parameter, and yet

with a decrease in OFV of over 200. This showed a similar

nature of improvement in fit compared with the joint

analysis of continuous and ordered categorical data [9].

The joint model parameter estimates are given in Table 2.

For Pc, the joint model parameter estimates were generally

similar to those obtained with the separate model. Esti-

mation precision improved, more notably for those

parameters with RSE[ 20% in the separate model. This

may be expected, as the precision for those parameters less

precisely estimated may benefit more by including

Table 2 PASI criteria and PGA exposure–response model parameter estimates

Parameter Unit Model

component

Description Separate model (%

RSE)

Correlation model (%

RSE)

Joint model (%

RSE)

a1,Pc PASI 75/90/

100

Intercept -6.73 (6.1) -6.63 (7.49) -6.41 (4.37)

d0,Pc Intercept 1.48 (4.16) 1.48 (4.13) 1.44 (4.15)

d2,Pc Intercept 1.49 (4.37) 1.47 (4.55) 1.44 (4.36)

Fp,Pc Maximum placebo effect 2.28 (23.8) 2.39 (19.1) 1.94 (15.7)

rp,Pc 1/day Rate of placebo effect onset 0.0193 (25.5) 0.0175 (22.6) 0.0165 (15.5)

IC50,Pc lg/

mL

Potency 0.07 (31.3) 0.0656 (27) 0.0663 (21.3)

DEPc Drug effect 6.34 (6.61) 5.94 (6.68) 6.24 (4.93)

kout,Pc 1/day Rate of drug effect onset 0.0193 (8.73) 0.0198 (8.29) 0.0212 (5.69)

Var(gPc) Variance of between-subject

variability

3.18 (12) 3.16 (11.8) 2.97 (11.7)

a2,PGA PGA Intercept -3.29 (4.36) -3.29 (5.09) -3.09 (4.06)

d1,PGA Intercept 1.49 (3.42) 1.51 (3.38) 1.48 (3.35)

d2,PGA Intercept 1.4 (4.24) 1.4 (4.39) 1.36 (4.1)

d3,PGA Intercept 1.82 (4.75) 1.78 (5) 1.7 (4.53)

Fp,PGA Maximum placebo effect 1.17 (17.8) 1.08 (18.3)

rp,PGA 1/day Rate of placebo effect onset 0.0179 (21.2) 0.0193 (23.8)

IC50,PGA lg/

mL

Potency 0.0996 (22) 0.0945 (20.1)

DEPGA Drug effect 4.07 (5.13) 4.15 (4.72)

kout,PGA 1/day Rate of drug effect onset 0.0226 (7.33) 0.022 (7.27)

Var(gPGA) Variance of between-subject

variability

1.11 (11.4) 1.13 (11.3)

cor(gPc,gPGA) Correlation

model

Between-subject variability

correlation

1.78 (10.7)

Sc Joint model Scale parameter of latent

variable

0.601 (4.1)

Parameters are indexed for Pc and PGA respectively

Pc psoriasis area severity index criteria, PGA physician’s global assessment, RSE relative standard error
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additional information (from PGA data). VPC results of the

joint model are given in Figs. 4, 5, which showed a simi-

larly reasonable description of the data as Figs. 2, 3. This is

consistent with the reasonable RSE magnitudes and the

similarity between the parameter estimates of the joint and

the separate models.

Discussion

A parsimonious population E–R model for two ordered

categorical endpoints, i.e., PASI criteria (PASI 75, PASI

90, and PASI 100) and PGA scores, was developed based

on the Phase 2 dose-ranging study of guselkumab. This was

motivated by the previous development of joint modeling

of a continuous and an ordered categorical endpoint [9].

Similarly to the previous scenario [9], the joint model

achieved significant improvement in model fit in terms of

NONMEM OFV, while using fewer parameters than the

separate model. The correlation model investigation

demonstrated that the improved fit of the joint model is due

to the BSV correlation. However, unlike in the previous

scenario [9] where additional BSV terms for the categorical

endpoint could be estimated by leveraging information

from the continuous endpoint, the joint model for two

categorical endpoints had essentially the same number of

parameters. Hence, its description of individual endpoints

apparently did not improve in terms of the VPCs. In
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Fig. 2 Median model predictions at planned observation times and

90% prediction intervals (PI), in overlay with observed Psoriasis Area

and Severity Index (PASI) response frequencies, for the separate

model. PASI75, PASI90, PASI100: proportion of subjects achieving

75, 90, or 100% PASI reduction from baseline
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principle, separate modeling of the endpoints should result

in their unbiased estimation, provided it is reasonably

supported by the data. Joint modeling cannot improve on

estimation accuracy; actually, accuracy could deteriorate if

the joint mechanism is inappropriately assumed. Where the

joint modeling stands to gain is in the precision of esti-

mation, as evidenced by the improvement of RSEs in

Table 1, achieved through the use of all relevant infor-

mation. Improvement in precision is important for predic-

tions and decision making. In terms of drug development,

improving precision allows the trial objectives to be

achieved with fewer subjects and reduced costs.

As endpoints, Pc is a measure of change from baseline

by nature while PGA is an absolute measure. This raises

the conceptual question of why their analyses could be

pooled. From a theoretical perspective, this may be due to

the fact that the categories analyzed represent relatively

large improvements in efficacy, thus making the conceptual

difference smaller. Indeed in psoriasis drug development,

Pc and PGA are used somewhat interchangeably as efficacy

measures. Furthermore, when endpoints are measured at

the same time, the residual level correlation may also be

modeled [24]; this is not expected to affect the separate

endpoint predictions but can be important in the predictions

of achieving joint criteria using both endpoints [25].

Since the categorical endpoint Pc is derived from PASI

scores, it is natural to ask whether PASI score could be

used as a latent variable to model Pc. Indeed, previous

PASI-related longitudinal E–R modeling [4–7], including

that used to guide the design of the Phase 2 dose-ranging
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study of guselkumab, first embellished an E–R model of

PASI score as a continuous variable, and then used the

model to predict the various categories of Pc. To investi-

gate this issue, it is helpful to first examine the predictive

ability of the earlier model [5], which is of interest by

itself. For this purpose, an external VPC of the earlier

model was conducted with the Phase 2 PASI data by

treatment, shown in Fig. S2 in Supplementary Material.

The model predicted the median PASI scores very well,

which in part explained why the Phase 2 study reached its

exact objectives by achieving the targeted treatment sepa-

rations. On the other hand, the continuous PASI score

model could not sufficiently predict Pc. As Fig. S2 shows,

the model under-predicted the 5% percentiles, which could

not be improved even after updating the model with Phase

2 data. To our knowledge, no continuous PASI score

models have yet been published that accurately describe

Pc. This could be explained by two reasons. Firstly, most

previous model development used the additive-plus-pro-

portional residual error model [4–7], which is ill-behaved

in this case, as the likelihood conceptually could become

arbitrarily large due to the fact that PASI = 0 may be

observed. Secondly, PASI scores are Bounded Outcome

Scores (BOS), which report a discrete set of restrictive

values on a finite range [26]. BOS data often demonstrate

non-standard, e.g., J- or U- shaped, distributions, and data

transformations aiming to achieve normality can be much

more difficult than many other types of skewed
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distributions. For example, beta-regression has often been

used for BOS modeling using a transformation of original

scores to the open interval (0, 1), by shrinking values at the

boundary by an apparently innocuous small factor of 0.01

[27, 28]. Theoretical examination of the effect of this small

factor shows that reducing its value sufficiently could

make the influence of boundary values arbitrarily large,

thus rendering the interpretation of the results dubious.

Other approaches explicitly dealing with the nature of BOS

have been developed, including Estimating Transforma-

tions [29], Coarsened Grid with or without transformations

[26, 30], and a nonparametric approach [31]. Each of these

explicit BOS approaches has conceptual appeal; indeed,

extensive efforts applying these approaches lead to various

degrees of improvement in describing the PASI score

distributions. Unfortunately, none resulted in any

improvement in describing Pc. This appears to be due to

the fact that, in order to accurately describe Pc, the con-

tinuous PASI score model must accurately predict not only

the mean data, but also the entire distribution. This is

extremely difficult for a clinical endpoint with highly

skewed distributions. The high efficacy of guselkumab

resulted in just such a data distribution with most scores on

the low end, near or achieving 0. For this reason, modeling

Pc directly as an ordered categorical variable is likely an

effective approach by modeling a presumed unobservable

latent variable, instead of using the ‘‘true’’ latent variable

even if it is observed (and thus no longer ‘‘latent’’).

While the Phase 1 model had limited ability to predict

Pc, it led to a Phase 2 study that, in light of its outcome,
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was considered well-designed. This shows that the model

does not have to be perfect to make correct decisions.

Indeed, if the model were perfect, there would be no need

for additional clinical trials. The drug development para-

digm does demand increased precision as the stages pro-

gress, as later stage decisions incur increased costs. That is,

levels of precision that are acceptable at early stages may

not suffice for later stages, and improvements should be

consistently sought as information accumulates.

A general issue with ordered categorical data is how

many levels should be modeled. Increasing the number of

categories modeled increases the use of available infor-

mation in the data, provided that estimation of the intercept

parameters could be supported. On the other hand, all

levels are often not of similar interest. For example,

achieving PGA = 0 and PGA B 1 are considered more

relevant efficacy markers. During the development of the

separate PGA model, we initially attempted to further

combine PGA level 2 with those C3. However this resulted

in model non-convergence. Detailed investigation showed

that having the PGA level 3 modeled is important for the

estimation of placebo effect, which also affects the entire

model estimation [3]. In Fig. 3, the placebo effect for PGA

is visually discernable only in the PGA B 2 group. This

supported the relevance of retaining this level in the model

even though it is not of direct clinical interest. While in

theory placebo effect estimation could be supported by the

relative differences among active treatments groups and

thus not always require observing a trend in the placebo

group, confounding may occur and precise estimation may

become difficult in such situations, especially when the

effect is small. It is of interest to note that estimation of the

separate PASI Pc model could be supported without the

need of including additional levels, e.g., PASI 50. Unnec-

essarily including such levels would not only deviate from

the main interest of modeling, but also cause lack of fit due

to the skewness of the PASI score distribution discussed

above.

While the importance of model precision may seem

obvious, tendencies may exist that sacrifice utilization of

relevant information for the sake of convenience. For

example, there is a view that landmark E–R analysis is

often sufficient even when longitudinal data are available

[32]. This optimistic view may be due to the fact that

decisions often focus on predictions based on only point

estimates, and the uncertainties are ignored. This may in

part have contributed to the fact that few publications

report observations that confirm earlier phase model pre-

dictions, especially for clinical efficacy modeling based on

proof-of-concept trials where the uncertainty may be most

pronounced [5]. Recent IDR model developments have

made longitudinal modeling more adaptive to clinical

efficacy endpoints of various types, and relevant

information should be used to increase the E–R analysis

precision whenever possible.
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